1
|
Xu P, He Z, Gao X, Zeng X, Wei D, Long X, Yu Y. Research on the Expression of Immune-Related Genes at Different Stages in the Third-Instar Larvae of Spodoptera frugiperda Infected by Metarhizium rileyi. INSECTS 2025; 16:199. [PMID: 40003829 PMCID: PMC11856804 DOI: 10.3390/insects16020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Spodoptera frugiperda is a major migratory agricultural pest that poses a significant threat to global crop safety. Metarhizium rileyi has emerged as an effective biocontrol agent against lepidopteran pests. In this study, we examined the immune responses of third-instar S. frugiperda larvae at various stages of an M. rileyi infection. Using RNA-seq and microscopic observation, we identified the immune-related pathways enriched at different infection stages, which were further validated by a qRT-PCR. Our findings revealed the following immune responses during infection: During the stage when M. rileyi penetrated the host cuticle (0-48 h), the genes related to energy metabolism, detoxification, and melanization were upregulated. Meanwhile, the TOLL and IMD signaling pathways were activated to counter the infection. During the stage of M. rileyi's internal infection (48-96 h), which was the peak expression period of the immune-related genes, cellular immunity predominated. Hemocytes encapsulated and phagocytosed the hyphal bodies. Phagocytosis was enhanced through the upregulation of the genes related to ROS and the melanization-related genes, as well as the genes involved in insect hormone biosynthesis. During the stage when M. rileyi grew from the inside to the outside of the host (96-120 h), immune system paralysis resulted in host mortality. These findings deepen our understanding of the immune interactions between M. rileyi and S. frugiperda, support the potential of M. rileyi as an effective biocontrol agent, and provide a theoretical foundation for the development of targeted biopesticides for pests using biotechnological approaches.
Collapse
Affiliation(s)
- Pengfei Xu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Zhan He
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xuyuan Gao
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xianru Zeng
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Dewei Wei
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xiuzhen Long
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yonghao Yu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| |
Collapse
|
2
|
Ma D, Wang G, Zhu J, Mu W, Dou D, Liu F. Green Leaf Volatile Trans-2-Hexenal Inhibits the Growth of Fusarium graminearum by Inducing Membrane Damage, ROS Accumulation, and Cell Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5646-5657. [PMID: 35481379 DOI: 10.1021/acs.jafc.2c00942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fusarium graminearum, the main agent of Fusarium head blight (FHB), can cause serious yield loss and secrete mycotoxins to contaminate grain. Here, the biological activity of trans-2-hexenal (T2H) against F. graminearum was determined and its mode of action (MOA) was investigated. Furthermore, surface plasmon resonance with liquid chromatography-tandem mass spectrometry (SPR-LC-MS/MS), bioinformatic analysis, and gene knockout technique were combined to identify the binding proteins of T2H in F. graminearum cells. T2H exhibited satisfactory inhibitory activity against F. graminearum in vitro. Good lipophilicity greatly enhanced the affinity of T2H to F. graminearum mycelia and further caused membrane damage. The FgTRR (thioredoxin reductase) gene negatively regulates the sensitivity of F. graminearum to T2H by reducing the generation of reactive oxygen species (ROS) induced by T2H. Two mutant strains with FgSLX1 (structure-specific endonuclease subunit) and FgCOPB (coatomer subunit β) genes knockout showed decreased sensitivity to T2H, suggesting that these two genes may be involved in the antimicrobial activity of T2H. Taken together, T2H can inhibit F. graminearum growth by multiple MOAs and can be used as a biofumigant to control the occurrence of FHB in the field.
Collapse
Affiliation(s)
- Dicheng Ma
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Guoxian Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Jiamei Zhu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Wei Mu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Daolong Dou
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Feng Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
3
|
Gupta K, Sirbaiya AK, Kumar V, Rahman MA. Current Perspective of Synthesis of Medicinally Relevant Benzothiazole Based Molecules: Potential for Antimicrobial and Anti-Inflammatory Activities. Mini Rev Med Chem 2022; 22:1895-1935. [PMID: 35176977 DOI: 10.2174/1389557522666220217101805] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/17/2021] [Accepted: 12/18/2021] [Indexed: 11/22/2022]
Abstract
The therapeutic potential of the majority of the marketed drugs is due to the presence of a heterocyclic nucleus, which constitutes a huge role in the field of medicinal chemistry. These heterocyclic scaffolds could act as a template in order to design potential therapeutic agents against several diseases. Benzothiazole scaffold is one of the influential heteroaromatic rings in the field of medicinal chemistry owing to its extensive pharmacological features. Herein, we have focused on the synthesis of benzothiazole based medicinal molecules, which possess antimicrobial and anti-inflammatory activities. This review covers a systematic description of synthetic routes for biologically relevant benzothiazole derivatives in the last five years. The main aim of this study is to show the diversification of benzothiazole based molecules into their pharmacologically more active derivatives. This review's synthetic protocols include metal-free, metal-catalyzed, and metal precursor azo dyes strategies for the development of benzothiazole derived bioactive compounds. The discussion under the various headings covers synthetic schemes and biological activities of the most potent molecules in the form of minimum inhibitory concentration.
Collapse
Affiliation(s)
- Kamini Gupta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Anup Kumar Sirbaiya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Vishal Kumar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohammad Azizur Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
4
|
Comparative transcriptomic and proteomic profiling reveals molecular models of light signal regulation of shade tolerance in bowl lotus (Nelumbo nucifera). J Proteomics 2021; 257:104455. [PMID: 34923171 DOI: 10.1016/j.jprot.2021.104455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022]
Abstract
Bowl lotus is categorized as a heliophyte, and shaded environments can severely retard its development and blossoming. We conducted a comparative omics study of light response difference between two cultivars, 'HongYunDieYing' (shade tolerant) and 'YingYing' (shade intolerant), to understand the mechanisms behind the shade tolerance response. The results indicated that 'HongYunDieYing' had a faster light signal response than that in 'YingYing'. Furthermore, 214 proteins in 'HongYunDieYing' and 171 proteins in 'YingYing' were differentially expressed at both the transcriptional and protein levels. These correlated members were mainly involved in photosynthesis, metabolism, secondary metabolites, ribosome, and protein biosynthesis. However, glycolysis/gluconeogenesis, carbon metabolism, fatty acid metabolism, glutathione metabolism, and hormone signaling, were unique to 'HongYunDieYing'. The molecular model of light signal regulation of shade tolerance was constructed: the upstream light signal transduction related gene (cryptochrome 1, phytohormone B, phytochrome-interacting factor 3/5, ELONGATED HYPOCOTYL 5, and SUPPRESSOR OF PHYA-1) played a decisive role in regulating shade tolerance traits. Some transcription factors (MYBs, bHLHs and WRKYs) and hormone signaling (auxin, gibberellin and ethylene) were involved in mediating light signaling to regulate downstream biological events. These regulators and biological processes synergistically regulated the shade tolerance of lotus. SIGNIFICANCE: Lotus requires sufficient sunlight for growth and development, and shaded environments will severely retard lotus growth and blossoming. At present, there are few reports on the systematic identification and characterization of light signal response-related regulators in lotus. This study focuses on the comparative analysis two bowl lotus cultivars with the different shade tolerance traits at transcriptome and proteome levels to uncover the novel insight of the light signal-related biological network and potential candidates involved in the mechanism. The results provide a theoretical basis for the bowl lotus breeding and the expansion of its applications.
Collapse
|
5
|
Volatile Organic Compounds in the Azteca/ Cecropia Ant-Plant Symbiosis and the Role of Black Fungi. J Fungi (Basel) 2021; 7:jof7100836. [PMID: 34682257 PMCID: PMC8539435 DOI: 10.3390/jof7100836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/01/2022] Open
Abstract
Black fungi of the order Chaetothyriales are grown by many tropical plant-mutualistic ants as small so-called “patches” in their nests, which are located inside hollow structures provided by the host plant (“domatia”). These fungi are introduced and fostered by the ants, indicating that they are important for the colony. As several species of Chaetothyriales tolerate, adsorb, and metabolize toxic volatiles, we investigated the composition of volatile organic compounds (VOCs) of selected domatia in the Azteca/Cecropia ant-plant mutualism. Concentrations of VOCs in ant-inhabited domatia, empty domatia, and background air were compared. In total, 211 compounds belonging to 19 chemical families were identified. Ant-inhabited domatia were dominated by ketones with 2-heptanone, a well-known ant alarm semiochemical, as the most abundant volatile. Empty domatia were characterized by relatively high concentrations of the monoterpenes d-limonene, p-cymene and β-phellandrene, as well as the heterocyclic sulphur-containing compound, benzothiazole. These compounds have biocidal properties and are primarily biosynthesized by plants as a defense mechanism. Interestingly, most of the latter compounds were present at lower concentrations in ant inhabited domatia than in non-colonized ones. We suggest that Chaetothyriales may play a role in reducing the VOCs, underlining that the mutualistic nature of these fungi as VOCs accumulation might be detrimental for the ants, especially the larvae.
Collapse
|
6
|
Cui K, He L, Zhao Y, Mu W, Lin J, Liu F. Comparative Analysis of Botrytis cinerea in Response to the Microbial Secondary Metabolite Benzothiazole Using iTRAQ-Based Quantitative Proteomics. PHYTOPATHOLOGY 2021; 111:1313-1326. [PMID: 33325724 DOI: 10.1094/phyto-11-20-0503-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Benzothiazole is a microbial volatile compound with strong antifungal activity against the phytopathogenic fungus Botrytis cinerea, but its mode of action against fungi remains largely unknown. Understanding the molecular mechanisms underlying its activity could aid the design and synthesis of similar compounds against pathogenic fungi. Based on the results of morphological and antifungal activity assays, B. cinerea was exposed to 2.5 µl/liter of benzothiazole for 12, 24, and 48 h, and an isobaric tags for relative and absolute quantitation-based quantitative proteomic analysis showed that 378 out of 5,110 identified proteins were differentially expressed proteins (DEPs). The majority of these DEPs were associated with carbohydrate metabolism, oxidation reduction processes, and energy production. Further analysis showed that benzothiazole inhibited mitochondrial membrane organization and decreased the mitochondrial membrane potential of B. cinerea. In addition, the key enzymes of the glyoxylate cycle were downregulated after benzothiazole treatment, and a biochemical analysis indicated that inhibition of the glyoxylate cycle by benzothiazole blocked nutrient availability and interfered with adenosine triphosphate generation. This study provides markers for future research of the molecular responses of B. cinerea to benzothiazole stress.
Collapse
Affiliation(s)
- Kaidi Cui
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Leiming He
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Yunhe Zhao
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Jin Lin
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Feng Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| |
Collapse
|
7
|
Cui K, He L, Zhang Z, Zhang T, Mu W, Liu F. Evaluation of the efficacy of benzothiazole against the red flour beetle, Tribolium castaneum (Herbst). PEST MANAGEMENT SCIENCE 2020; 76:2726-2735. [PMID: 32174001 DOI: 10.1002/ps.5819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/07/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND In the context of the resistance development and health risks of currently used fumigants, it is urgent to seek more effective and ecofriendly compounds for stored-product pest control. The microbial volatile compound benzothiazole is known to have fungicidal and insecticidal activity; however, its detailed efficacy on storage pests is largely unknown. RESULTS Benzothiazole was identified for its great ovicidal, larvicidal, pupicidal and adulticidal activity against Tribolium castaneum, and exhibited potent repellency against T. castaneum. The benzothiazole concentrations and developmental stage of T. castaneum were the key factors affecting the insecticidal effects. Adults of T. castaneum exposed to benzothiazole for as long as 168 h showed a decrease in progeny production. Based on 7 days of fumigation in the model food system, benzothiazole at 0.12 mg mL-1 provided an efficacy of 96% and completely inhibited the number of offspring. Safety profile assessment showed that benzothiazole did not affect the germination rate of wheat seeds but had a slight negative effect on seedling growth. However, sufficient ventilation and soil nutrients could relieve this adverse impact. CONCLUSION Benzothiazole is a strong fumigant and repellent against T. castaneum. This study provides a good perspective of novel ways to control T. castaneum. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kaidi Cui
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, People's Republic of China
- College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Leiming He
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, People's Republic of China
- College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Zhengqun Zhang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Tao Zhang
- Institute of Grain Storage and Logistics, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, People's Republic of China
- College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Feng Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, People's Republic of China
- College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| |
Collapse
|
8
|
Cui K, Zhao Y, He L, Ding J, Li B, Mu W, Liu F. Comparison of Transcriptome Profiles of the Fungus Botrytis cinerea and Insect Pest Bradysia odoriphaga in Response to Benzothiazole. Front Microbiol 2020; 11:1043. [PMID: 32655508 PMCID: PMC7325989 DOI: 10.3389/fmicb.2020.01043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/27/2020] [Indexed: 12/25/2022] Open
Abstract
Benzothiazole (BT) has a strong inhibitory effect on the growth and development of a wide spectrum of fungi and insects, such as Botrytis cinerea and Bradysia odoriphaga, that cause serious losses in agriculture. To investigate the underlying antifungal and insecticidal mechanisms of BT, RNA-seq analysis was performed for B. cinerea after BT treatment for 12, 24, and 48 h and for B. odoriphaga after BT treatment for 6 and 24 h. In B. cinerea, the pectin degradation process was inhibited, suggesting a low utilization of carbohydrate sources. As the treatment time was extended, the cell walls of B. cinerea thickened, and increases in melanin synthesis and ion transport were observed. In B. odoriphaga, signaling pathways including MAPK, insulin, adipocytokine, forkhead box class O, and peroxisome proliferator-activated receptor were activated at 6 h, and phosphoenolpyruvate carboxykinase was the core gene in the signal transduction pathways that responded to BT; digestive system and melanogenesis genes were obviously altered at 24 h. In addition, we identified several insecticidal target genes, such as trypsin, aminopeptidase N, and tyrosinase. Benzothiazole significantly affected nutrient metabolism, especially carbohydrate metabolism, in both species, and the pentose and glucuronate interconversions pathway was shared by both species, although the individual genes were different in each species. Overall, our results suggested that BT was a melanogenesis disrupter for the insect but an activator for the fungus. Our findings are helpful for deeply exploring the genes targeted by BT and for developing new pesticide compounds with unique mechanisms of action.
Collapse
Affiliation(s)
- Kaidi Cui
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Yunhe Zhao
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Leiming He
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Jinfeng Ding
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Beixing Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Feng Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,College of Plant Protection, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
9
|
Mei X, Liu Y, Huang H, Du F, Huang L, Wu J, Li Y, Zhu S, Yang M. Benzothiazole inhibits the growth of Phytophthora capsici through inducing apoptosis and suppressing stress responses and metabolic detoxification. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 154:7-16. [PMID: 30765059 DOI: 10.1016/j.pestbp.2018.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/21/2018] [Accepted: 12/10/2018] [Indexed: 05/22/2023]
Abstract
Benzothiazole (BZO) is an antimicrobial secondary metabolite volatilized by many plants and microbes. However, the mechanism of BZO against phytopathogens is still unclear. Here, we found that BZO has antimicrobial activity against the oomycete pathogen Phytophthora capsici. Transcriptome and proteome analyses demonstrated that BZO significantly suppressed the expression of genes and proteins involved in morphology, abiotic stress defense and detoxification, but induced the activity of apoptosis. Annexin V-FITC/PI staining confirmed that the process of apoptosis was significantly induced by BZO at concentration of 150 mg L-1. FITC-phalloidin actin-cytoskeleton staining combined with hyphal cell wall staining and hyphal ultrastructure studies further confirmed that BZO disrupted the cell membrane and hyphal morphology through disrupting the cytoskeleton, eventually inhibiting the growth of hyphae. These data demonstrated that BZO has multiple modes of action and may act as potential leading compound for the development of new oomycete fungicides. These results also showed that the combination of transcriptomic and proteomic approaches was a useful method for exploring the novel antifungal mechanisms of natural compounds.
Collapse
Affiliation(s)
- Xinyue Mei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Yixiang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Fei Du
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Lanlin Huang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Jiaqing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yiwen Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| | - Min Yang
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
10
|
Castano-Duque L, Helms A, Ali JG, Luthe DS. Plant Bio-Wars: Maize Protein Networks Reveal Tissue-Specific Defense Strategies in Response to a Root Herbivore. J Chem Ecol 2018; 44:727-745. [PMID: 29926336 DOI: 10.1007/s10886-018-0972-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/17/2018] [Accepted: 05/15/2018] [Indexed: 02/08/2023]
Abstract
In this study we examined global changes in protein expression in both roots and leaves of maize plants attacked by the root herbivore, Western corn rootworm (WCR, Diabrotica virgifera virgifera). The changes in protein expression Are indicative of metabolic changes during WCR feeding that enable the plant to defend itself. This is one of the first studies to look above- and below-ground at global protein expression patterns of maize plants grown in soil and infested with a root herbivore. We used advanced proteomic and network analyses to identify metabolic pathways that contribute to global defenses deployed by the insect resistant maize genotype, Mp708, infested with WCR. Using proteomic analysis, 4878 proteins in roots and leaves were detected and of these 863 showed significant changes of abundance during WCR infestation. Protein abundance patterns were analyzed using hierarchical clustering, protein correlation and protein-protein interaction networks. All three data analysis pipelines showed that proteins such as jasmonic acid biosynthetic enzymes, serine proteases, protease inhibitors, proteins involved in biosynthesis and signaling of ethylene, and enzymes producing reactive oxygen species and isopentenyl pyrophosphate, a precursor for volatile production, were upregulated in roots during WCR infestation. In leaves, highly abundant proteins were involved in signal perception suggesting activation of systemic signaling. We conclude that these protein networks contribute to the overall herbivore defense mechanisms in Mp708. Because the plants were grown in potting mix and not sterilized sand, we found that both microbial and insect defense-related proteins were present in the roots. The presence of the high constitutive levels of reduced ascorbate in roots and benzothiazole in the root volatile profiles suggest a tight tri-trophic interaction among the plant, soil microbiomes and WCR-infested roots suggesting that defenses against insects coexist with defenses against bacteria and fungi due to the interaction between roots and soil microbiota. In this study, which is one of the most complete descriptions of plant responses to root-feeding herbivore, we established an analysis pipeline for proteomics data that includes network biology that can be used with different types of "omics" data from a variety of organisms.
Collapse
Affiliation(s)
- Lina Castano-Duque
- Department of Biology, Duke University, 124 Science Drive, French Science Building, Durham, NC, 27708, USA.
| | - Anjel Helms
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jared Gregory Ali
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Dawn S Luthe
- Department of Plant Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
11
|
Chen C, Wang C, Liu Y, Shi X, Gao X. Transcriptome analysis and identification of P450 genes relevant to imidacloprid detoxification in Bradysia odoriphaga. Sci Rep 2018; 8:2564. [PMID: 29416091 PMCID: PMC5803201 DOI: 10.1038/s41598-018-20981-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
Pesticide tolerance poses many challenges for pest control, particularly for destructive pests such as Bradysia odoriphaga. Imidacloprid has been used to control B. odoriphaga since 2013, however, imidacloprid resistance in B. odoriphaga has developed in recent years. Identifying actual and potential genes involved in detoxification metabolism of imidacloprid could offer solutions for controlling this insect. In this study, RNA-seq was used to explore differentially expressed genes in B. odoriphaga that respond to imidacloprid treatment. Differential expression data between imidacloprid treatment and the control revealed 281 transcripts (176 with annotations) showing upregulation and 394 transcripts (235 with annotations) showing downregulation. Among them, differential expression levels of seven P450 unigenes were associated with imidacloprid detoxification mechanism, with 4 unigenes that were upregulated and 3 unigenes that were downregulated. The qRT-PCR results of the seven differential expression P450 unigenes after imidacloprid treatment were consistent with RNA-Seq data. Furthermore, oral delivery mediated RNA interference of these four upregulated P450 unigenes followed by an insecticide bioassay significantly increased the mortality of imidacloprid-treated B. odoriphaga. This result indicated that the four upregulated P450s are involved in detoxification of imidacloprid. This study provides a genetic basis for further exploring P450 genes for imidacloprid detoxification in B. odoriphaga.
Collapse
Affiliation(s)
- Chengyu Chen
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Cuicui Wang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Ying Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xueyan Shi
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Xiwu Gao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| |
Collapse
|