1
|
Pathak J, Selvamani SB, Srivastava S, Gopal A, T C S, Ramasamy GG, Thiruvengadam V, Mohan M, Sharma A, Kumar S, Srivastava S, Jha GK, Sushil SN. miR-92a-3p regulates egg fertilization through ribogenesis in the invasive fall armyworm Spodoptera frugiperda. Int J Biol Macromol 2025; 295:139637. [PMID: 39788231 DOI: 10.1016/j.ijbiomac.2025.139637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 12/11/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Understanding the epigenetic molecular mechanisms (EMMs) of reproduction is crucial for developing advanced and targeted control strategies for Spodoptera frugiperda. Differential expression analysis revealed 11 known miRNAs with varying expression levels, including nine upregulated and two downregulated miRNAs, in virgin females compared with males. The predictive analysis identified 426 target genes for these miRNAs, with ribogenesis highlighted as a key process in oogenesis and egg fertilization. This study also investigated the expression of miRNAs in both virgin and mated male and female S. frugiperda, with a focus on their roles in reproduction. A strong negative correlation was observed between miRNA expression levels and their target hub genes, confirming the transcriptional regulation by miRNAs. Additionally, protein-protein interaction (PPI) network identified the gene CG5033 (BOP1), as a central hub, was also predicted to be the target of miR-92a-3p in S. frugiperda, is involved in the maturation of large ribosomal RNA subunits. This study further provided experimental evidence that either the depletion of miR-92a-3p in virgin females or the knockdown of BOP1 in virgin males led to the production of infertile eggs post-mating. These findings validate the regulatory role of the miR-92a-3p - BOP1 interaction and underscore its importance in oogenesis and fertilization.
Collapse
Affiliation(s)
- Jyoti Pathak
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No: 2491, H.A. Farm Post, Bellary Road, Hebbal, Bengaluru - 560024, India
| | - Selva Babu Selvamani
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No: 2491, H.A. Farm Post, Bellary Road, Hebbal, Bengaluru - 560024, India
| | - Subhi Srivastava
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No: 2491, H.A. Farm Post, Bellary Road, Hebbal, Bengaluru - 560024, India
| | - Ashwitha Gopal
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No: 2491, H.A. Farm Post, Bellary Road, Hebbal, Bengaluru - 560024, India
| | - Suman T C
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No: 2491, H.A. Farm Post, Bellary Road, Hebbal, Bengaluru - 560024, India
| | - Gandhi Gracy Ramasamy
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No: 2491, H.A. Farm Post, Bellary Road, Hebbal, Bengaluru - 560024, India.
| | - Venkatesan Thiruvengadam
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No: 2491, H.A. Farm Post, Bellary Road, Hebbal, Bengaluru - 560024, India.
| | - M Mohan
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No: 2491, H.A. Farm Post, Bellary Road, Hebbal, Bengaluru - 560024, India
| | - Anu Sharma
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistical Research Institute, Pusa, New Delhi 110012, India
| | - Sanjeev Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistical Research Institute, Pusa, New Delhi 110012, India
| | - Sudhir Srivastava
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistical Research Institute, Pusa, New Delhi 110012, India
| | - Girish Kumar Jha
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistical Research Institute, Pusa, New Delhi 110012, India
| | - Satya N Sushil
- ICAR-National Bureau of Agricultural Insect Resources, P. Bag No: 2491, H. A. Farm Post, Bellary Road, Hebbal, Bengaluru - 560024, India
| |
Collapse
|
2
|
Bardapurkar R, Binayak G, Pandit S. Trophic microRNA: Post-transcriptional regulation of target genes and larval development impairment in Plutella xylostella upon precursor and mature microRNA ingestion. INSECT MOLECULAR BIOLOGY 2025; 34:52-64. [PMID: 39049812 DOI: 10.1111/imb.12949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
MicroRNAs (miRNAs) are post-transcriptional gene regulators. In the miRNA pathway's cytoplasmic part, the miRNA is processed from a hairpin-structured precursor to a double-stranded (ds) mature RNA and ultimately to a single-stranded mature miRNA. In insects, ingesting these two ds forms can regulate the target gene expression; this inspired the trophic miRNA's use as a functional genomics and pest management tool. However, systematic studies enabling comparisons of pre- and mature forms, dosages, administration times and instar-wise effects on target transcripts and phenotypes, which can help develop a miRNA administration method, are unavailable due to the different focuses of the previous investigations. We investigated the impact of trophically delivered Px-let-7 miRNA on the lepidopteran pest Plutella xylostella, to compare the efficacies of its pre- and ds-mature forms. Continuous feeding on the miRNA-supplemented diet suppressed expressions of FTZ-F1 and E74, the target ecdysone pathway genes. Both the pre-let-7 and mature let-7 miRNA forms similarly downregulated the target transcripts in all four larval instars. Pre-let-7 and let-7 ingestions decreased larval mass and instar duration and increased mortality in all instars, exhibiting adverse effects on larval growth and development. miRNA processing Dicer-1 and AGO-1's upregulations upon miRNA ingestion denoted the systemic miRNA spread in larval tissues. The scrambled sequence controls did not affect the target transcripts, suggesting the sequence-specific targeting by the mature miRNA and hairpin cassette's non-involvement in the target downregulation. This work provides a framework for miRNA and target gene function analyses and potentiates the trophic miRNA's utility in pest management.
Collapse
Affiliation(s)
- Rutwik Bardapurkar
- Agricultural Biotechnology and Chemical Ecology Research Laboratory, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Gauri Binayak
- Agricultural Biotechnology and Chemical Ecology Research Laboratory, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Sagar Pandit
- Agricultural Biotechnology and Chemical Ecology Research Laboratory, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
3
|
He Q, Chen S, Hou T, Chen J. Juvenile hormone-induced microRNA miR-iab-8 regulates lipid homeostasis and metamorphosis in Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2024; 33:792-805. [PMID: 39005109 DOI: 10.1111/imb.12944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Metamorphosis plays an important role in the evolutionary success of insects. Accumulating evidence indicated that microRNAs (miRNAs) are involved in the regulation of processes associated with insect metamorphosis. However, the miRNAs coordinated with juvenile hormone (JH)-regulated metamorphosis remain poorly reported. In the present study, using high-throughput miRNA sequencing combined with Drosophila genetic approaches, we demonstrated that miR-iab-8, which primarily targets homeotic genes to modulate haltere-wing transformation and sterility was up-regulated by JH and involved in JH-mediated metamorphosis. Overexpression of miR-iab-8 in the fat body resulted in delayed development and failure of larval-pupal transition. Furthermore, metabolomic analysis results revealed that overexpression of miR-iab-8 caused severe energy metabolism defects especially the lipid metabolism, resulting in significantly reduced triacylglycerol (TG) content and glycerophospholipids but enhanced accumulation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). In line with this, Nile red staining demonstrated that during the third larval development, the TG content in the miR-iab-8 overexpression larvae was continuously decreased, which is opposite to the control. Additionally, the transcription levels of genes committed to TG synthesis and breakdown were found to be significantly increased and the expression of genes responsible for glycerophospholipids metabolism were also altered. Overall, we proposed that JH induced miR-iab-8 expression to perturb the lipid metabolism homeostasis especially the TG storage in the fat body, which in turn affected larval growth and metamorphosis.
Collapse
Affiliation(s)
- Qianyu He
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shanshan Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tianlan Hou
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jinxia Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
4
|
Avila-Bonilla RG, Salas-Benito JS. Computational Screening to Predict MicroRNA Targets in the Flavivirus 3' UTR Genome: An Approach for Antiviral Development. Int J Mol Sci 2024; 25:10135. [PMID: 39337625 PMCID: PMC11432202 DOI: 10.3390/ijms251810135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
MicroRNAs (miRNAs) are molecules that influence messenger RNA (mRNA) expression levels by binding to the 3' untranslated region (3' UTR) of target genes. Host miRNAs can influence flavivirus replication, either by inducing changes in the host transcriptome or by directly binding to viral genomes. The 3' UTR of the flavivirus genome is a conserved region crucial for viral replication. Cells might exploit this well-preserved region by generating miRNAs that interact with it, ultimately impacting viral replication. Despite significant efforts to identify miRNAs capable of arresting viral replication, the potential of all these miRNAs to interact with the flavivirus 3' UTR is still poorly characterised. In this context, bioinformatic tools have been proposed as a fundamental part of accelerating the discovery of interactions between miRNAs and the 3' UTR of viral genomes. In this study, we performed a computational analysis to reveal potential miRNAs from human and mosquito species that bind to the 3' UTR of flaviviruses. In humans, miR-6842 and miR-661 were found, while in mosquitoes, miR-9-C, miR-2945-5p, miR-11924, miR-282-5p, and miR-79 were identified. These findings open new avenues for studying these miRNAs as antivirals against flavivirus infections.
Collapse
Affiliation(s)
- Rodolfo Gamaliel Avila-Bonilla
- Laboratorio de Genómica y Biología Molecular de ARNs, Departamento de Genética y Biología Molecular, Cinvestav, Av. IPN 2508, Mexico City 07360, Mexico
| | - Juan Santiago Salas-Benito
- Laboratorio de Biomedicina Molecular 3, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| |
Collapse
|
5
|
Ren Y, Dong W, Chen J, Xue H, Bu W. Identification and function of microRNAs in hemipteran pests: A review. INSECT SCIENCE 2024. [PMID: 39292965 DOI: 10.1111/1744-7917.13449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024]
Abstract
Hemiptera is one of the most significant orders of insect pests, including whiteflies, true bugs, aphids, planthoppers, psyllids, and so forth, which have led to substantial economic losses in agricultural industries and have significantly affected food yields through their ability to suck the phloem sap of crops and transmit numerous bacterial and viral pathogens. Therefore, explorations of pest-specific, eco-friendly and easy-to-adopt technologies for hemipteran pest control are urgently needed. To the best of our knowledge, microRNAs (miRNAs), which are endogenous non-coding small RNAs approximately 22 nucleotides in length, are involved in regulating gene expression via the direct recognition and binding of the 3'-untranslated region (3'-UTR) of target messenger RNAs (mRNAs) or by acting as a center of a competitive endogenous RNA (ceRNA) network at the post-transcriptional level. This review systematically outlines the characterization and functional investigation of the miRNA biogenesis pathway in hemipteran pests, such as whiteflies, true bugs, aphids and planthoppers. In addition, we explored the results of small RNA sequencing and functional observations of miRNAs in these pests, and the results suggest that the numerous miRNAs obtained and annotated via high-throughput sequencing technology and bioinformatic analyses contribute to molting development, fitness, wing polyphenism, symbiont interactions and insecticide resistance in hemipteran pests. Finally, we summarize current advances and propose a framework for future research to extend the current data and address potential limitations in the investigation and application of hemipteran miRNAs.
Collapse
Affiliation(s)
- Yipeng Ren
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenhao Dong
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Juhong Chen
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Huaijun Xue
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
6
|
Aydemir HB, Korkmaz EM. microRNAs in Syrista parreyssi (Hymenoptera) and Lepisma saccharina (Zygentoma) possibly involved in the mitochondrial function. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22062. [PMID: 37905458 DOI: 10.1002/arch.22062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023]
Abstract
Mitochondria are essential organelles for maintaining vital cellular functions, and microRNAs (miRNAs) regulate gene expression posttranscriptionally. miRNAs exhibit tissue and time-specific patterns in mitochondria and specifically mitochondrial miRNAs (mitomiRs) can regulate the mRNA expression both originating from mitochondrial and nuclear transcription which affect mitochondrial metabolic activity and cell homeostasis. In this study, miRNAs of two insect species, Syrista parreyssi (Hymenoptera) and Lepisma saccharina (Zygentoma), were investigated for the first time. The known and possible novel miRNAs were predicted and characterized and their potential effects on mitochondrial transcription were investigated in these insect species using deep sequencing. The previously reported mitomiRs were also investigated and housekeeping miRNAs were characterized. miRNAs that are involved in mitochondrial processes such as apoptosis and signaling and that affect genes encoding the subunits of OXPHOS complexes have been identified in each species. Here, 81 and 161 novel mature miRNA candidates were bioinformatically predicted and 9 and 24 of those were aligned with reference mitogenomes of S. parreyssi and L. saccharina, respectively. As a result of RNAHybrid analysis, 51 and 69 potential targets of miRNAs were found in the mitogenome of S. parreyssi and L. saccharina, respectively. cox1 gene was the most targeted gene and cytB, rrnS, and rrnL genes were highly targeted in both of the species by novel miRNAs, hypothetically. We speculate that these novel miRNAs, originating from or targeting mitochondria, influence on rRNA genes or positively selected mitochondrial protein-coding genes. These findings may provide a new perspective in evaluating miRNAs for maintaining mitochondrial function and transcription.
Collapse
Affiliation(s)
- Habeş Bilal Aydemir
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Ertan Mahir Korkmaz
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
7
|
Santiago PB, da Silva Bentes KL, da Silva WMC, Praça YR, Charneau S, Chaouch S, Grellier P, Dos Santos Silva Ferraz MA, Bastos IMD, de Santana JM, de Araújo CN. Insights into the microRNA landscape of Rhodnius prolixus, a vector of Chagas disease. Sci Rep 2023; 13:13120. [PMID: 37573416 PMCID: PMC10423254 DOI: 10.1038/s41598-023-40353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023] Open
Abstract
The growing interest in microRNAs (miRNAs) over recent years has led to their characterization in numerous organisms. However, there is currently a lack of data available on miRNAs from triatomine bugs (Reduviidae: Triatominae), which are the vectors of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. A comprehensive understanding of the molecular biology of vectors provides new insights into insect-host interactions and insect control approaches, which are key methods to prevent disease incidence in endemic areas. In this work, we describe the miRNome profiles from gut, hemolymph, and salivary gland tissues of the Rhodnius prolixus triatomine. Small RNA sequencing data revealed abundant expression of miRNAs, along with tRNA- and rRNA-derived fragments. Fifty-two mature miRNAs, previously reported in Ecdysozoa, were identified, including 39 ubiquitously expressed in the three tissues. Additionally, 112, 73, and 78 novel miRNAs were predicted in the gut, hemolymph, and salivary glands, respectively. In silico prediction showed that the top eight most highly expressed miRNAs from salivary glands potentially target human blood-expressed genes, suggesting that R. prolixus may modulate the host's gene expression at the bite site. This study provides the first characterization of miRNAs in a Triatominae species, shedding light on the role of these crucial regulatory molecules.
Collapse
Affiliation(s)
- Paula Beatriz Santiago
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Kaio Luís da Silva Bentes
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | | | - Yanna Reis Praça
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| | - Soraya Chaouch
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, 0575231, Paris Cedex, France
| | - Philippe Grellier
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, 0575231, Paris Cedex, France
| | | | - Izabela Marques Dourado Bastos
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Jaime Martins de Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Carla Nunes de Araújo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil.
- Faculty of Ceilândia, University of Brasília, Brasília, DF, Brazil.
| |
Collapse
|
8
|
Xie J, Cai Z, Zheng W, Zhang H. Integrated analysis of miRNA and mRNA expression profiles in response to gut microbiota depletion in the abdomens of female Bactrocera dorsalis. INSECT SCIENCE 2023; 30:443-458. [PMID: 35751912 DOI: 10.1111/1744-7917.13091] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/25/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Insect gut microbiota has been reported to participate in regulating host multiple biological processes including metabolism and reproduction. However, the corresponding molecular mechanisms remain largely unknown. Recent studies suggest that microRNAs (miRNAs) are involved in complex interactions between the gut microbiota and the host. Here, we used next-generation sequencing technology to characterize miRNA and mRNA expression profiles and construct the miRNA-gene regulatory network in response to gut microbiota depletion in the abdomens of female Bactrocera dorsalis. A total of 3016 differentially expressed genes (DEGs) and 18 differentially expressed miRNAs (DEMs) were identified. Based on the integrated analysis of miRNA and mRNA sequencing data, 229 negatively correlated miRNA-gene pairs were identified from the miRNA-mRNA network. Gene ontology enrichment analysis indicated that DEMs could target several genes involved in the metabolic process, oxidation-reduction process, oogenesis, and insulin signaling pathway. Finally, real-time quantitative polymerase chain reaction further verified the accuracy of RNA sequencing results. In conclusion, our study provides the profiles of miRNA and mRNA expressions under antibiotics treatment and provides an insight into the roles of miRNAs and their target genes in the interaction between the gut microbiota and its host.
Collapse
Affiliation(s)
- Junfei Xie
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhaohui Cai
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenping Zheng
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongyu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
9
|
Khashaveh A, An X, Shan S, Pang X, Li Y, Fu X, Zhang Y. The microRNAs in the antennae of Apolygus lucorum (Hemiptera: Miridae): Expression properties and targets prediction. Genomics 2022; 114:110447. [PMID: 35963492 DOI: 10.1016/j.ygeno.2022.110447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/04/2022]
Abstract
MicroRNAs (miRNAs) regulate gene expression and contribute to numerous physiological processes. However, little is known about the functions of miRNAs in insect chemosensation. In this study, nine small RNA libraries were constructed and sequenced from the antennae of nymphs, adult males, and adult females of Apolygus lucorum. In total, 399 (275 known and 124 novel) miRNAs were identified. miR-7-5p_1 was the most abundant miRNA. Altogether, 69,708 target genes related to biogenesis, membrane, and binding activities were predicted. In particular, 15 miRNAs targeted 16 olfactory genes. Comparing the antennae of nymphs and adult males and females, 94 miRNAs were differentially expressed. Alternatively, a subset of differentially expressed miRNAs was verified by qPCR, supporting the reliability of the sequencing results. This study provides a global miRNA transcriptome for the antennae of A. lucorum and valuable information for further investigations of the functions of miRNAs in the regulation of chemosensation.
Collapse
Affiliation(s)
- Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingkui An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqian Pang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Resource and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiaowei Fu
- School of Resource and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
10
|
Firsov SY, Kosherova KA, Mukha DV. Identification and functional characterization of the German cockroach, Blattella germanica, short interspersed nuclear elements. PLoS One 2022; 17:e0266699. [PMID: 35696390 PMCID: PMC9191728 DOI: 10.1371/journal.pone.0266699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/24/2022] [Indexed: 11/18/2022] Open
Abstract
In recent decades, experimental data has accumulated indicating that short interspersed nuclear elements (SINEs) can play a significant functional role in the regulation of gene expression in the host genome. In addition, molecular markers based on SINE insertion polymorphisms have been developed and are widely used for genetic differentiation of populations of eukaryotic organisms. Using routine bioinformatics analysis and publicly available genomic DNA and small RNA-seq data, we first described nine SINEs in the genome of the German cockroach, Blattella germanica. All described SINEs have tRNA promoters, and the start of their transcription begins 11 bp upstream of an "A" box of these promoters. The number of copies of the described SINEs in the B. germanica genome ranges from several copies to more than a thousand copies in a SINE-specific manner. Some of the described SINEs and their degenerate copies can be localized both in the introns of genes and loci known as piRNA clusters. piRNAs originating from piRNA clusters are shown to be mapped to seven of the nine types of SINEs described, including copies of SINEs localized in gene introns. We speculate that SINEs, localized in the introns of certain genes, may regulate the level of expression of these genes by a PIWI-related molecular mechanism.
Collapse
Affiliation(s)
- Sergei Yu. Firsov
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Karina A. Kosherova
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V. Mukha
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
11
|
DeRaedt S, Bierman A, van Heusden P, Richards C, Christoffels A. microRNA profile of Hermetia illucens (black soldier fly) and its implications on mass rearing. PLoS One 2022; 17:e0265492. [PMID: 35298540 PMCID: PMC8929568 DOI: 10.1371/journal.pone.0265492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/02/2022] [Indexed: 11/18/2022] Open
Abstract
The growing demands on protein producers and the dwindling available resources have made Hermetia illucens (the black soldier fly, BSF) an economically important species. Insights into the genome of this insect will better allow for robust breeding protocols, and more efficient production to be used as a replacement of animal feed protein. The use of microRNA as a method to understand how gene regulation allows insect species to adapt to changes in their environment, has been established in multiple species. The baseline and life stage expression levels established in this study, allow for insight into the development and sex-linked microRNA regulation in BSF. To accomplish this, microRNA was extracted and sequenced from 15 different libraries with each life stage in triplicate. Of the total 192 microRNAs found, 168 were orthologous to known arthropod microRNAs and 24 microRNAs were unique to BSF. Twenty-six of the 168 microRNAs conserved across arthropods had a statistically significant (p < 0.05) differential expression between Egg to Larval stages. The development from larva to pupa was characterized by 16 statistically significant differentially expressed microRNA. Seven and 9 microRNA were detected as statistically significant between pupa to adult female and pupa to adult male, respectively. All life stages had a nearly equal split between up and down regulated microRNAs. Ten of the unique 24 miRNA were detected exclusively in one life stage. The egg life stage expressed five microRNA (hil-miR-m, hil-miR-p, hil-miR-r, hil-miR-s, and hil-miR-u) not seen in any other life stages. The female adult and pupa life stages expressed one miRNA each hil-miR-h and hil-miR-ac respectively. Both male and female adult life stages expressed hil-miR-a, hil-miR-b, and hil-miR-y. There were no unique microRNAs found only in the larva stage. Twenty-two microRNAs with 56 experimentally validated target genes in the closely related Drosophila melanogaster were identified. Thus, the microRNA found display the unique evolution of BSF, along with the life stages and potential genes to target for robust mass rearing. Understanding of the microRNA expression in BSF will further their use in the crucial search for alternative and sustainable protein sources.
Collapse
Affiliation(s)
- Sarah DeRaedt
- South African National Bioinformatics Institute, South African Medical Research Council Bioinformatics Unit, The University of the Western Cape, Bellville, Western Cape, South Africa
| | - Anandi Bierman
- AgriProtein Technologies (Pty) Limited, Philippi, Western Cape, South Africa
| | - Peter van Heusden
- South African National Bioinformatics Institute, South African Medical Research Council Bioinformatics Unit, The University of the Western Cape, Bellville, Western Cape, South Africa
| | - Cameron Richards
- AgriProtein Technologies (Pty) Limited, Philippi, Western Cape, South Africa
| | - Alan Christoffels
- South African National Bioinformatics Institute, South African Medical Research Council Bioinformatics Unit, The University of the Western Cape, Bellville, Western Cape, South Africa
- * E-mail:
| |
Collapse
|
12
|
Liu H, Shen E, Wu H, Ma W, Chen H, Lin Y. Trans-kingdom expression of an insect endogenous microRNA in rice enhances resistance to striped stem borer Chilo suppressalis. PEST MANAGEMENT SCIENCE 2022; 78:770-777. [PMID: 34704657 DOI: 10.1002/ps.6690] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The striped stem borer (SSB), Chilo suppressalis Walker, is a major pest of rice worldwide. Breeding of transgenic rice expressing Bacillus thuringiensis (Bt) toxins is a powerful strategy to control SSB. However, pests may evolve certain resistance to Bt toxins in transgenic plants. Hence, new controlling strategies must be continuously developed. RESULTS We successfully generated SSB-resistant rice (csu-53) expressing the artificial microRNA (amiRNA) of SSB endogenous miRNA (csu-novel-miR53) through the RNAi-based technology. Feeding assays demonstrated that csu-53 rice inhibited larval growth, delayed pupation time, and reduced pupal weight and eclosion rate of SSB larva. In a 10-day feeding experiment, the miRNA mimic of csu-novel-miR53 also suppressed larval growth and more importantly increased larval mortality. Transcriptome analysis identified 28 differentially expressed unigenes (DEGs) in the midgut between SSB larvae fed on csu-53 rice and the wild type. One DEG (DN90065_c0_g12) validated by qRT-PCR had a predicted target site of csu-novel-miR53. In addition, in vitro double-stranded RNA synthesis and further feeding assay proved that DN90065_c0_g12 is most likely the target of csu-novel-miR53. CONCLUSION amiRNA-mediated strategy can be applied to the development of insect-resistant crops, and the novel amiRNA csu-novel-miR53 of SSB has important application potential in developing SSB resistant rice. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haoju Liu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Enlong Shen
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Wu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Weihua Ma
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
The embryonic transcriptome of Parhyale hawaiensis reveals different dynamics of microRNAs and mRNAs during the maternal-zygotic transition. Sci Rep 2022; 12:174. [PMID: 34996916 PMCID: PMC8741983 DOI: 10.1038/s41598-021-03642-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022] Open
Abstract
Parhyale hawaiensis has emerged as the crustacean model of choice due to its tractability, ease of imaging, sequenced genome, and development of CRISPR/Cas9 genome editing tools. However, transcriptomic datasets spanning embryonic development are lacking, and there is almost no annotation of non-protein-coding RNAs, including microRNAs. We have sequenced microRNAs, together with mRNAs and long non-coding RNAs, in Parhyale using paired size-selected RNA-seq libraries at seven time-points covering important transitions in embryonic development. Focussing on microRNAs, we annotate 175 loci in Parhyale, 88 of which have no known homologs. We use these data to annotate the microRNAome of 37 crustacean genomes, and suggest a core crustacean microRNA set of around 61 sequence families. We examine the dynamic expression of microRNAs and mRNAs during the maternal-zygotic transition. Our data suggest that zygotic genome activation occurs in two waves in Parhyale with microRNAs transcribed almost exclusively in the second wave. Contrary to findings in other arthropods, we do not predict a general role for microRNAs in clearing maternal transcripts. These data significantly expand the available transcriptomics resources for Parhyale, and facilitate its use as a model organism for the study of small RNAs in processes ranging from embryonic development to regeneration.
Collapse
|
14
|
Lyu Y, Liufu Z, Xiao J, Tang T. A Rapid Evolving microRNA Cluster Rewires Its Target Regulatory Networks in Drosophila. Front Genet 2021; 12:760530. [PMID: 34777478 PMCID: PMC8581666 DOI: 10.3389/fgene.2021.760530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
New miRNAs are evolutionarily important but their functional evolution remains unclear. Here we report that the evolution of a microRNA cluster, mir-972C rewires its downstream regulatory networks in Drosophila. Genomic analysis reveals that mir-972C originated in the common ancestor of Drosophila where it comprises six old miRNAs. It has subsequently recruited six new members in the melanogaster subgroup after evolving for at least 50 million years. Both the young and the old mir-972C members evolved rapidly in seed and non-seed regions. Combining target prediction and cell transfection experiments, we found that the seed and non-seed changes in individual mir-972C members cause extensive target divergence among D. melanogaster, D. simulans, and D. virilis, consistent with the functional evolution of mir-972C reported recently. Intriguingly, the target pool of the cluster as a whole remains relatively conserved. Our results suggest that clustering of young and old miRNAs broadens the target repertoires by acquiring new targets without losing many old ones. This may facilitate the establishment of new miRNAs in existing regulatory networks.
Collapse
Affiliation(s)
- Yang Lyu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhongqi Liufu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Juan Xiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tian Tang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Evolution and Phylogeny of MicroRNAs - Protocols, Pitfalls, and Problems. Methods Mol Biol 2021. [PMID: 34432281 DOI: 10.1007/978-1-0716-1170-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
MicroRNAs are important regulators in many eukaryotic lineages. Typical miRNAs have a length of about 22nt and are processed from precursors that form a characteristic hairpin structure. Once they appear in a genome, miRNAs are among the best-conserved elements in both animal and plant genomes. Functionally, they play an important role in particular in development. In contrast to protein-coding genes, miRNAs frequently emerge de novo. The genomes of animals and plants harbor hundreds of mutually unrelated families of homologous miRNAs that tend to be persistent throughout evolution. The evolution of their genomic miRNA complement closely correlates with important morphological innovation. In addition, miRNAs have been used as valuable characters in phylogenetic studies. An accurate and comprehensive annotation of miRNAs is required as a basis to understand their impact on phenotypic evolution. Since experimental data on miRNA expression are limited to relatively few species and are subject to unavoidable ascertainment biases, it is inevitable to complement miRNA sequencing by homology based annotation methods. This chapter reviews the state of the art workflows for homology based miRNA annotation, with an emphasis on their limitations and open problems.
Collapse
|
16
|
Gimenez S, Seninet I, Orsucci M, Audiot P, Nègre N, Nam K, Streiff R, d'Alençon E. Integrated miRNA and transcriptome profiling to explore the molecular determinism of convergent adaptation to corn in two lepidopteran pests of agriculture. BMC Genomics 2021; 22:606. [PMID: 34372780 PMCID: PMC8351448 DOI: 10.1186/s12864-021-07905-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/22/2021] [Indexed: 11/11/2022] Open
Abstract
Background The degree to which adaptation to same environment is determined by similar molecular mechanisms, is a topic of broad interest in evolutionary biology, as an indicator of evolutionary predictability. We wished to address if adaptation to the same host plant in phytophagous insects involved related gene expression patterns. We compared sRNA-Seq and RNA-Seq data between two pairs of taxa of Ostrinia and Spodoptera frugiperda sharing maize as host-plant. For the latter, we had previously carried out a reciprocal transplant experiment by feeding of the larvae of the Corn strain (Sf-C) and the Rice strain (Sf-R) on corn versus rice and characterized the mRNA and miRNA responses. Results First, we predicted the genes encoding miRNA in Ostrinia nubilalis (On) and O. scapulalis (Os). Respectively 67 and 65 known miRNA genes, as well as 196 and 190 novel ones were predicted with Os genome using sncRNAs extracted from whole larvae feeding on corn or mugwort. In On, a read counts analysis showed that 37 (55.22%) known miRNAs and 19 (9.84%) novel miRNAs were differentially expressed (DE) on mugwort compared to corn (in Os, 25 known miRs (38.46%) and 8 novel ones (4.34%)). Between species on corn, 8 (12.5%) known miRNAs and 8 (6.83%) novel ones were DE while only one novel miRNA showed expression variation between species on mugwort. Gene target prediction led to the identification of 2953 unique target genes in On and 2719 in Os, among which 11.6% (344) were DE when comparing species on corn. 1.8% (54) of On miR targets showed expression variation upon a change of host-plant. We found molecular changes matching convergent phenotype, i.e., a set of nine miRNAs that are regulated either according to the host-plant both in On and Sf-C or between them on the same plant, corn. Among DE miR target genes between taxa, 13.7% shared exactly the same annotation between the two pairs of taxa and had function related to insect host-plant interaction. Conclusion There is some similarity in underlying genetic mechanisms of convergent evolution of two distant Lepidopteran species having adopted corn in their host range, highlighting possible adaptation genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07905-7.
Collapse
Affiliation(s)
| | | | - Marion Orsucci
- DGIMI, Univ Montpellier, INRAE, Montpellier, France.,CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France.,Department of Plant Biology, Uppsala BioCenter and Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Philippe Audiot
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | | - Kiwoong Nam
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | - Réjane Streiff
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | |
Collapse
|
17
|
Awais MM, Shakeel M, Sun J. MicroRNA-Mediated Host-Pathogen Interactions Between Bombyx mori and Viruses. Front Physiol 2021; 12:672205. [PMID: 34025458 PMCID: PMC8137832 DOI: 10.3389/fphys.2021.672205] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs), small non-coding RNAs of about 22 nucleotides, have been reported to regulate gene expression at the posttranscriptional level and are involved in several biological processes such as immunity, development, metabolism, and host-pathogen interactions. Apart from miRNAs encoded by the host, miRNAs produced by pathogens also regulate host genes to facilitate virus replication and evasion of the host defense responses. In recent years, accumulated studies suggest that viral infections alter the host miRNAs expression profile, and both cellular and viral miRNAs may play vital roles in host-pathogen interactions. Bombyx mori, one of the critical lepidopteran model species, is an economically important insect for silk production. The mechanism of interaction between B. mori and its pathogens and their regulation by miRNAs has been extensively studied. Therefore, in this review, we aim to highlight the recent information and understanding of the virus-encoding miRNAs and their functions in modulating viral and host (B. mori) genes. Additionally, the response of B. mori derived miRNAs to viral infection is also discussed. A detailed critical view about miRNAs’ regulatory roles in B. mori-virus interactions will help us understand molecular networks and develop a sustainable antiviral strategy.
Collapse
Affiliation(s)
- Mian Muhammad Awais
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding and Sub-Tropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Muhammad Shakeel
- Laboratory of Bio-Pesticide Innovation and Application of Guandong Province, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding and Sub-Tropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Ma X, He K, Shi Z, Li M, Li F, Chen XX. Large-Scale Annotation and Evolution Analysis of MiRNA in Insects. Genome Biol Evol 2021; 13:6255746. [PMID: 33905491 PMCID: PMC8126727 DOI: 10.1093/gbe/evab083] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Insects are among the most diverse and successful groups of animals and exhibit great morphological diversity and complexity. The innovation of wings and metamorphosis are some examples of the fascinating biological evolution of insects. Most microRNAs (miRNAs) contribute to canalization by conferring robustness to gene networks and thus increase the heritability of important phenotypes. Though previous studies have demonstrated how miRNAs regulate important phenotypes, little is still known about miRNA evolution in insects. Here, we used both small RNA-seq data and homology searching methods to annotate the miRNA repertoires of 152 arthropod species, including 135 insects and 17 noninsect arthropods. We identified 16,212 miRNA genes, and classified them into highly conserved (62), insect-conserved (90), and lineage-specific (354) miRNA families. The phylogenetic relationship of miRNA binary presence/absence dynamics implies that homoplastic loss of conserved miRNA families tends to occur in far-related morphologically simplified taxa, including scale insects (Coccoidea) and twisted-wing insects (Strepsiptera), leading to inconsistent phylogenetic tree reconstruction. The common ancestor of Insecta shares 62 conserved miRNA families, of which five were rapidly gained in the early winged-insects (Pterygota). We also detected extensive miRNA losses in Paraneoptera that are correlated with morphological reduction, and miRNA gains in early Endopterygota around the time holometabolous metamorphosis appeared. This was followed by abundant miRNA gains in Hymenoptera and Lepidoptera. In summary, we provide a comprehensive data set and a detailed evolutionary analysis of miRNAs in insects. These data will be important for future studies on miRNA functions associated with insect morphological innovation and trait biodiversity.
Collapse
Affiliation(s)
- Xingzhou Ma
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.,College of Plant Protection, Nanjing Agricultural University, China
| | - Kang He
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhenmin Shi
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Meizhen Li
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fei Li
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xue-Xin Chen
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Oldroyd BP, Yagound B. Parent-of-origin effects, allele-specific expression, genomic imprinting and paternal manipulation in social insects. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200425. [PMID: 33866807 DOI: 10.1098/rstb.2020.0425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Haplo-diploidy and the relatedness asymmetries it generates mean that social insects are prime candidates for the evolution of genomic imprinting. In single-mating social insect species, some genes may be selected to evolve genomic mechanisms that enhance reproduction by workers when they are inherited from a female. This situation reverses in multiple mating species, where genes inherited from fathers can be under selection to enhance the reproductive success of daughters. Reciprocal crosses between subspecies of honeybees have shown strong parent-of-origin effects on worker reproductive phenotypes, and this could be evidence of such genomic imprinting affecting genes related to worker reproduction. It is also possible that social insect fathers directly affect gene expression in their daughters, for example, by placing small interfering RNA molecules in semen. Gene expression studies have repeatedly found evidence of parent-specific gene expression in social insects, but it is unclear at this time whether this arises from genomic imprinting, paternal manipulation, an artefact of cyto-nuclear interactions, or all of these. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Benjamin P Oldroyd
- Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193 Berlin, Germany.,BEE Lab, School of Life and Environmental Sciences A12, University of Sydney, New South Wales 2006, Australia
| | - Boris Yagound
- BEE Lab, School of Life and Environmental Sciences A12, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
20
|
Baudach A, Vilcinskas A. The European Map Butterfly Araschnia levana as a Model to Study the Molecular Basis and Evolutionary Ecology of Seasonal Polyphenism. INSECTS 2021; 12:insects12040325. [PMID: 33917601 PMCID: PMC8067495 DOI: 10.3390/insects12040325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 02/03/2023]
Abstract
The European map butterfly Araschnia levana is a well-known example of seasonal polyphenism. Spring and summer imagoes exhibit distinct morphological phenotypes. Key environmental factors responsible for the expression of different morphs are day length and temperature. Larval exposure to light for more than 16 h per day entails direct development and results in the adult f. prorsa summer phenotype. Less than 15.5 h per day increasingly promotes diapause and the adult f. levana spring phenotype. The phenotype depends on the timing of the release of 20-hydroxyecdysone in pupae. Release within the first days after pupation potentially inhibits the default "levana-gene-expression-profile" because pre-pupae destined for diapause or subitaneous development have unique transcriptomic programs. Moreover, multiple microRNAs and their targets are differentially regulated during the larval and pupal stages, and candidates for diapause maintenance, duration, and phenotype determination have been identified. However, the complete pathway from photoreception to timekeeping and diapause or subitaneous development remains unclear. Beside the wing polyphenism, the hormonal and epigenetic modifications of the two phenotypes also include differences in biomechanical design and immunocompetence. Here, we discuss research on the physiological and molecular basis of polyphenism in A. levana, including hormonal control, epigenetic regulation, and the effect of ecological parameters on developmental fate.
Collapse
Affiliation(s)
- Arne Baudach
- Institute for Insect Biotechnology, Justus-Liebig University of Giessen, 35392 Giessen, Germany;
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- Correspondence: ; Tel.: +49-641-99-37600
| |
Collapse
|
21
|
Ylla G, Liu T, Conesa A. MirCure: a tool for quality control, filter and curation of microRNAs of animals and plants. Bioinformatics 2020; 36:i618-i624. [PMID: 33381847 DOI: 10.1093/bioinformatics/btaa889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
MOTIVATION microRNAs (miRNAs) are essential components of gene expression regulation at the post-transcriptional level. miRNAs have a well-defined molecular structure and this has facilitated the development of computational and high-throughput approaches to predict miRNAs genes. However, due to their short size, miRNAs have often been incorrectly annotated in both plants and animals. Consequently, published miRNA annotations and miRNA databases are enriched for false miRNAs, jeopardizing their utility as molecular information resources. To address this problem, we developed MirCure, a new software for quality control, filtering and curation of miRNA candidates. MirCure is an easy-to-use tool with a graphical interface that allows both scoring of miRNA reliability and browsing of supporting evidence by manual curators. RESULTS Given a list of miRNA candidates, MirCure evaluates a number of miRNA-specific features based on gene expression, biogenesis and conservation data, and generates a score that can be used to discard poorly supported miRNA annotations. MirCure can also curate and adjust the annotation of the 5p and 3p arms based on user-provided small RNA-seq data. We evaluated MirCure on a set of manually curated animal and plant miRNAs and demonstrated great accuracy. Moreover, we show that MirCure can be used to revisit previous bona fide miRNAs annotations to improve miRNA databases. AVAILABILITY AND IMPLEMENTATION The MirCure software and all the additional scripts used in this project are publicly available at https://github.com/ConesaLab/MirCure. A Docker image of MirCure is available at https://hub.docker.com/r/conesalab/mircure. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Guillem Ylla
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Tianyuan Liu
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Ana Conesa
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
22
|
Singh CP. Role of microRNAs in insect-baculovirus interactions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103459. [PMID: 32961323 DOI: 10.1016/j.ibmb.2020.103459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) constitute a novel class of gene expression regulators and are found to be involved in regulating a wide range of biological processes such as development, cell cycle, metabolism, apoptosis, immunity, host-pathogen interactions etc. Generally miRNAs negatively regulate the gene expression at the post-transcriptional level by binding to the complementary target mRNA sequences. These tiny molecules are abundantly found in higher eukaryotes and viruses. Most of the DNA viruses of animals and insects encode miRNAs including baculoviruses. Baculoviruses are the insect-specific viruses that cause severe infection and mortality mainly in insect larvae of the order Lepidoptera, Diptera, and Hymenoptera. These enveloped viruses have multiple applications in biotechnology and biological pest control methods. For a better understanding of baculoviruses, it is necessary to elucidate the molecular basis of insect-baculovirus interactions. Recent advancement in the technologies for studying the gene expression has accelerated the discovery of new players in the insect-baculovirus interactions. MiRNAs are the emerging and fate-determining players of host-viral interactions. The long history of host and virus co-evolution suggests that the virus keeps on evolving its arsenals to succeed in infection whereas the host continues investing in antiviral defense mechanisms. In this review, I aim to highlight the recent information and understanding of the baculovirus-encoding miRNAs and their functions in regulating viral as well as host genes. Additionally, insect-derived miRNAs response to baculovirus infection is also discussed. A detailed critical view about the regulatory roles of miRNAs in insect-baculovirus interactions will help us to understand molecular networks amid these interactions and develop a sustainable antiviral strategy.
Collapse
Affiliation(s)
- C P Singh
- Department of Botany, University of Rajasthan, Jaipur, 302004, Rajasthan, India.
| |
Collapse
|
23
|
Villagra C, Frías-Lasserre D. Epigenetic Molecular Mechanisms in Insects. NEOTROPICAL ENTOMOLOGY 2020; 49:615-642. [PMID: 32514997 DOI: 10.1007/s13744-020-00777-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Insects are the largest animal group on Earth both in biomass and diversity. Their outstanding success has inspired genetics and developmental research, allowing the discovery of dynamic process explaining extreme phenotypic plasticity and canalization. Epigenetic molecular mechanisms (EMMs) are vital for several housekeeping functions in multicellular organisms, regulating developmental, ontogenetic trajectories and environmental adaptations. In Insecta, EMMs are involved in the development of extreme phenotypic divergences such as polyphenisms and eusocial castes. Here, we review the history of this research field and how the main EMMs found in insects help to understand their biological processes and diversity. EMMs in insects confer them rapid response capacity allowing insect either to change with plastic divergence or to keep constant when facing different stressors or stimuli. EMMs function both at intra as well as transgenerational scales, playing important roles in insect ecology and evolution. We discuss on how EMMs pervasive influences in Insecta require not only the control of gene expression but also the dynamic interplay of EMMs with further regulatory levels, including genetic, physiological, behavioral, and environmental among others, as was earlier proposed by the Probabilistic Epigenesis model and Developmental System Theory.
Collapse
Affiliation(s)
- C Villagra
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile.
| | - D Frías-Lasserre
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile
| |
Collapse
|
24
|
Bally J, Fishilevich E, Doran RL, Lee K, de Campos SB, German MA, Narva KE, Waterhouse PM. Plin-amiR, a pre-microRNA-based technology for controlling herbivorous insect pests. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1925-1932. [PMID: 32012433 PMCID: PMC7415779 DOI: 10.1111/pbi.13352] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 05/21/2023]
Abstract
The cotton bollworm, Helicoverpa armigera, is a major insect pest for a wide range of agricultural crops. It causes significant yield loss through feeding damage and by increasing the crop's vulnerability to bacterial and fungal infections. Although expression of Bacillus thuringiensis (Bt) toxins in transgenic crops has been very successful in protecting against insect pests, including H. armigera, field-evolved resistance has occurred in multiple species. To manage resistant populations, new protection strategies must be continuously developed. Trans-kingdom RNA interference (TK-RNAi) is a promising method for controlling herbivorous pests. TK-RNAi is based on delivering dsRNA or hairpin RNA containing essential insect gene sequences to the feeding insect. The ingested molecules are processed by the insect's RNAi machinery and guide it to silence the target genes. Recently, TK-RNAi delivery has been enhanced by expressing the ds- or hpRNAs in the chloroplast. This compartmentalizes the duplexed RNA away from the plant's RNAi machinery, ensuring that it is delivered in an unprocessed form to the insect. Here, we report another alternative approach for delivering precursor anti-insect RNA in plants. Insect pre-microRNA (pre-miR) transcripts were modified to contain artificial microRNAs (amiRs), targeting insect genes, and expressed in transgenic Nicotiana benthamiana plants. These modified pre-miRs remained largely unprocessed in the plants, and H. armigera feeding on leaves from these plants had increased mortality, developmental abnormalities and delayed growth rates. This shows that plant-expressed insect pre-amiRs (plin-amiRs) are a new strategy of protecting plants against herbivorous insects.
Collapse
Affiliation(s)
- Julia Bally
- Centre for Tropical Crops and BiocommoditiesQUTBrisbaneQLDAustralia
| | - Elane Fishilevich
- Agriculture Division of DowDuPont™Corteva Agriscience™IndianapolisINUSA
- Department of EntomologyUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Rachel L. Doran
- Centre for Tropical Crops and BiocommoditiesQUTBrisbaneQLDAustralia
| | - Karen Lee
- Centre for Tropical Crops and BiocommoditiesQUTBrisbaneQLDAustralia
| | | | - Marcelo A. German
- Agriculture Division of DowDuPont™Corteva Agriscience™IndianapolisINUSA
| | - Kenneth E. Narva
- Agriculture Division of DowDuPont™Corteva Agriscience™IndianapolisINUSA
| | | |
Collapse
|
25
|
Kapheim KM, Jones BM, Søvik E, Stolle E, Waterhouse RM, Bloch G, Ben-Shahar Y. Brain microRNAs among social and solitary bees. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200517. [PMID: 32874647 PMCID: PMC7428247 DOI: 10.1098/rsos.200517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/15/2020] [Indexed: 05/03/2023]
Abstract
Evolutionary transitions to a social lifestyle in insects are associated with lineage-specific changes in gene expression, but the key nodes that drive these regulatory changes are unknown. We examined the relationship between social organization and lineage-specific microRNAs (miRNAs). Genome scans across 12 bee species showed that miRNA copy-number is mostly conserved and not associated with sociality. However, deep sequencing of small RNAs in six bee species revealed a substantial proportion (20-35%) of detected miRNAs had lineage-specific expression in the brain, 24-72% of which did not have homologues in other species. Lineage-specific miRNAs disproportionately target lineage-specific genes, and have lower expression levels than shared miRNAs. The predicted targets of lineage-specific miRNAs are not enriched for genes with caste-biased expression or genes under positive selection in social species. Together, these results suggest that novel miRNAs may coevolve with novel genes, and thus contribute to lineage-specific patterns of evolution in bees, but do not appear to have significant influence on social evolution. Our analyses also support the hypothesis that many new miRNAs are purged by selection due to deleterious effects on mRNA targets, and suggest genome structure is not as influential in regulating bee miRNA evolution as has been shown for mammalian miRNAs.
Collapse
Affiliation(s)
- Karen M. Kapheim
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA
- Author for correspondence: Karen M. Kapheim e-mail:
| | - Beryl M. Jones
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Eirik Søvik
- Department of Science and Mathematics, Volda University College, 6100 Volda, Norway
| | - Eckart Stolle
- Centre of Molecular Biodiversity Research, Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany
| | - Robert M. Waterhouse
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yehuda Ben-Shahar
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
| |
Collapse
|
26
|
Wiebe KF, Elebute OO, LeMoine CMR, Cassone BJ. A Day in the Life: Identification of Developmentally Regulated MicroRNAs in the Colorado Potato Beetle (Leptinotarsa decemlineata; Coleoptera: Chrysomelidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1445-1454. [PMID: 32150604 DOI: 10.1093/jee/toaa020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 06/10/2023]
Abstract
The Colorado potato beetle (Leptinotarsa decemlineata (Say)) is an important pest of the cultivated potato (Solanum tuberosum (L.) [Solanales: Solanaceae]). With its broad resistance toward commonly used insecticides, it is clear that more sophisticated control strategies are needed. Due to their importance in insect development, microRNAs (miRNAs) represent a potential tool to employ in insect control strategies. However, most studies conducted in this area have focused on model species with well-annotated genomes. In this study, next-generation sequencing was used to catalogue the miRNAs produced by L. decemlineata across all eight stages of its development, from eggs to adults. For most stages, the length of miRNAs peaked between 21 and 22 nt, though it was considerably longer for the egg stage (26 nt). Global profiling of miRNAs revealed three distinct developmental clusters: 1) egg stage; 2) early stage (first, second, and third instar); and 3) late stage (fourth instar, prepupae, pupae, and adult). We identified 86 conserved miRNAs and 33 bonafide novel miRNAs, including stage-specific miRNAs and those not previously identified in L. decemlineata. Most of the conserved miRNAs were found in multiple developmental stages, whereas the novel miRNAs were often stage specific with the bulk identified in the egg stage. The identified miRNAs have a myriad of putative functions, including growth, reproduction, and insecticide resistance. We discuss the putative roles of some of the most notable miRNAs in the regulation of L. decemlineata development, as well as the potential applications of this research in Colorado potato beetle management.
Collapse
Affiliation(s)
- K F Wiebe
- Department of Biology, Brandon University, Brandon, Canada
| | - O O Elebute
- Department of Biology, Brandon University, Brandon, Canada
| | - C M R LeMoine
- Department of Biology, Brandon University, Brandon, Canada
| | - B J Cassone
- Department of Biology, Brandon University, Brandon, Canada
| |
Collapse
|
27
|
Bubici G, Prigigallo MI, Garganese F, Nugnes F, Jansen M, Porcelli F. First Report of Aleurocanthus spiniferus on Ailanthus altissima: Profiling of the Insect Microbiome and MicroRNAs. INSECTS 2020; 11:E161. [PMID: 32138145 PMCID: PMC7142546 DOI: 10.3390/insects11030161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022]
Abstract
We report the first occurrence of the orange spiny whitefly (Aleurocanthus spiniferus; OSW) on the tree of heaven (Ailanthus altissima) in Bari, Apulia region, Italy. After our first observation in 2016, the infestation recurred regularly during the following years and expanded to the neighboring trees. Since then, we have also found the insect on numerous patches of the tree of heaven and other plant species in the Bari province. Nevertheless, the tree of heaven was not particularly threatened by the insect, so that a possible contribution by OSW for the control of such an invasive plant cannot be hypothesized hitherto. This work was also aimed at profiling the microbiome of OSW feeding on A. altissima. For this purpose, we used the denaturing gradient gel electrophoresis (DGGE) and the deep sequencing of small RNAs (sRNAs). Both techniques unveiled the presence of "Candidatus Portiera" (primary endosymbiont), Wolbachia sp. and Rickettsia sp., endosymbionts already reported for other Aleyrodidae. Deep sequencing data were analyzed by four computational pipelines in order to understand the reliability of the detection of fungi, bacteria, and viruses: Kraken, Kaiju, Velvet, and VelvetOptimiser. Some contigs assembled by Velvet or VelvetOptimiser were associated with insects, but not necessarily in the Aleurocanthus genus or Aleyrodidae family, suggesting the non-specificity of sRNAs or possible traces of parasitoids in the sample (e.g., Eretmocerus sp.). Finally, deep sequencing data were used to describe the microtranscriptome of OSW: 56 canonical and at least four high-confidence novel microRNAs (miRNAs) were identified. The overall miRNA abundance in OSW was in agreement with previous works on Bemisia tabaci, and bantam-3p, miR-276a-3p, miR-317-3p, miR-750-3p, and mir-8-3p were the most represented miRNAs.
Collapse
Affiliation(s)
- Giovanni Bubici
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, via Amendola 165/A, 70126 Bari, Italy;
| | - Maria Isabella Prigigallo
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, via Amendola 165/A, 70126 Bari, Italy;
| | - Francesca Garganese
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy; (F.G.); (F.P.)
| | - Francesco Nugnes
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, via Università 133, 80055 Portici, Italy;
| | - Maurice Jansen
- Ministry of Agriculture, Nature and Food Quality, Laboratories Division, Netherlands Food and Consumer Product Safety Authority (NVWA), Geertjesweg 15, 6706 EA Wageningen, The Netherlands;
| | - Francesco Porcelli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy; (F.G.); (F.P.)
| |
Collapse
|
28
|
Abstract
The RNA interference (RNAi) triggered by short/small interfering RNA (siRNA) was discovered in nematodes and found to function in most living organisms. RNAi has been widely used as a research tool to study gene functions and has shown great potential for the development of novel pest management strategies. RNAi is highly efficient and systemic in coleopterans but highly variable or inefficient in many other insects. Differences in double-stranded RNA (dsRNA) degradation, cellular uptake, inter- and intracellular transports, processing of dsRNA to siRNA, and RNA-induced silencing complex formation influence RNAi efficiency. The basic dsRNA delivery methods include microinjection, feeding, and soaking. To improve dsRNA delivery, various new technologies, including cationic liposome-assisted, nanoparticle-enabled, symbiont-mediated, and plant-mediated deliveries, have been developed. Major challenges to widespread use of RNAi in insect pest management include variable RNAi efficiency among insects, lack of reliable dsRNA delivery methods, off-target and nontarget effects, and potential development of resistance in insect populations.
Collapse
Affiliation(s)
- Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, USA;
| | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, USA;
| |
Collapse
|
29
|
Ražná K, Cagáň Ľ. The Role of MicroRNAs in Genome Response to Plant-Lepidoptera Interaction. PLANTS (BASEL, SWITZERLAND) 2019; 8:E529. [PMID: 31757090 PMCID: PMC6963388 DOI: 10.3390/plants8120529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 02/06/2023]
Abstract
RNA interference is a known phenomenon of plant immune responses, involving the regulation of gene expression. The key components triggering the silencing of targeted sequences are double-stranded RNA molecules. The regulation of host-pathogen interactions is controlled by miRNA molecules, which regulate the expression of host resistance genes or the genes of the pathogen. The review focused on basic principles of RNA interference as a gene-silencing-based defense mechanism and the role of miRNA molecules in insect genomes. RNA interference as a tool for plant protection management is discussed. The review summarizes current miRNA-based biotechnology approaches for plant protection management.
Collapse
Affiliation(s)
- Katarína Ražná
- Department of Genetics and Plant Breeding, Slovak University of Agriculture, 94976 Nitra, Slovakia
| | - Ľudovít Cagáň
- Department of Plant Protection; Slovak University of Agriculture, 94976 Nitra, Slovakia;
| |
Collapse
|
30
|
MicroRNAs in Daphnia magna identified and characterized by deep sequencing, genome mapping and manual curation. Sci Rep 2019; 9:15945. [PMID: 31685896 PMCID: PMC6828783 DOI: 10.1038/s41598-019-52387-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 10/11/2019] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function in RNA silencing and post-transcriptional regulation of gene expression in most organisms. The water flea, Daphnia magna is a key model to study phenotypic, physiological and genomic responses to environmental cues and miRNAs can potentially mediate these responses. By using deep sequencing, genome mapping and manual curations, we have characterised the miRNAome of D. magna. We identified 66 conserved miRNAs and 13 novel miRNAs; all of these were found in the three studied life stages of D. magna (juveniles, subadults, adults), but with variation in expression levels between stages. Forty-one of the miRNAs were clustered into 13 genome clusters also present in the D. pulex genome. Most miRNAs contained sequence variants (isomiRs). The highest expressed isomiRs were 3′ template variants with one nucleotide deletion or 3′ non-template variants with addition of A or U at the 3′ end. We also identified offset RNAs (moRs) and loop RNAs (loRs). Our work extends the base for further work on all species (miRNA, isomiRs, moRNAs, loRNAs) of the miRNAome of Daphnia as biomarkers in response to chemical substances and environment cues, and underline age dependency.
Collapse
|
31
|
The microRNA-306/abrupt regulatory axis controls wing and haltere growth in Drosophila. Mech Dev 2019; 158:103555. [PMID: 31112748 DOI: 10.1016/j.mod.2019.103555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
Growth control relies on extrinsic and intrinsic mechanisms that regulate and coordinate the size and pattern of organisms. This control is crucial for a homeostatic development and healthy physiology. The gene networks acting in this process are large and complex: factors involved in growth control are also important in diverse biological processes and these networks include multiple regulators that interact and respond to intra- and extra-cellular inputs that may ultimately converge in the control of the cell cycle. In this work we have studied the function of the Drosophila abrupt gene, coding for a BTB-ZF protein and previously reported to be required for wing vein pattern, in the control of haltere and wing growth. We have found that inactivation of abrupt reduces the size of the wing and haltere. We also found that the microRNA miR-306 controls abrupt expression and that miR-306 and abrupt genetically interact to control wing size. Moreover, the reduced appendage size due to abrupt inactivation is rescued by overexpression of Cyclin-E and by inactivation of dacapo. These findings define a miR-306-abrupt regulatory axis that controls wing and haltere size, whereby miR-306 maintains appropriate levels of abrupt expression which, in turn, regulates the cell cycle. Thus, our results uncover a novel function of abrupt in the regulation of the size of Drosophila appendages during development and contribute to the understanding of the coordination between growth and pattern as well as to the understanding of abrupt oncogenic function in flies.
Collapse
|
32
|
He K, Xiao H, Sun Y, Ding S, Situ G, Li F. Transgenic microRNA-14 rice shows high resistance to rice stem borer. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:461-471. [PMID: 30044049 PMCID: PMC6335064 DOI: 10.1111/pbi.12990] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/10/2018] [Accepted: 07/19/2018] [Indexed: 05/21/2023]
Abstract
Rice stem borer (RSB, Chilo suppressalis) is an insect pest that causes huge economic losses every year. Control efforts rely heavily on chemical insecticides, which leads to serious problems such as insecticide resistance, environment pollution, and food safety issues. Therefore, developing alternative pest control methods is an important task. Here, we identified an insect-specific microRNA, miR-14, in RSB, which was predicted to target Spook (Spo) and Ecdysone receptor (EcR) in the ecdysone signalling network. In-vitro dual luciferase assays using HEK293T cells confirmed the interactions of Csu-miR-14 with CsSpo and with CsEcR. Csu-miR-14 exhibited high levels of expression at the end of each larval instar stage, and its expression was negatively correlated with the expression of its two target genes. Overexpression of Csu-miR-14 at the third day of the fifth instar stage led to high mortality and developmental defects in RSB individuals. We produced 35 rice transformants to express miR-14 and found that three lines had a single copy with highly abundant miR-14 mature transcripts. Feeding bioassays using both T0 and T1 generations of transgenic miR-14 rice indicated that at least one line (C#24) showed high resistance to RSB. These results indicated that the approach of miRNAs as targets has potential for improving pest control methods. Moreover, using insect-specific miRNAs rather than protein-encoding genes for pest control may prove benign to non-insect species, and thus is worthy of further exploration.
Collapse
Affiliation(s)
- Kang He
- Institute of Insect Sciences/Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect PestsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Huamei Xiao
- College of Life Sciences and Resource EnvironmentYichun UniversityYichunChina
- Department of EntomologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Yang Sun
- Department of EntomologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Institute of Plant ProtectionJiangxi Academy of Agricultural SciencesNanchangChina
| | - Simin Ding
- Institute of Insect Sciences/Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect PestsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Gongming Situ
- Department of EntomologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Fei Li
- Institute of Insect Sciences/Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect PestsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| |
Collapse
|
33
|
Matsunami M, Nozawa M, Suzuki R, Toga K, Masuoka Y, Yamaguchi K, Maekawa K, Shigenobu S, Miura T. Caste-specific microRNA expression in termites: insights into soldier differentiation. INSECT MOLECULAR BIOLOGY 2019; 28:86-98. [PMID: 30126008 DOI: 10.1111/imb.12530] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Eusocial insects have polyphenic caste systems in which each caste exhibits characteristic morphology and behaviour. In insects, caste systems arose independently in different lineages, such as Isoptera and Hymenoptera. Although partial molecular mechanisms for the development of eusociality in termites have been clarified by the functional analysis of genes and hormones, the contribution of microRNAs (miRNAs) to caste differentiation is unknown. To understand the role of miRNAs in termite caste polyphenism, we performed small RNA sequencing in a subterranean termite (Reticulitermes speratus) and identified the miRNAs that were specifically expressed in the soldier and worker castes. Of the 550 miRNAs annotated in the R. speratus genome, 74 were conserved in insects and 174 were conserved in other termite species. We found that eight miRNAs (mir-1, mir-125, mir-133, mir-2765, mir-87a and three termite-specific miRNAs) are differentially expressed (DE) in soldiers and workers of R. speratus. This differential expression was experimentally verified for five miRNAs by real-time quantitative PCR. Further, four of the eight DE miRNAs in soldier and worker termite castes were also differentially expressed in hymenopteran castes. The finding that Isoptera and Hymenoptera shared several DE miRNAs amongst castes suggests that these miRNAs evolved independently in these phylogenetically distinct lineages.
Collapse
Affiliation(s)
- M Matsunami
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
- Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Japan
| | - M Nozawa
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - R Suzuki
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - K Toga
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | - Y Masuoka
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - K Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - K Maekawa
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - S Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - T Miura
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
- Misaki Marine Biological Station, University of Tokyo, Miura, Kanagawa, Japan
| |
Collapse
|
34
|
Dominguez CV, Maestro JL. Expression of juvenile hormone acid O-methyltransferase and juvenile hormone synthesis in Blattella germanica. INSECT SCIENCE 2018; 25:787-796. [PMID: 28374493 DOI: 10.1111/1744-7917.12467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/16/2017] [Accepted: 03/23/2017] [Indexed: 05/24/2023]
Abstract
Juvenile hormone (JH), a sesquiterpenoid synthetized by the insect corpora allata (CA), plays critical roles in metamorphosis and reproduction. Penultimate or last step of JH synthesis is catalyzed by juvenile hormone acid O-methyltransferase (JHAMT). Here we report the cloning and expression analysis of the JHAMT orthologue in the cockroach, Blattella germanica (L.) (BgJHAMT). BgJHAMT is mainly expressed in CA, with only expression traces in ovary. Three different isoforms, differing in the 3'-UTR sequence, were identified. Isoform A shows between 35 and 65 times higher expression than B and C in CA from penultimate nymphal instar and adult females. RNAi-triggered knock down of BgJHAMT produces a dramatic reduction of JH synthesis, concomitant with a decrease of fat body vitellogenin expression and basal follicle length. BgJHAMT mRNA levels in CA of females along the gonadotrophic cycle parallel, with a slight advancement, JH synthesis profile. BgJHAMT mRNA levels were reduced in starved females and in females in which we reduced nutritional signaling by knocking down insulin receptor and target of rapamycin (TOR). Results show that conditions that modify JH synthesis in adult B. germanica females show parallel changes of BgJHAMT mRNA levels and that the JH-specific branch of the JH synthesis pathway is regulated in the same way as the mevalonate branch. Furthermore, we demonstrate that nutrition and its signaling through the insulin receptor and TOR pathways are essential for activating BgJHAMT expression, which suggests that this enzyme can be a checkpoint for the regulation of JH production in relation to nutritional status.
Collapse
Affiliation(s)
- Claudia V Dominguez
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Jose L Maestro
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
35
|
Llonga N, Ylla G, Bau J, Belles X, Piulachs MD. Diversity of piRNA expression patterns during the ontogeny of the German cockroach. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:288-295. [DOI: 10.1002/jez.b.22815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/15/2018] [Accepted: 06/20/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Natalia Llonga
- Institute of Evolutionary Biology; CSIC-Universitat Pompeu Fabra; Barcelona Spain
| | - Guillem Ylla
- Institute of Evolutionary Biology; CSIC-Universitat Pompeu Fabra; Barcelona Spain
- Department of Microbiology and Cell Science; Institute for Food and Agricultural Sciences, Genetics Institute; University of Florida; Gainesville Florida
| | - Josep Bau
- Department of Biosciences; University of Vic - Central University of Catalonia; Vic, Barcelona Spain
| | - Xavier Belles
- Institute of Evolutionary Biology; CSIC-Universitat Pompeu Fabra; Barcelona Spain
| | | |
Collapse
|
36
|
Monsanto-Hearne V, Johnson KN. miRNAs in Insects Infected by Animal and Plant Viruses. Viruses 2018; 10:E354. [PMID: 29970868 PMCID: PMC6071220 DOI: 10.3390/v10070354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022] Open
Abstract
Viruses vectored by insects cause severe medical and agricultural burdens. The process of virus infection of insects regulates and is regulated by a complex interplay of biomolecules including the small, non-coding microRNAs (miRNAs). Considered an anomaly upon its discovery only around 25 years ago, miRNAs as a class have challenged the molecular central dogma which essentially typifies RNAs as just intermediaries in the flow of information from DNA to protein. miRNAs are now known to be common modulators or fine-tuners of gene expression. While recent years has seen an increased emphasis on understanding the role of miRNAs in host-virus associations, existing literature on the interaction between insects and their arthropod-borne viruses (arboviruses) is largely restricted to miRNA abundance profiling. Here we analyse the commonalities and contrasts between miRNA abundance profiles with different host-arbovirus combinations and outline a suggested pipeline and criteria for functional analysis of the contribution of miRNAs to the insect vector-virus interaction. Finally, we discuss the potential use of the model organism, Drosophila melanogaster, in complementing research on the role of miRNAs in insect vector-virus interaction.
Collapse
Affiliation(s)
- Verna Monsanto-Hearne
- School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia.
| | - Karyn N Johnson
- School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
37
|
Balan RK, Ramasamy A, Hande RH, Gawande SJ, Krishna Kumar NK. Genome-wide identification, expression profiling, and target gene analysis of microRNAs in the Onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), vectors of tospoviruses (Bunyaviridae). Ecol Evol 2018; 8:6399-6419. [PMID: 30038744 PMCID: PMC6053560 DOI: 10.1002/ece3.3762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 11/08/2017] [Accepted: 11/27/2017] [Indexed: 11/06/2022] Open
Abstract
Thrips tabaci Lindeman is an important polyphagous insect pest species estimated to cause losses of more than U.S. $1 billion worldwide annually. Chemical insecticides are of limited use in the management of T. tabaci due to the thigmokinetic behavior and development of resistance to insecticides. There is an urgent need to find alternative management strategies. Small noncoding RNAs (sncRNAs) especially microRNAs (miRNAs) hold great promise as key regulators of gene expression in a wide range of organisms. MiRNAs are a group of endogenously originated sncRNA known to regulate gene expression in animals, plants, and protozoans. In this study, we explored these RNAs in T. tabaci using deep sequencing to provide a basis for future studies of their biological and physiological roles in governing gene expression. Apart from snoRNAs and piRNAs, our study identified nine novel and 130 known miRNAs from T. tabaci. Functional classification of the targets for these miRNAs predicted that majority are involved in regulating transcription, translation, signal transduction and genetic information processing. The higher expression of few miRNAs (such as tta-miR-281, tta-miR-184, tta-miR-3533, tta-miR-N1, tta-miR-N7, and tta-miR-N9) in T. tabaci pupal and adult stages reflected their possible role in larval and adult development, metamorphosis, parthenogenesis, and reproduction. This is the first exploration of the miRNAome in T. tabaci, which not only provides insights into their possible role in insect metamorphosis, growth, and development but also offer an important resource for future pest management strategies.
Collapse
Affiliation(s)
- Rebijith K. Balan
- Department of Physiology, Development, and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Asokan Ramasamy
- Division of BiotechnologyICAR‐Indian Institute of Horticultural ResearchBangaloreIndia
| | - Ranjitha H. Hande
- Division of BiotechnologyICAR‐Indian Institute of Horticultural ResearchBangaloreIndia
| | - Suresh J. Gawande
- Crop Protection SectionICAR‐Directorate of Onion and Garlic ResearchPuneIndia
| | | |
Collapse
|
38
|
Qu Z, Bendena WG, Nong W, Siggens KW, Noriega FG, Kai ZP, Zang YY, Koon AC, Chan HYE, Chan TF, Chu KH, Lam HM, Akam M, Tobe SS, Lam Hui JH. MicroRNAs regulate the sesquiterpenoid hormonal pathway in Drosophila and other arthropods. Proc Biol Sci 2018; 284:rspb.2017.1827. [PMID: 29237851 DOI: 10.1098/rspb.2017.1827] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022] Open
Abstract
Arthropods comprise the majority of all described animal species, and understanding their evolution is a central question in biology. Their developmental processes are under the precise control of distinct hormonal regulators, including the sesquiterpenoids juvenile hormone (JH) and methyl farnesoate. The control of the synthesis and mode of action of these hormones played important roles in the evolution of arthropods and their adaptation to diverse habitats. However, the precise roles of non-coding RNAs, such as microRNAs (miRNAs), controlling arthropod hormonal pathways are unknown. Here, we investigated the miRNA regulation of the expression of the juvenile hormone acid methyltransferase gene (JHAMT), which encodes a rate-determining sesquiterpenoid biosynthetic enzyme. Loss of function of the miRNA bantam in the fly Drosophila melanogaster increased JHAMT expression, while overexpression of the bantam repressed JHAMT expression and resulted in pupal lethality. The male genital organs of the pupae were malformed, and exogenous sesquiterpenoid application partially rescued the genital deformities. The role of the bantam in the regulation of sesquiterpenoid biosynthesis was validated by transcriptomic, qPCR and hormone titre (JHB3 and JH III) analyses. In addition, we found a conserved set of miRNAs that interacted with JHAMT, and the sesquiterpenoid receptor methoprene-tolerant (Met) in different arthropod lineages, including insects (fly, mosquito and beetle), crustaceans (water flea and shrimp), myriapod (centipede) and chelicerate (horseshoe crab). This suggests that these miRNAs might have conserved roles in the post-transcriptional regulation of genes in sesquiterpenoid pathways across the Panarthropoda. Some of the identified lineage-specific miRNAs are potential targets for the development of new strategies in aquaculture and agricultural pest control.
Collapse
Affiliation(s)
- Zhe Qu
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | | | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | | | - Fernando G Noriega
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Zhen-Peng Kai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Yang-Yang Zang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Alex C Koon
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Ho Yin Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Ting Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Hon Ming Lam
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Michael Akam
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada M5S 3G5
| | - Jerome Ho Lam Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| |
Collapse
|
39
|
Rubio M, Maestro JL, Piulachs MD, Belles X. Conserved association of Argonaute 1 and 2 proteins with miRNA and siRNA pathways throughout insect evolution, from cockroaches to flies. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:554-560. [PMID: 29656113 DOI: 10.1016/j.bbagrm.2018.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/21/2018] [Accepted: 04/08/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Mercedes Rubio
- Institute of Evolutionary Biology (CSIC-UPF), Passeig Marítim 37, 08003 Barcelona, Spain
| | - Jose Luis Maestro
- Institute of Evolutionary Biology (CSIC-UPF), Passeig Marítim 37, 08003 Barcelona, Spain
| | - Maria-Dolors Piulachs
- Institute of Evolutionary Biology (CSIC-UPF), Passeig Marítim 37, 08003 Barcelona, Spain
| | - Xavier Belles
- Institute of Evolutionary Biology (CSIC-UPF), Passeig Marítim 37, 08003 Barcelona, Spain.
| |
Collapse
|
40
|
He K, Sun Y, Xiao H, Ge C, Li F, Han Z. Multiple miRNAs jointly regulate the biosynthesis of ecdysteroid in the holometabolous insects, Chilo suppressalis. RNA (NEW YORK, N.Y.) 2017; 23:1817-1833. [PMID: 28860304 PMCID: PMC5689003 DOI: 10.1261/rna.061408.117] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/18/2017] [Indexed: 05/30/2023]
Abstract
The accurate rise and fall of active hormones is important for insect development. The ecdysteroids must be cleared in a timely manner. However, the mechanism of suppressing the ecdysteroid biosynthesis at the right time remains unclear. Here, we sequenced a small RNA library of Chilo suppressalis and identified 300 miRNAs in this notorious rice insect pest. Microarray analysis yielded 54 differentially expressed miRNAs during metamorphosis development. Target prediction and in vitro dual-luciferase assays confirmed that seven miRNAs (two conserved and five novel miRNAs) jointly targeted three Halloween genes in the ecdysteroid biosynthesis pathway. Overexpression of these seven miRNAs reduced the titer of 20-hydroxyecdysone (20E), induced mortality, and retarded development, which could be rescued by treatment with 20E. Comparative analysis indicated that the miRNA regulation of metamorphosis development is a conserved process but that the miRNAs involved are highly divergent. In all, we present evidence that both conserved and lineage-specific miRNAs have crucial roles in regulating development in insects by controlling ecdysteroid biosynthesis, which is important for ensuring developmental convergence and evolutionary diversity.
Collapse
Affiliation(s)
- Kang He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yang Sun
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Plant Protection, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
| | - Huamei Xiao
- College of Life Sciences and Resource Environment, Yichun University, Yichun 336000, China
| | - Chang Ge
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhaojun Han
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
41
|
Ylla G, Piulachs MD, Belles X. Comparative analysis of miRNA expression during the development of insects of different metamorphosis modes and germ-band types. BMC Genomics 2017; 18:774. [PMID: 29020923 PMCID: PMC5637074 DOI: 10.1186/s12864-017-4177-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/05/2017] [Indexed: 01/08/2023] Open
Abstract
Background Do miRNAs contribute to specify the germ-band type and the body structure in the insect embryo? Our goal was to address that issue by studying the changes in miRNA expression along the ontogeny of the German cockroach Blattella germanica, which is a short germ-band and hemimetabolan species. Results We sequenced small RNA libraries representing 11 developmental stages of B. germanica ontogeny (with especial emphasis on embryogenesis) and the changes in miRNA expression were examined. Data were compared with equivalent data for two long germ-band holometabolan species Drosophila melanogaster and Drosophila virilis, and the short germ-band holometabolan species Tribolium castaneum. The identification of B. germanica embryo small RNA sequences unveiled miRNAs not detected in previous studies, such as those of the MIR-309 family and 54 novel miRNAs. Four main waves of miRNA expression were recognized (with most miRNA changes occurring during the embryonic stages): the first from day 0 to day 1 of embryogenesis, the second during mid-embryogenesis (days 0–6), the third (with an acute expression peak) on day 2 of embryonic development, and the fourth during post-embryonic development. The second wave defined the boundaries of maternal-to-zygotic transition, with maternal mRNAs being cleared, presumably by Mir-309 and associated scavenger miRNAs. Conclusion miRNAs follow well-defined patterns of expression over hemimetabolan ontogeny, patterns that are more diverse during embryonic development than during the nymphal stages. The results suggest that miRNAs play important roles in the developmental transitions between the embryonic stages of development (starting with maternal loading), during which they might influence the germ-band type and metamorphosis mode. Electronic supplementary material The online version of this article (10.1186/s12864-017-4177-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guillem Ylla
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Passeig Marítim 37, 08003, Barcelona, Spain
| | - Maria-Dolors Piulachs
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Passeig Marítim 37, 08003, Barcelona, Spain.
| | - Xavier Belles
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Passeig Marítim 37, 08003, Barcelona, Spain.
| |
Collapse
|