1
|
E Santo A, Reis A, Pinheiro AA, da Costa PI, Feliciano GT. Design of Mimetic Antibodies Targeting the SARS-CoV-2 Spike Glycoprotein Based on the GB1 Domain: A Molecular Simulation and Experimental Study. Biochemistry 2025; 64:1541-1549. [PMID: 40096593 PMCID: PMC11966750 DOI: 10.1021/acs.biochem.4c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/18/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
In the context of fast and significant technological transformations, it is natural for innovative artificial intelligence (AI) methods to emerge for the design of bioactive molecules. In this study, we demonstrated that the design of mimetic antibodies (MA) can be achieved using a combination of software and algorithms traditionally employed in molecular simulation. This combination, organized as a genetic algorithm (GA), has the potential to address one of the main challenges in the design of bioactive molecules: GA convergence occurs rapidly due to the careful selection of initial populations based on intermolecular interactions at antigenic surfaces. Experimental immunoenzymatic tests prove that the GA successfully optimized the molecular recognition capacity of one of the MA. One of the significant results of this study is the discovery of new structural motifs, which can be designed in an original and innovative way based on the MA structure itself, eliminating the need for preexisting databases. Through the GA developed in this study, we demonstrated the application of a new protocol capable of guiding experimental methods in the development of new bioactive molecules.
Collapse
Affiliation(s)
- Anderson
A. E Santo
- Institute
of Chemistry, São Paulo State University, Araraquara, SP 14800-900, Brazil
| | - Aline Reis
- School
of Pharmaceutical Sciences, São Paulo
State University, Araraquara, SP 14801-360, Brazil
| | - Anderson A. Pinheiro
- School
of Pharmaceutical Sciences, São Paulo
State University, Araraquara, SP 14801-360, Brazil
| | - Paulo I. da Costa
- School
of Pharmaceutical Sciences, São Paulo
State University, Araraquara, SP 14801-360, Brazil
| | - Gustavo T. Feliciano
- Institute
of Chemistry, São Paulo State University, Araraquara, SP 14800-900, Brazil
| |
Collapse
|
2
|
Sethi A, Agrawal N, Brezovsky J. Impact of water models on the structure and dynamics of enzyme tunnels. Comput Struct Biotechnol J 2024; 23:3946-3954. [PMID: 39582894 PMCID: PMC11584523 DOI: 10.1016/j.csbj.2024.10.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
Protein hydration plays a vital role in many biological functions, and molecular dynamics simulations are frequently used to study it. However, the accuracy of these simulations is often sensitive to the water model used, a phenomenon particularly evident in intrinsically disordered proteins. Here, we investigated the extent to which the choice of water model alters the behavior of complex networks of tunnels within proteins. Tunnels are essential because they allow the exchange of substrates and products between buried enzyme active sites and the bulk solvent, directly affecting enzyme efficiency and selectivity, making the study of tunnels crucial for a holistic understanding of enzyme function at the molecular level. By performing simulations of haloalkane dehalogenase LinB and its two variants with engineered tunnels using TIP3P and OPC models, we investigated their effects on the overall tunnel topology. We also analyzed the properties of the primary tunnels, including their conformation, bottleneck dimensions, sampling efficiency, and the duration of tunnel openings. Our data demonstrate that all three proteins exhibited similar conformational behavior in both models but differed in the geometrical characteristics of their auxiliary tunnels, consistent with experimental observations. Interestingly, the results indicate that the stability of the open tunnels might be sensitive to the water model used. Because TIP3P can provide comparable data on the overall tunnel network, it is a valid choice when computational resources are limited or compatibility issues impede the use of OPC. However, OPC seems preferable for calculations requiring an accurate description of transport kinetics.
Collapse
Affiliation(s)
- Aaftaab Sethi
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan 61–614, Poland
| | - Nikhil Agrawal
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV, Riga 1006, Latvia
| | - Jan Brezovsky
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan 61–614, Poland
- International Institute of Molecular and Cell Biology in Warsaw, Ks Trojdena 4, Warsaw 02–109, Poland
| |
Collapse
|
3
|
Szél V, Zsidó BZ, Hetényi C. Enthalpic Classification of Water Molecules in Target-Ligand Binding. J Chem Inf Model 2024; 64:6583-6595. [PMID: 39135312 DOI: 10.1021/acs.jcim.4c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Water molecules play various roles in target-ligand binding. For example, they can be replaced by the ligand and leave the surface of the binding pocket or stay conserved in the interface and form bridges with the target. While experimental techniques supply target-ligand complex structures at an increasing rate, they often have limitations in the measurement of a detailed water structure. Moreover, measurements of binding thermodynamics cannot distinguish between the different roles of individual water molecules. However, such a distinction and classification of the role of individual water molecules would be key to their application in drug design at atomic resolution. In this study, we investigate a quantitative approach for the description of the role of water molecules during ligand binding. Starting from complete hydration structures of the free and ligand-bound target molecules, binding enthalpy scores are calculated for each water molecule using quantum mechanical calculations. A statistical evaluation showed that the scores can distinguish between conserved and displaced classes of water molecules. The classification system was calibrated and tested on more than 1000 individual water positions. The practical tests of the enthalpic classification included important cases of antiviral drug research on HIV-1 protease inhibitors and the Influenza A ion channel. The methodology of classification is based on open source program packages, Gromacs, Mopac, and MobyWat, freely available to the scientific community.
Collapse
Affiliation(s)
- Viktor Szél
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, Pécs 7624, Hungary
| | - Balázs Zoltán Zsidó
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, Pécs 7624, Hungary
| | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, Pécs 7624, Hungary
| |
Collapse
|
4
|
Amin M, Brooks BR. The oxidation of the [4Fe-4S] cluster of DNA primase alters the binding energies with DNA and RNA primers. Biophys J 2024; 123:1648-1653. [PMID: 38733082 PMCID: PMC11213986 DOI: 10.1016/j.bpj.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/14/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
DNA primase is an iron sulfur enzyme in DNA replication responsible for synthesizing short RNA primers that serve as starting points for DNA synthesis. The role of the [4Fe-4S] cluster is not well determined. Here, we calculate the redox potential of the [4Fe-4S] with and without DNA/RNA using continuum electrostatics. In addition, we identify the structural changes coupled to the oxidation/reduction. Our calculations show that the DNA/RNA primer lowers the redox potential by 110 and 50 mV for the [4Fe-4S]+ and [4Fe-4S]2+ states, respectively. The oxidation of the cluster is coupled to structural changes that significantly reduce the binding energies between the DNA and the nearby residues. The negative charges accumulated by the DNA and the RNA primers induce the oxidation of the [4Fe-4S] cluster. This in turn stimulates structural changes on the DNA-protein interface that significantly reduce the binding energies.
Collapse
Affiliation(s)
- Muhamed Amin
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
5
|
Klyshko E, Kim JSH, Rauscher S. LAWS: Local alignment for water sites-Tracking ordered water in simulations. Biophys J 2023; 122:2871-2883. [PMID: 36116009 PMCID: PMC10397812 DOI: 10.1016/j.bpj.2022.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022] Open
Abstract
Accurate modeling of protein-water interactions in molecular dynamics (MD) simulations is important for understanding the molecular basis of protein function. Data from x-ray crystallography can be useful in assessing the accuracy of MD simulations, in particular, the locations of crystallographic water sites (CWS) coordinated by the protein. Such a comparison requires special methodological considerations that take into account the dynamic nature of proteins. However, existing methods for analyzing CWS in MD simulations rely on global alignment of the protein onto the crystal structure, which introduces substantial errors in the case of significant structural deviations. Here, we propose a method called local alignment for water sites (LAWS), which is based on multilateration-an algorithm widely used in GPS tracking. LAWS considers the contacts formed by CWS and protein atoms in the crystal structure and uses these interaction distances to track CWS in a simulation. We apply our method to simulations of a protein crystal and to simulations of the same protein in solution. Compared with existing methods, LAWS defines CWS characterized by more prominent water density peaks and a less-perturbed protein environment. In the crystal, we find that all high-confidence crystallographic waters are preserved. Using LAWS, we demonstrate the importance of crystal packing for the stability of CWS in the unit cell. Simulations of the protein in solution and in the crystal share a common set of preserved CWS that are located in pockets and coordinated by residues of the same domain, which suggests that the LAWS algorithm will also be useful in studying ordered waters and water networks in general.
Collapse
Affiliation(s)
- Eugene Klyshko
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Justin Sung-Ho Kim
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Sarah Rauscher
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Shahfar H, Forder JK, Roberts CJ. Toward a Suite of Coarse-Grained Models for Molecular Simulation of Monoclonal Antibodies and Therapeutic Proteins. J Phys Chem B 2021; 125:3574-3588. [PMID: 33821645 DOI: 10.1021/acs.jpcb.1c01903] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of coarse-grained models for molecular simulation of proteins are considered, with emphasis on the application of predicting protein-protein self-interactions for monoclonal antibodies (MAbs). As an illustrative example and for quantitative comparison, the models are used to predict osmotic virial coefficients over a broad range of attractive and repulsive self-interactions and solution conditions for a series of MAbs where the second osmotic virial coefficient has been experimentally determined in prior work. The models are compared based on how well they can predict experimental behavior, their computational burdens, and scalability. An intermediate-resolution model is also introduced that can capture specific electrostatic interactions with improved efficiency and similar or improved accuracy when compared to the previously published models. Guidance is included for the selection of coarse-grained models more generally for capturing a balance of electrostatic, steric, and short-ranged nonelectrostatic interactions for proteins from low to high concentrations.
Collapse
Affiliation(s)
- Hassan Shahfar
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States.,Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - James K Forder
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Christopher J Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
7
|
Brysbaert G, Blossey R, Lensink MF. The Inclusion of Water Molecules in Residue Interaction Networks Identifies Additional Central Residues. Front Mol Biosci 2018; 5:88. [PMID: 30364190 PMCID: PMC6193073 DOI: 10.3389/fmolb.2018.00088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022] Open
Abstract
The relevance of water molecules for the recognition and the interaction of biomolecules is widely appreciated. In this paper we address the role that water molecules associated to protein complexes play for the functional relevance of residues by considering their residue interaction networks (RINs). These are commonly defined on the basis of the amino acid composition of the proteins themselves, disregarding the solvation state of the protein. We determine properties of the RINs of two protein complexes, colicin E2/Im2 and barnase/barstar, with and without associated water molecules, using a previously developed methodology and its associated application RINspector. We find that the inclusion of water molecules in RINs leads to an increase in the number of central residues which adds a novel mechanism to the relevance of water molecules for protein function.
Collapse
Affiliation(s)
- Guillaume Brysbaert
- CNRS UMR8576 UGSF, Institute for Structural and Functional Glycobiology, University of Lille, Lille, France
| | - Ralf Blossey
- CNRS UMR8576 UGSF, Institute for Structural and Functional Glycobiology, University of Lille, Lille, France
| | - Marc F Lensink
- CNRS UMR8576 UGSF, Institute for Structural and Functional Glycobiology, University of Lille, Lille, France
| |
Collapse
|
8
|
Jeszenői N, Schilli G, Bálint M, Horváth I, Hetényi C. Analysis of the influence of simulation parameters on biomolecule-linked water networks. J Mol Graph Model 2018; 82:117-128. [DOI: 10.1016/j.jmgm.2018.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/27/2018] [Accepted: 04/21/2018] [Indexed: 12/11/2022]
|
9
|
Abstract
Truncation is still chosen for many long-range intermolecular interaction calculations to efficiently compute free-boundary systems, macromolecular systems and net-charge molecular systems, for example. Advanced truncation methods have been developed for long-range intermolecular interactions. Every truncation method can be implemented as one of two basic cut-off schemes, namely either an atom-based or a group-based cut-off scheme. The former computes interactions of “atoms” inside the cut-off radius, whereas the latter computes interactions of “molecules” inside the cut-off radius. In this work, the effect of group-based cut-off is investigated for isotropic periodic sum (IPS) techniques, which are promising cut-off treatments to attain advanced accuracy for many types of molecular system. The effect of group-based cut-off is clearly different from that of atom-based cut-off, and severe artefacts are observed in some cases. However, no severe discrepancy from the Ewald sum is observed with the extended IPS techniques.
Collapse
|
10
|
Vajda T, Perczel A. The impact of water on the ambivalent behavior and paradoxical phenomenon of the amyloid-β fibril protein. Biomol Concepts 2017; 8:213-220. [PMID: 29211680 DOI: 10.1515/bmc-2017-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/20/2017] [Indexed: 11/15/2022] Open
Abstract
The crucial role of water in amyloid-β(Aβ) fibril proteins is evaluated in several ways including the water's thermodynamic and kinetic solvation effects. As regards the water's character, its hindered-rotation barriers are also considered. The following protein molecules considered here are: the Aβ40 (PDB ID: 2LMN), Aβ42 (PDB ID: 5KK3 and 2NAO) and the double-layered Aβ17-42 fibril. We discuss: (i) extracellular Aβ40 and Aβ42 fibril monomers exhibit an ambivalent propensity to transform into a helical form toward the N-term region and a β-strand-like form near the C-terminal; (ii) interfacial water molecules play a crucial role in protein-protein interactions, as molecular dynamics simulations have shown a significant impact on the protein-protein binding; (iii) it is shown that the spontaneous dimerization process of the Aβ42 fibril protein in water occurs via a two-step nucleation-accommodation mechanism; (iv) MD simulations of the double-layered Aβ17-42 fibril model show that the C↔C interface appears more energetically favorable than the N↔N interface due to large hydrophobic contacts; (v) the water's role in the HET-s prion and in the Aβ fibrillar aggregates; (vi) it was found that the monomer-oligomer equilibrium spontaneously dissociates into stable monomeric species when they are incubated up to 3 μm for a longer time (>1 week) in a physiological buffer.
Collapse
|
11
|
Chong SH, Ham S. Dynamics of Hydration Water Plays a Key Role in Determining the Binding Thermodynamics of Protein Complexes. Sci Rep 2017; 7:8744. [PMID: 28821854 PMCID: PMC5562873 DOI: 10.1038/s41598-017-09466-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/25/2017] [Indexed: 01/15/2023] Open
Abstract
Interfacial waters are considered to play a crucial role in protein–protein interactions, but in what sense and why are they important? Here, using molecular dynamics simulations and statistical thermodynamic analyses, we demonstrate distinctive dynamic characteristics of the interfacial water and investigate their implications for the binding thermodynamics. We identify the presence of extraordinarily slow (~1,000 times slower than in bulk water) hydrogen-bond rearrangements in interfacial water. We rationalize the slow rearrangements by introducing the “trapping” free energies, characterizing how strongly individual hydration waters are captured by the biomolecular surface, whose magnitude is then traced back to the number of water–protein hydrogen bonds and the strong electrostatic field produced at the binding interface. We also discuss the impact of the slow interfacial waters on the binding thermodynamics. We find that, as expected from their slow dynamics, the conventional approach to the water-mediated interaction, which assumes rapid equilibration of the waters’ degrees of freedom, is inadequate. We show instead that an explicit treatment of the extremely slow interfacial waters is critical. Our results shed new light on the role of water in protein–protein interactions, highlighting the need to consider its dynamics to improve our understanding of biomolecular bindings.
Collapse
Affiliation(s)
- Song-Ho Chong
- Department of Chemistry, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-Ku, Seoul, 04310, Korea
| | - Sihyun Ham
- Department of Chemistry, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-Ku, Seoul, 04310, Korea.
| |
Collapse
|