1
|
Liao M, Du H, Wang B, Huang J, Huang D, Tong G. Anticancer Effect of Polyphyllin I in Suppressing Stem Cell-Like Properties of Hepatocellular Carcinoma via the AKT/GSK-3 β/ β-Catenin Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4031008. [PMID: 36317061 PMCID: PMC9617736 DOI: 10.1155/2022/4031008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/29/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022]
Abstract
Polyphyllin I (PPI), also called Chong Lou saponin I, is a steroidal saponin isolated from the rhizome of Paris polyphylla. PPI has been demonstrated to have strong anticancer activity. However, its effect on the stemness of liver cancer stem cells (LCSCs) is not completely understood. Herein, we aimed to investigate the effect of PPI on the stem cell-like features of LCSCs and hepatocellular carcinoma (HCC). LCSCs were enriched in a serum-free medium and treated with PPI, sorafenib (Sora), or PPI and Sora. Several endpoints, including spheroid formation and differentiation, cell proliferation, surface markers of LCSCs, PPI binding targets, and stemness-associated protein expression, were evaluated. Immunofluorescence staining, quantitative real-time polymerase chain reaction, siRNA transfection, and coimmunoprecipitation ubiquitination assays were conducted for in-depth mechanistic studies. Evaluation of in vivo antitumor efficacy demonstrated that PPI effectively inhibited the proliferation of liver cancer cells and the self-renewal and differentiation of LCSCs. Flow cytometry indicated that PPI suppressed the expression of the stem cell surface markers EpCAM and CD13. Molecular docking showed a high affinity between PPI and proteins of the Wnt/β-catenin signaling pathway, including AKT, GSK-3β, and β-catenin, with the binding energies of -5.51, -5.32, and -5.40 kcal/mol, respectively, which suggested that PPI might regulate the Wnt/β-catenin signaling pathway to affect the stem cell-like properties of HCC. Further ex vivo experiments implied that PPI activated the AKT/GSK-3β-mediated ubiquitin proteasomal degradation of β-catenin and subsequently attenuated the prooncogenic effect of LCSCs. Finally, the anticancer property of PPI was confirmed in vivo. It was found that PPI inhibited the tumor growth in an HCC cell line xenograft model. Taken together, molecular docking analysis and experimental data highlighted the novel function of PPI in suppressing the stem cell-like characteristics of LCSCs via the AKT/GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Mianmian Liao
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Haiyan Du
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Bing Wang
- Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Jinzhen Huang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Danping Huang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Department of Integrated Traditional Chinese and Western Medicine, School of Clinical Medicine of Guangdong Pharmaceuticcal University, Guangzhou, China
| | - Guangdong Tong
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
2
|
Li QS, Shen BN, Zhang Z, Luo S, Ruan BF. Discovery of Anticancer Agents from 2-Pyrazoline-Based Compounds. Curr Med Chem 2021; 28:940-962. [PMID: 32141413 DOI: 10.2174/0929867327666200306120151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 11/22/2022]
Abstract
As nitrogen-containing five-membered heterocyclic structural units, the substituted pyrazole derivatives have a broad spectrum of pharmacological activities, especially 4,5-dihydro-1H-pyrazoles that also commonly known as 2-pyrazolines. Since 2010, considerable studies have been found that the 2-pyrazoline derivatives possess potent anticancer activities. In the present review, it covers the pyrazoline derivatives reported by literature from 2010 till date (2010-2019). This review aims to establish the relationship between the anticancer activities variation and different substituents introduced into a 2-pyrazoline core, which could provide important pharmacophore clues for the discovery of new anticancer agents containing 2-pyrazoline scaffold.
Collapse
Affiliation(s)
- Qing-Shan Li
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230601, China
| | - Bang-Nian Shen
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230601, China
| | - Zhen Zhang
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230601, China
| | - Shuying Luo
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| | - Ban-Feng Ruan
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230601, China
| |
Collapse
|
3
|
Javanmard D, Karbalaie Niya MH, Khalafkhany D, Najafi M, Ziaee M, Babaei MR, Kiani SJ, Esghaei M, Jazayeri SM, Panahi M, Safarnezhad Tameshkel F, Mehrabi M, Monavari SH, Bokharaei-Salim F. Downregulation of GSK3β and Upregulation of URG7 in Hepatitis B-Related Hepatocellular Carcinoma. HEPATITIS MONTHLY 2020; 20. [DOI: 10.5812/hepatmon.100899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 07/14/2020] [Accepted: 08/17/2020] [Indexed: 08/30/2023]
Abstract
: Hepatitis B virus (HBV) is the leading cause of hepatocellular carcinoma (HCC). The exact molecular contributors to the development of HBV-related HCC are not yet completely understood. Recent studies demonstrated that the deregulation of the Wnt pathway is highly associated with the development of HCC. Besides, HBV is known to have roles in the deregulation of this pathway. The present study evaluated the molecular aspects of the Wnt pathway in HBV-related HCC in liver tissue samples. Viral characterization was done by identifying the HBx mutations and the assessment of intrahepatic viral load. The expression of Wnt pathway genes was assessed using real-time PCR and methylation-specific PCR. The intrahepatic viral load was significantly higher in tumor samples than in normal tissues (P = 0.0008). Aberrant expression was observed in Wnt-1, Wnt-7a, FZD2, FZD7, β-catenin, URG7, c-Myc, SFRP5, and GSK3β, among which Wnt1, FZD2, SFRP5, Gsk3β, and URG7 were associated with HBV. HBx mutations at positions I88, L116, and I127 + F132 were associated with the decreased expression of GSK3β and overexpression of URG7 and Wnt1. Alterations in the expression level of β-catenin, as well as some mutants of HBx, were correlated with the level of c-Myc. HBV-related HCC seems to be mostly coordinated with epigenetic behaviors of HBx, such a multi-functional peptide with suppressing/trans-activating functions.
Collapse
|
4
|
Mehta M, Dhanjal DS, Paudel KR, Singh B, Gupta G, Rajeshkumar S, Thangavelu L, Tambuwala MM, Bakshi HA, Chellappan DK, Pandey P, Dureja H, Charbe NB, Singh SK, Shukla SD, Nammi S, Aljabali AA, Wich PR, Hansbro PM, Satija S, Dua K. Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: an update. Inflammopharmacology 2020; 28:795-817. [PMID: 32189104 DOI: 10.1007/s10787-020-00698-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
Respiratory disorders, especially non-communicable, chronic inflammatory diseases, are amongst the leading causes of mortality and morbidity worldwide. Respiratory diseases involve multiple pulmonary components, including airways and lungs that lead to their abnormal physiological functioning. Several signaling pathways have been reported to play an important role in the pathophysiology of respiratory diseases. These pathways, in addition, become the compounding factors contributing to the clinical outcomes in respiratory diseases. A range of signaling components such as Notch, Hedgehog, Wingless/Wnt, bone morphogenetic proteins, epidermal growth factor and fibroblast growth factor is primarily employed by these pathways in the eventual cascade of events. The different aberrations in such cell-signaling processes trigger the onset of respiratory diseases making the conventional therapeutic modalities ineffective. These challenges have prompted us to explore novel and effective approaches for the prevention and/or treatment of respiratory diseases. In this review, we have attempted to deliberate on the current literature describing the role of major cell signaling pathways in the pathogenesis of pulmonary diseases and discuss promising advances in the field of therapeutics that could lead to novel clinical therapies capable of preventing or reversing pulmonary vascular pathology in such patients.
Collapse
Affiliation(s)
- Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Daljeet S Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi, G.T. Road (NH-1), Phagwara, 144411, Punjab, India
| | - Keshav R Paudel
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Bhupender Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi, G.T. Road (NH-1), Phagwara, 144411, Punjab, India
| | - Gaurav Gupta
- School of Phamacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - S Rajeshkumar
- Saveetha Dental College and Hospitals, Saveetha University, SIMATS, Chennai, Tamilnadu, India
| | - Lakshmi Thangavelu
- Saveetha Dental College and Hospitals, Saveetha University, SIMATS, Chennai, Tamilnadu, India
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, UK
| | - Hamid A Bakshi
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Parijat Pandey
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research, Baba Mastnath University, Rohtak, 124001, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 12401, India
| | - Nitin B Charbe
- Departamento de Química Orgánica, Facultad de Química Y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña McKenna 4860, 7820436, Santiago, Macul, Chile
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab, 144411, India
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Srinivas Nammi
- School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Alaa A Aljabali
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Peter R Wich
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Philip M Hansbro
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab, 144411, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia.
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia.
- School of Pharmaceutical Sciences, Shoolini University, Himachal Pradesh, Bajhol, Sultanpur, Solan, 173 229, India.
| |
Collapse
|
5
|
Silk fibroin peptide suppresses proliferation and induces apoptosis and cell cycle arrest in human lung cancer cells. Acta Pharmacol Sin 2019; 40:522-529. [PMID: 29921888 DOI: 10.1038/s41401-018-0048-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/20/2018] [Indexed: 12/21/2022]
Abstract
Silkworm cocoon was recorded to cure carbuncle in the Compendium of Materia Medica. Previous studies have demonstrated that the supplemental silk protein sericin exhibits anticancer activity. In the present study, we investigated the effects of silk fibroin peptide (SFP) extracted from silkworm cocoons against human lung cancer cells in vitro and in vivo and its possible anticancer mechanisms. SFP that we prepared had high content of glycine (~ 30%) and showed a molecular weight of ~ 10 kDa. Intragastric administration of SFP (30 g/kg/d) for 14 days did not affect the weights, vital signs, routine blood indices, and blood biochemical parameters in mice. MTT assay showed that SFP dose-dependently inhibited the growth of human lung cancer A549 and H460 cells in vitro with IC50 values of 9.921 and 9.083 mg/mL, respectively. SFP also dose-dependently suppressed the clonogenic activity of the two cell lines. In lung cancer H460 xenograft mice, intraperitoneal injection of SFP (200 or 500 mg/kg/d) for 40 days significantly suppressed the tumor growth, but did not induce significant changes in the body weight. We further examined the effects of SFP on cell cycle and apoptosis in H460 cells using flow cytometry, which revealed that SFP-induced cell cycle arrest at the S phase, and then promoted cell apoptosis. We demonstrated that SFP (20-50 mg/mL) dose-dependently downregulates Bcl-2 protein expression and upregulates Bax protein in H460 cells during cell apoptosis. The results suggest that SFP should be studied further as a novel therapeutic agent for the treatment of lung cancer.
Collapse
|
6
|
Satriyo PB, Bamodu OA, Chen JH, Aryandono T, Haryana SM, Yeh CT, Chao TY. Cadherin 11 Inhibition Downregulates β-catenin, Deactivates the Canonical WNT Signalling Pathway and Suppresses the Cancer Stem Cell-Like Phenotype of Triple Negative Breast Cancer. J Clin Med 2019; 8:jcm8020148. [PMID: 30691241 PMCID: PMC6407101 DOI: 10.3390/jcm8020148] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/19/2019] [Accepted: 01/22/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) promote tumor progression and distant metastasis in breast cancer. Cadherin 11 (CDH11) is overexpressed in invasive breast cancer cells and implicated in distant bone metastases in several cancers. The WNT signalling pathway regulates CSC activity. Growing evidence suggest that cadherins play critical roles in WNT signalling pathway. However, CDH11 role in canonical WNT signalling and CSCs in breast cancer is poorly understood. METHODS We investigated the functional association between CDH11 and WNT signalling pathway in triple negative breast cancer (TNBC), by analyzing their expression profile in the TCGA Breast Cancer (BRCA) cohort and immunohistochemical (IHC) staining of TNBC samples. RESULTS We observed a significant correlation between high CDH11 expression and poor prognosis in the basal and TNBC subtypes. Also, CDH11 expression positively correlated with β-catenin, wingless type MMTV integration site (WNT)2, and transcription factor (TCF)12 expression. IHC results showed CDH11 and β-catenin expression significantly correlated in TNBC patients (p < 0.05). We also showed that siRNA-mediated loss-of-CDH11 (siCDH11) function decreases β-catenin, Met, c-Myc, and matrix metalloproteinase (MMP)7 expression level in MDA-MB-231 and Hs578t. Interestingly, immunofluorescence staining showed that siCDH11 reduced β-catenin nuclear localization and attenuated TNBC cell migration, invasion and tumorsphere-formation. Of translational relevance, siCDH11 exhibited significant anticancer efficacy in murine tumor xenograft models, as demonstrated by reduced tumor-size, inhibited tumor growth and longer survival time. CONCLUSIONS Our findings indicate that by modulating β-catenin, CDH11 regulates the canonical WNT signalling pathway. CDH11 inhibition suppresses the CSC-like phenotypes and tumor growth of TNBC cells and represents a novel therapeutic approach in TNBC treatment.
Collapse
Affiliation(s)
- Pamungkas Bagus Satriyo
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan.
- Doctorate Program of Medical and Health Science, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Oluwaseun Adebayo Bamodu
- Department of Hematology & Oncology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
- Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
| | - Jia-Hong Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan.
- Division of Medical Oncology and Hematology, Tri-Service General Hospital, National Defense Medical Centre, Taipei 11409, Taiwan.
| | - Teguh Aryandono
- Department of Surgery, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Sofia Mubarika Haryana
- Department of Histology and Cellular Biology, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Chi-Tai Yeh
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan.
- Department of Hematology & Oncology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
- Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan.
| | - Tsu-Yi Chao
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan.
- Department of Hematology & Oncology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
- Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan.
- Division of Medical Oncology and Hematology, Tri-Service General Hospital, National Defense Medical Centre, Taipei 11409, Taiwan.
| |
Collapse
|
7
|
The anti-cancer activity of an andrographolide analogue functions through a GSK-3β-independent Wnt/β-catenin signaling pathway in colorectal cancer cells. Sci Rep 2018; 8:7924. [PMID: 29784906 PMCID: PMC5962551 DOI: 10.1038/s41598-018-26278-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 04/24/2018] [Indexed: 01/10/2023] Open
Abstract
The Wnt/β-catenin signaling pathway plays a key role in the progression of human colorectal cancers (CRCs) and is one of the leading targets of chemotherapy agents developed for CRC. The present study aimed to investigate the anti-cancer effects and molecular mechanisms of 19-O-triphenylmethyl andrographolide (RS-PP-050), an andrographolide analogue and determine its activity in the Wnt/β-catenin pathway. RS-PP-050 was found to potently inhibit the proliferation and survival of HT-29 CRC cells. It induces cell cycle arrest and promotes apoptotic cell death which was associated with the activation of PARP-1 and p53. Furthermore, RS-PP-050 exerts inhibitory effects on β-catenin transcription by suppressing T-cell factor/lymphocyte enhancer factor (TCF/LEF) activity in cells overexpressing β-catenin and by down-regulating the endogenous expression of Wnt target genes. RS-PP-050 also decreased the protein expression of the active form of β-catenin but functions independently of GSK-3β, a negative regulator of Wnt. Interestingly, RS-PP-050 extensively blocks phosphorylation at Ser675 of β-catenin which links to interference of the nuclear translocation of β-catenin and might contribute to Wnt inactivation. Collectively, our findings reveal the underlying anti-cancer mechanism of an andrographolide analogue and provide useful insight for exploiting a newly chemotherapeutic agent in Wnt/β-catenin-overexpressing CRC cells.
Collapse
|
8
|
Bao H, Zhang Q, Du Y, Zhang C, Xu H, Zhu Z, Yan Z. Apoptosis induction in K562 human myelogenous leukaemia cells is connected to the modulation of Wnt/β-catenin signalling by BHX, a novel pyrazoline derivative. Cell Prolif 2018; 51:e12433. [PMID: 29341317 DOI: 10.1111/cpr.12433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The goal of this study was to explore the effects of BHX on human chronic myeloid leukaemia (CML) cells and to elucidate the underlying molecular mechanism. MATERIALS AND METHODS CML cell line K562 cells were treated with BHX. The effects of BHX on cell proliferation, apoptosis and cell cycle were detected. Subsequently, the caspase, ATP activity, Ca2+ , ROS and mitochondrial membrane potential (MMP) levels treated with various concentrations of BHX were analysed. The variation of relevant proteins and genes was detected. Further, toxicity of BHX on peripheral blood cells, bone marrow-nucleated cells (BMNC) and organ index were investigated on mice. RESULTS Results showed that BHX suppressed K562 cell proliferation in a dose-dependent manner and induced apoptosis and G0/G1 phase arrest. BHX induced mitochondria-mediated apoptosis, which was associated with downregulation of MMP, activation of caspase-3 and caspase-9, generation of intracellular ROS and elevation of Ca2+ in K562 cells. In treated cells, ATP levels were decreased, expression of total β-catenin, phosphorylated β-catenin and β-catenin in the nucleus was decreased, and expression of cell cycle-related proteins was decreased. Further analysis revealed that BHX lowered the transcriptional level of β-catenin. Lastly, BHX treatment significantly reduced the number of white blood cells, but had no effect on BMNC and organ index. CONCLUSIONS These findings provide further insight into the potential use of BHX as an anti-cancer agent against human leukaemia.
Collapse
Affiliation(s)
- Hanmei Bao
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qing Zhang
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yibo Du
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Cai Zhang
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hui Xu
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhongling Zhu
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhao Yan
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|