1
|
Yang K, Liu H, Li JH. A methylation-related lncRNA-based prediction model in lung adenocarcinomas. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13753. [PMID: 39187946 PMCID: PMC11347386 DOI: 10.1111/crj.13753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/28/2023] [Accepted: 03/31/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND The collaboration between methylation and the lung adenocarcinoma (LUAD) occurrence and development is closes. Long noncoding RNA (lncRNA), as a regulatory factor of various biological functions, can be used for cancer diagnosis. Our study aimed to construct a robust methylation-related lncRNA signature of LUAD. METHODS In the Cancer Genome Atlas (TCGA) dataset, we download the RNA expression data and clinical information of LUAD cases. To develop the best prognostic signature based on methylation-related lncRNAs, Cox regression analyses were utilized. Using Kaplan-Meier analysis, overall survival rates were compared between risk category included both low- and high-risk patients. To categorize genes according to their functional significance, GSEA (Subramanian et al, 2005) was used. Single-sample gene set enrichment analysis (ssGSEA) was used to further reveal the potential molecular mechanism of the methylation-related lncRNA prognostic model in immune infiltration. Using TRLnc (http://www.licpathway.net/TRlnc) and lncRNASNP to analyse the SNP sites and TRLnc of these 18 lncRNAs. LncSEA website was used to analyse 18 lncRNA in the process of tumour development and development. Go was used to analyse the enriched pathways enriched by TFs (transcription factors), Cerna networks, and proteins bound to each other of these 18 lncRNAs. The 'prophetic' package was used to analyse the value of this prognostic model in guiding personalized immunotherapy. RESULTS In this study, we identified 18 methylation-related lncRNAs (AP002761.1, AL118558.3, CH17-340M24.3, AL353150.1, AC004687.1, LINC00996, AF186192.1, HSPC324, AC087752.3, FAM30A, AC106047.1, AC026355.1, ABALON, LINC01843, AL606489.1, NKILA, AP001453.2, GSEC) to establish a methylation-related lncRNA signature that can detect patients prognosis in LUAD. The enriched pathways enriched by proteins interacting with 18 lncRNAs are mainly EMT, hypoxia, stemness and proliferation, among which LINC00996 and AF186192.1 are regulated by multiple tumour associated transcription factors, such as TP53 and TP63, and fam30a and mRNA form a Cerna network. There are 2319 SNP loci in LINC00996, 36 of which are risk SNP loci and 205 SNP loci in af186192.1; AF186192.1 affects 95 conserved miRNAs and 123 non-conserved miRNAs, promotes the binding of 149 pairs of miRNAs: lncRNAs and inhibits the binding of 95 pairs of miRNAs: lncRNAs. The ROC curve demonstrated that the established methylation-related lncRNA signature was more effective in predicting the prognosis of patients in LUAD than the clinicopathological parameters. Our research has confirmed that patients in the high-risk group which was separated by the risk score model based on methylation-related lncRNA had shorter OS. According to GSEA, the high-risk group had a predominantly tumour- and immune-related pathway enrichment. A significant association was shown by ssGSEA between predictive signature and immune status in LUAD patients. In addition, principal component analysis (PCA) demonstrated the prognostic and predictive value of our signature. The correlation between the predictive signature of methylation-related lncRNA and IC50 of conventional chemotherapy drugs can provide personalized chemotherapy regimens for LUAD patients. Methylation-related lncRNA signature can effectively predict DFS of patients in LUAD.
Collapse
Affiliation(s)
- Kun Yang
- Thoracic SurgeryThe Thirteenth People's Hospital of Chongqing CityChongqing CityChina
- Thoracic SurgeryNuclear Industry 215 HospitalXianyang CityShaanxi ProvinceChina
| | - Hao Liu
- Department of Clinical MedicineShaanxi University of Chinese MedicineXianyang CityChina
| | - Jun Hai Li
- Thoracic SurgeryNuclear Industry 215 HospitalXianyang CityShaanxi ProvinceChina
- Department of Clinical MedicineShaanxi University of Chinese MedicineXianyang CityChina
| |
Collapse
|
2
|
Qiu Z, Pang G, Xu X, Lin J, Wang P. Characteristics of mast cell infiltration in lung adenocarcinoma and its impact on prognosis. Discov Oncol 2024; 15:208. [PMID: 38834833 DOI: 10.1007/s12672-024-01062-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The role of mast cells in malignancies remains unclear, and there is no clear correlation between mast cells and tumor microvessels, tumor growth, or lung adenocarcinoma (LUAD) prognosis. This study aims to explore the association between mast cell density (MCD) and intratumoral microvessel density (MVD), clinicopathological parameters, and prognosis in LUAD, by evaluating mast cell infiltration characteristics and their prognostic significance. METHODS This retrospective investigation involved 238 patients with LUAD undergoing complete resection. Tumor and normal lung tissue sections outside the tumor were immunohistochemically stained for MCD in the intratumoral and outside regions, respectively. CD34 polyclonal antibody was used to measure intratumoral MVD. RESULTS Intratumoral regions of LUAD had a higher MCD (P < 0.001) than normal lung tissue. In the intratumoral region, MCD and CD34-MVD were positively correlated (r = 0.411, P < 0.001). Intratumoral MCD correlated with sex, smoking history, tumor differentiation, pathological subtype, and tumor size. Female sex (P = 0.012), no smoking history (P = 0.002), acinar predominant type (P = 0.012), and tumor size ≤ 3 cm (P = 0.009) were associated with a higher MCD, whereas poorly differentiated (P = 0.039) and solid/micropapillary predominant types (P = 0.001) were associated with a lower MCD. Higher intratumoral MCD exhibited a marginally improved overall survival, and individuals with higher MCD infiltration ratios (intratumoral MCD/outside the MCD) had higher disease-free and overall survival rates (log-rank P < 0.001). A high MCD infiltration ratio was associated with decreased risk of tumor progression and death following complete resection. CONCLUSION The tumor microenvironment controls mast cell infiltration in LUAD, and patients with increased intratumoral mast cell infiltration have better prognosis.
Collapse
Affiliation(s)
- Zijian Qiu
- Department of Radiation Oncology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, China
| | - Guanchao Pang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 1511, Jianghong Road, Hangzhou, 310003, China
| | - Xia Xu
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Lin
- Department of Pathology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, China
| | - Pingli Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 1511, Jianghong Road, Hangzhou, 310003, China.
| |
Collapse
|
3
|
Li R, Tong R, Zhang JL, Zhang Z, Deng M, Hou G. Comprehensive molecular analyses of cuproptosis-related genes with regard to prognosis, immune landscape, and response to immune checkpoint blockers in lung adenocarcinoma. J Cancer Res Clin Oncol 2024; 150:246. [PMID: 38722401 PMCID: PMC11081990 DOI: 10.1007/s00432-024-05774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Recent studies have emphasized the importance of the biological processes of different forms of cell death in tumor heterogeneity and anti-tumor immunity. Nonetheless, the relationship between cuproptosis and lung adenocarcinoma (LUAD) remains largely unexplored. METHODS Data for 793 LUAD samples and 59 normal lung tissues obtained from TCGA-LUAD cohort GEO datasets were used in this study. A total of 165 LUAD tissue samples and paired normal lung tissue samples obtained from our hospital were used to verify the prognostic value of dihydrolipoamide S-acetyltransferase (DLAT) and dihydrolipoamide branched chain transacylase E2 (DBT) for LUAD. The cuproptosis-related molecular patterns of LUAD were identified using consensus molecular clustering. Recursive feature elimination with random forest and a tenfold cross-validation method was applied to construct the cuproptosis score (CPS) for LUAD. RESULTS Bioinformatic and immunohistochemistry (IHC) analyses revealed that 13 core genes of cuproptosis were all significantly elevated in LUAD tissues, among which DBT and DLAT were associated with poor prognosis (DLAT, HR = 6.103; DBT, HR = 4.985). Based on the expression pattern of the 13 genes, two distinct cuproptosis-related patterns have been observed in LUAD: cluster 2 which has a relatively higher level of cuproptosis was characterized by immunological ignorance; conversely, cluster 1 which has a relatively lower level of cuproptosis is characterized by TILs infiltration and anti-tumor response. Finally, a scoring scheme termed the CPS was established to quantify the cuproptosis-related pattern and predict the prognosis and the response to immune checkpoint blockers of each individual patient with LUAD. CONCLUSION Cuproptosis was found to influence tumor microenvironment (TME) characteristics and heterogeneity in LUAD. Patients with a lower CPS had a relatively better prognosis, more abundant immune infiltration in the TME, and an enhanced response to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Ruixia Li
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Run Tong
- National Center for Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- National Clinical Research Center for Respiratory Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, People's Republic of China
| | - Jasmine Lin Zhang
- American International School, Hong Kong, People's Republic of China
| | - Zhe Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Mingming Deng
- National Center for Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- National Clinical Research Center for Respiratory Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, People's Republic of China
| | - Gang Hou
- National Center for Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
- National Clinical Research Center for Respiratory Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People's Republic of China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, People's Republic of China.
| |
Collapse
|
4
|
Ligan C, Ma XH, Zhao SL, Zhao W. The regulatory role and mechanism of mast cells in tumor microenvironment. Am J Cancer Res 2024; 14:1-15. [PMID: 38323271 PMCID: PMC10839313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/25/2023] [Indexed: 02/08/2024] Open
Abstract
Mast cells (MCs) have emerged as pivotal contributors to both the defensive immune response and immunomodulation. They also exhibit regulatory functions in modulating pathological processes across various allergic diseases. The impact of MC presence within tumor tissues has garnered considerable attention, yielding conflicting findings. While some studies propose that MCs within tumor tissues promote tumor initiation and progression, others advocate an opposing perspective. Notably, evidence emphasizes the dual role of MCs in cancer, both as promoters and suppressors, is crucial for optimizing cancer treatment strategies. These conflicting viewpoints have generated substantial controversy, underscoring the need for a comprehensive understanding of MC's role in tumor immune responses.
Collapse
Affiliation(s)
- Caryl Ligan
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical UniversityNanjing, Jiangsu, China
| | - Xin-Hua Ma
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical UniversityNanjing, Jiangsu, China
| | - Shu-Li Zhao
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical UniversityNanjing, Jiangsu, China
| | - Wei Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical UniversityNanjing, Jiangsu, China
| |
Collapse
|
5
|
Kim HY, Kang HG, Kim HM, Jeong HJ. Anti-tumor activity of trimethoprim-sulfamethoxazole against melanoma skin cancer through triggering allergic reaction and promoting immunity. Int Immunopharmacol 2023; 123:110742. [PMID: 37536185 DOI: 10.1016/j.intimp.2023.110742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
The anti-cancer impact of an allergic reaction is strongly linked to immunity enhancement. Trimethoprim-sulfamethoxazole (TMP-SMX), an antibiotic, has potential immunomodulatory effects, but has side effects such as allergies. Thus far, the effects and underlying mechanisms of TMP-SMX in melanoma have not been clarified. This study examined the potential roles of TMP-SMX in melanoma skin cancer using an immunodeficient mouse model. TMP-SMX significantly improved the survival rate and reduced the tumor weight and growth and vascular endothelial growth factor levels in melanoma skin cancer of immunodeficient mice. In the forced swimming test, TMP-SMX significantly reduced immobility time compared to the melanoma skin cancer of immunodeficient mice, indicating improved immunity. TMP-SMX significantly increased infiltration of mast cells and release of allergy-related mediators (IgE, histamine, interleukin (IL)-4, IL-5, IL-13, and IL-33) and immune-enhancing mediators (tumor necrosis factor-α, IL-2, IL-6, and IL-12). In addition, the administration of TMP-SMX significantly increased the caspase-3, 8, and 9 activities. Furthermore, mice given TMP-SMX showed no adverse reactions according to the blood biochemical parameters. TMP-SMX significantly inhibits the growth of melanoma skin cancer by triggering an allergic reaction and promotingimmunity. Hence, we propose that TMP-SMX may be used as an immune booster in cancer chemotherapy.
Collapse
Affiliation(s)
- Hee-Yun Kim
- Biochip Research Center, Hoseo University, Asan, Chungnam 31499, Republic of Korea
| | - Ho-Geun Kang
- Department of Bio-Convergence System, Graduate School, Hoseo University, Asan 31499, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Hyun-Ja Jeong
- Biochip Research Center, Hoseo University, Asan, Chungnam 31499, Republic of Korea; Department of Bio-Convergence System, Graduate School, Hoseo University, Asan 31499, Republic of Korea; Department of Food Science & Technology, Hoseo University, 20, Hoseo-ro 79beon-gil, Baebang-eup, Asan, Chungnam 31499, Republic of Korea.
| |
Collapse
|
6
|
Wen J, Yi L, Wan L, Dong X. Prognostic value of GLCE and infiltrating immune cells in Ewing sarcoma. Heliyon 2023; 9:e19357. [PMID: 37662777 PMCID: PMC10474439 DOI: 10.1016/j.heliyon.2023.e19357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/10/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023] Open
Abstract
Background The prognostic value of D-glucuronyl C5-epimerase (GLCE) and mast cell infiltration in Ewing sarcoma (ES) has not been well specified and highlighted, which may facilitate survival prediction and treatment. Methods Several qualified datasets were downloaded from the GEO website. Common differentially expressed genes between normal subjects and ES patients in GSE17679, GSE45544, and GSE68776 were identified and screened by multiple algorithms to find hub genes with prognostic value. The prognostic value of 64 infiltrating cells was also explored. A prognostic model was established and then validated with GSE63155 and GSE63156. Finally, functional analysis was performed. Results GLCE and mast cell infiltration were screened as two indicators for a prognostic model. The Kaplan‒Meier analysis showed that patients in the low GLCE expression, mast cell infiltration and risk score groups had poorer outcomes than patients in the high GLCE expression, mast cell infiltration and risk score groups, both in the training and validation sets. Scatter plots and heatmaps also indicated the same results. The concordance indices and calibration analyses indicated a high prediction accuracy of the model in the training and validation sets. The time-dependent receiver operating characteristic analyses suggested high sensitivity and specificity of the model, with area under the curve values between 0.76 and 0.98. The decision curve analyses suggested a significantly higher net benefit by the model than the treat-all and treat-none strategies. Functional analyses suggested that glycosaminoglycan biosynthesis-heparan sulfate/heparin, the cell cycle and microRNAs in cancer were upregulated in ES patients. Conclusions GLCE and mast cell infiltration are potential prognostic indicators in ES. GLCE may affect the proliferation, angiogenesis and metastasis of ES by affecting the biosynthesis of heparan sulfate and heparin.
Collapse
Affiliation(s)
- Jian Wen
- Medical College of Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Orthopedics, JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, Jiangxi, 330006, China
| | - Lijun Yi
- Central Laboratory, Jiangxi Provincial Children's Hospital, Yangming Rd, Nanchang, Jiangxi, 330006, China
| | - Lijia Wan
- Department of Child Healthcare, Hunan Provincial Maternal and Child Health Hospital, Changsha, Hunan, 410008, China
| | - Xieping Dong
- Medical College of Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Orthopedics, JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
7
|
Liu A, Wang X, Hu L, Yan D, Yin Y, Zheng H, Liu G, Zhang J, Li Y. A predictive molecular signature consisting of lncRNAs associated with cellular senescence for the prognosis of lung adenocarcinoma. PLoS One 2023; 18:e0287132. [PMID: 37352167 PMCID: PMC10289466 DOI: 10.1371/journal.pone.0287132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/31/2023] [Indexed: 06/25/2023] Open
Abstract
The role of long noncoding RNAs (lncRNAs) has been verified by more and more researches in recent years. However, there are few reports on cellular senescence-associated lncRNAs in lung adenocarcinoma (LUAD). Therefore, to explore the prognostic effect of lncRNAs in LUAD, 279 cellular senescence-related genes, survival information and clinicopathologic parameters were derived from the CellAge database and The Cancer Genome Atlas (TCGA) database. Then, we constructed a novel cellular senescence-associated lncRNAs predictive signature (CS-ALPS) consisting of 6 lncRNAS (AC026355.1, AL365181.2, AF131215.5, C20orf197, GAS6-AS1, GSEC). According to the median of the risk score, 480 samples were divided into high-risk and low-risk groups. Furthermore, the clinicopathological and biological functions, immune characteristics and common drug sensitivity were analyzed between two risk groups. In conclusion, the CS-ALPS can independently forecast the prognosis of LUAD, which reveals the potential molecular mechanism of cellular senescence-associated lncRNAs, and provides appropriate strategies for the clinical treatment of patients with LUAD.
Collapse
Affiliation(s)
- Anbang Liu
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaohuai Wang
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Liu Hu
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dongqing Yan
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yin Yin
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hongjie Zheng
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Gengqiu Liu
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Junhang Zhang
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yun Li
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
8
|
Sulsenti R, Jachetti E. Frenemies in the Microenvironment: Harnessing Mast Cells for Cancer Immunotherapy. Pharmaceutics 2023; 15:1692. [PMID: 37376140 DOI: 10.3390/pharmaceutics15061692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Tumor development, progression, and resistance to therapies are influenced by the interactions between tumor cells and the surrounding microenvironment, comprising fibroblasts, immune cells, and extracellular matrix proteins. In this context, mast cells (MCs) have recently emerged as important players. Yet, their role is still controversial, as MCs can exert pro- or anti-tumor functions in different tumor types depending on their location within or around the tumor mass and their interaction with other components of the tumor microenvironment. In this review, we describe the main aspects of MC biology and the different contribution of MCs in promoting or inhibiting cancer growth. We then discuss possible therapeutic strategies aimed at targeting MCs for cancer immunotherapy, which include: (1) targeting c-Kit signaling; (2) stabilizing MC degranulation; (3) triggering activating/inhibiting receptors; (4) modulating MC recruitment; (5) harnessing MC mediators; (6) adoptive transferring of MCs. Such strategies should aim to either restrain or sustain MC activity according to specific contexts. Further investigation would allow us to better dissect the multifaceted roles of MCs in cancer and tailor novel approaches for an "MC-guided" personalized medicine to be used in combination with conventional anti-cancer therapies.
Collapse
Affiliation(s)
- Roberta Sulsenti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Elena Jachetti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| |
Collapse
|
9
|
Tong Z, Wang X, Liu H, Ding J, Chu Y, Zhou X. The relationship between tumor infiltrating immune cells and the prognosis of patients with lung adenocarcinoma. J Thorac Dis 2023; 15:600-610. [PMID: 36910049 PMCID: PMC9992595 DOI: 10.21037/jtd-22-1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/02/2023] [Indexed: 03/06/2023]
Abstract
Background To depict the immune infiltration characteristics of tumor cells in patients with lung adenocarcinoma (LUAD) and evaluate the predictive value and significance of tumor immune cells on the prognosis of LUAD patients. Methods The clinical characteristics and transcriptome of LUAD patients were obtained from The Cancer Genome Atlas (TCGA), and the immune cell abundance in LUAD tissue was evaluated using the CIBERSORT algorithm. We created a simplified immune cell-based Cox regression model according to the survival status of patients and clarified the correlation between the survival status of patients and seven types of immune cells. An immune cell-based risk prediction model was created by Cox proportional hazards regression. Subsequently, the gene expression profile of LUAD patients was obtained from the Gene Expression Omnibus (GEO) database to validate the tumor immune infiltration and patient prognosis prediction model attained using the CIBERSORT algorithm. Results The abundance of 22 tumor-infiltrating immune cells in these patients was detected using the CIBERSORT algorithm. According to Pearson correlation analysis, the immune cells appeared to be closely related to each other. The immune cell composition was remarkably different between the LUAD tumor tissue and paracancerous tissue. The simplified COX model showed that seven kinds of immune cells have predictive value for the prognosis and survival status of LUAD. The receiver operating characteristic curve (ROC) curve confirmed that the prediction model performed well for 1-, 3-, and 5-year survival status. The calibration curve suggested that the prediction model was consistent with the clinical results. Correlation analysis revealed that the clinical features were significantly related to immune cell infiltration. A total of 246 LUAD specimens were from the GEO database, and the risk score model suggested that high risk scores were indicative of a poor prognosis. Finally, enzyme-linked immunosorbent assay (ELISA) revealed that the expressions of tumor necrosis factor-α (TNF-α), interleukin 8 (IL-8), IL-6, and interferon-γ (IFN-γ) in tumor tissues were remarkably higher compared with those in adjacent tissues. Conclusions There is a close correlation between the tumor-infiltrating immune cells and the prognosis and clinical characteristics of LUAD patients. The risk score model based on TCGA and GEO designed in this study can be applied in clinical practice.
Collapse
Affiliation(s)
- Zhuang Tong
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Xu Wang
- Department of Gerontology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongyu Liu
- Department of Pathology, Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar, China
| | - Jian Ding
- Department of Respiratory Medicine, First Hospital of Qiqihar, Qiqihar, China
| | - Yinling Chu
- Department of Respiratory Medicine, First Hospital of Qiqihar, Qiqihar, China
| | - Xin Zhou
- Department of Respiratory Medicine, First Hospital of Qiqihar, Qiqihar, China
| |
Collapse
|
10
|
Mast cells inhibit colorectal cancer development by inducing ER stress through secreting Cystatin C. Oncogene 2023; 42:209-223. [PMID: 36402931 DOI: 10.1038/s41388-022-02543-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/21/2022]
Abstract
Mast cells (MCs) are abundantly distributed in the human intestinal mucosa and submucosa. However, their roles and mechanisms in the development of colorectal cancer (CRC) are still unclear. In the present research, we found that the infiltration density of MCs in CRC tissues was positively correlated with improved patients' prognoses. Moreover, MCs suppressed the growth and induced the apoptosis of CRC cells in vitro and in vivo but had no effect on normal colonic epithelial cells. The present study revealed that MCs specifically induced endoplasmic reticulum stress (ERS) and activated the unfolded protein response (UPR) in CRC cells but not in normal cells, which led to the suppression of CRC development in vivo. Furthermore, we found that the secreted Cystatin C protein was the key factor for the MC-induced ERS in CRC cells. This work is of significance for uncovering the antitumor function of MCs in CRC progression and identifying the potential of CRC to respond to MC-targeted immunotherapy.
Collapse
|
11
|
Poto R, Criscuolo G, Marone G, Brightling CE, Varricchi G. Human Lung Mast Cells: Therapeutic Implications in Asthma. Int J Mol Sci 2022; 23:14466. [PMID: 36430941 PMCID: PMC9693207 DOI: 10.3390/ijms232214466] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Mast cells are strategically located in different compartments of the lung in asthmatic patients. These cells are widely recognized as central effectors and immunomodulators in different asthma phenotypes. Mast cell mediators activate a wide spectrum of cells of the innate and adaptive immune system during airway inflammation. Moreover, these cells modulate the activities of several structural cells (i.e., fibroblasts, airway smooth muscle cells, bronchial epithelial and goblet cells, and endothelial cells) in the human lung. These findings indicate that lung mast cells and their mediators significantly contribute to the immune induction of airway remodeling in severe asthma. Therapies targeting mast cell mediators and/or their receptors, including monoclonal antibodies targeting IgE, IL-4/IL-13, IL-5/IL-5Rα, IL-4Rα, TSLP, and IL-33, have been found safe and effective in the treatment of different phenotypes of asthma. Moreover, agonists of inhibitory receptors expressed by human mast cells (Siglec-8, Siglec-6) are under investigation for asthma treatment. Increasing evidence suggests that different approaches to depleting mast cells show promising results in severe asthma treatment. Novel treatments targeting mast cells can presumably change the course of the disease and induce drug-free remission in bronchial asthma. Here, we provide an overview of current and promising treatments for asthma that directly or indirectly target lung mast cells.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy
| | - Chris E. Brightling
- Department of Respiratory Sciences, Leicester NIHR BRC, Institute for Lung Health, University of Leicester, Leicester LE1 7RH, UK
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy
| |
Collapse
|
12
|
Longo V, Catino A, Montrone MI, Galetta D, Ribatti D. Controversial role of mast cells in NSCLC tumor progression and angiogenesis. Thorac Cancer 2022; 13:2929-2934. [PMID: 36196487 PMCID: PMC9626321 DOI: 10.1111/1759-7714.14654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023] Open
Abstract
Mast cells (MCs) are multifunctional immune cells implicated in both physiological and pathological processes. Among the latter, MCs play a crucial role in cancer. Many studies have shown a correlation between MCs and tumor progression in several solid and hematological malignancies. In particular, MCs can directly promote tumor growth via c-kit/stem cell factor-dependent signaling and via the release of histamine, which modulate tumor growth through H1 and H2 receptors. At the same time, MCs can increase tumor progression by stimulating angiogenesis via both proangiogenic cytokines stored in their cytoplasm, and by acting on the tumor microenvironment and extracellular matrix. With regard to NSCLC, the role of MCs has not yet been established, with studies showing a correlation with a poor prognosis on the one hand and suggesting a protective effect of MCs on the other hand. These controversial evidences are at least, in part, due to the heterogeneity of the studies exploring the role of MCs in NSCLC, with some studies describing only the MC count without specification of the activation and degranulation state, and without reporting the intratumoral localization and the proximity to other immune and cancer cells. A better knowledge of the role of MCs in NSCLC is mandatory, not only to define their prognostic and predictive proprieties but also because targeting them could be a possible therapeutic strategy.
Collapse
Affiliation(s)
- Vito Longo
- Medical Thoracic Oncology UnitIRCCS Istituto Tumori, “Giovanni Paolo II”BariItaly
| | - Annamaria Catino
- Medical Thoracic Oncology UnitIRCCS Istituto Tumori, “Giovanni Paolo II”BariItaly
| | - MIchele Montrone
- Medical Thoracic Oncology UnitIRCCS Istituto Tumori, “Giovanni Paolo II”BariItaly
| | - Domenico Galetta
- Medical Thoracic Oncology UnitIRCCS Istituto Tumori, “Giovanni Paolo II”BariItaly
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory OrgansUniversity of Bari Medical SchoolBariItaly
| |
Collapse
|
13
|
Baci D, Cekani E, Imperatori A, Ribatti D, Mortara L. Host-Related Factors as Targetable Drivers of Immunotherapy Response in Non-Small Cell Lung Cancer Patients. Front Immunol 2022; 13:914890. [PMID: 35874749 PMCID: PMC9298844 DOI: 10.3389/fimmu.2022.914890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Despite some significant therapeutic breakthroughs leading to immunotherapy, a high percentage of patients with non-small cell lung cancer (NSCLC) do not respond to treatment on relapse, thus experiencing poor prognosis and survival. The unsatisfying results could be related to the features of the tumor immune microenvironment and the dynamic interactions between a tumor and immune infiltrate. Host-tumor interactions strongly influence the course of disease and response to therapies. Thus, targeting host-associated factors by restoring their physiologic functions altered by the presence of a tumor represents a new therapeutic approach to control tumor development and progression. In NSCLC, the immunogenic tumor balance is shifted negatively toward immunosuppression due to the release of inhibitory factors as well as the presence of immunosuppressive cells. Among these cells, there are myeloid-derived suppressor cells, regulatory T cells that can generate a tumor-permissive milieu by reprogramming the cells of the hosts such as tumor-associated macrophages, tumor-associated neutrophils, natural killer cells, dendritic cells, and mast cells that acquire tumor-supporting phenotypes and functions. This review highlights the current knowledge of the involvement of host-related factors, including innate and adaptive immunity in orchestrating the tumor cell fate and the primary resistance mechanisms to immunotherapy in NSCLC. Finally, we discuss combinational therapeutic strategies targeting different aspects of the tumor immune microenvironment (TIME) to prime the host response. Further research dissecting the characteristics and dynamic interactions within the interface host-tumor is necessary to improve a patient fitness immune response and provide answers regarding the immunotherapy efficacy, with the aim to develop more successful treatments for NSCLC.
Collapse
Affiliation(s)
- Denisa Baci
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy.,Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Elona Cekani
- Medical Oncology Clinic, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Andrea Imperatori
- Center for Thoracic Surgery, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
14
|
Sun S, Wang Y, Li M, Wu J. Identification of TRP-Related Subtypes, Development of a Prognostic Model, and Characterization of Tumor Microenvironment Infiltration in Lung Adenocarcinoma. Front Mol Biosci 2022; 9:861380. [PMID: 35620481 PMCID: PMC9127446 DOI: 10.3389/fmolb.2022.861380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/30/2022] [Indexed: 01/08/2023] Open
Abstract
The TRP (transient receptor potential) superfamily, as cation channels, is a critical chemosensor for potentially harmful irritants. Their activation is closely related not only to tumor progression and prognosis but also to tumor therapy response. Nevertheless, the TRP-related immune gene (TRIG) expression of the tumor microenvironment (TME) and the associations with prognosis remain unclear. First, we represented the transcriptional and genetic variations in TRIGs in 535 lung adenocarcinoma (LUAD) samples as well as their expression patterns. LUAD samples were divided into two distinct subtypes based on the TRIG variations. Significant differences had been found in prognosis, clinical features, and TME cell-infiltration features between the two subtypes of patients. Second, we framed a TRIG score for predicting overall survival (OS) and validated the predictive capability of the TRIG score in LUAD patients. Accordingly, to enhance the clinical applicability of TRIG score, we developed a considerable nomogram. A low TRIG score, characterized by increased immunity activation, indicated favorable advantages of OS compared with a high TRIG score. Furthermore, the TRIG score was found to have a significant connection with the TME cell-infiltration and immune checkpoint expressions. Our analysis of TRIGs in LUAD showed their potential roles in prognosis, clinical features, and tumor-immune microenvironments. These results may advance our knowledge of TRP genes in LUAD and show a new light on prognosis estimation and the improvement of immunotherapy strategies.
Collapse
|
15
|
Abstract
A principal purpose of type 2 immunity was thought to be defense against large parasites, but it also functions in the restoration of homeostasis, such as toxin clearance following snake bites. In other cases, like allergy, the type 2 T helper (Th2) cytokines and cells present in the environment are detrimental and cause diseases. In recent years, the recognition of cell heterogeneity within Th2-associated cell populations has revealed specific functions of cells with a particular phenotype or gene signature. In addition, here we discuss the recent data regarding heterogeneity of type 2 immunity-related cells, as well as their newly identified role in a variety of processes ranging from involvement in respiratory viral infections [especially in the context of the recent COVID-19 (coronavirus disease 2019) pandemic] to control of cancer development or of metabolic homeostasis.
Collapse
Affiliation(s)
- Hamida Hammad
- Laboratory of Mucosal Immunology and Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Nincy Debeuf
- Laboratory of Mucosal Immunology and Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Helena Aegerter
- Laboratory of Mucosal Immunology and Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Andrew S Brown
- Laboratory of Mucosal Immunology and Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Mucosal Immunology and Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
16
|
Fereydouni M, Motaghed M, Ahani E, Kafri T, Dellinger K, Metcalfe DD, Kepley CL. Harnessing the Anti-Tumor Mediators in Mast Cells as a New Strategy for Adoptive Cell Transfer for Cancer. Front Oncol 2022; 12:830199. [PMID: 35433433 PMCID: PMC9009255 DOI: 10.3389/fonc.2022.830199] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
The emergence of cancer immunotherapies utilizing adoptive cell transfer (ACT) continues to be one of the most promising strategies for cancer treatment. Mast cells (MCs) which occur throughout vascularized tissues, are most commonly associated with Type I hypersensitivity, bind immunoglobin E (IgE) with high affinity, produce anti-cancer mediators such as tumor necrosis factor alpha (TNF-α) and granulocyte macrophage colony-stimulating factor (GM-CSF), and generally populate the tumor microenvironments. Yet, the role of MCs in cancer pathologies remains controversial with evidence for both anti-tumor and pro-tumor effects. Here, we review the studies examining the role of MCs in multiple forms of cancer, provide an alternative, MC-based hypothesis underlying the mechanism of therapeutic tumor IgE efficacy in clinical trials, and propose a novel strategy for using tumor-targeted, IgE-sensitized MCs as a platform for developing new cellular cancer immunotherapies. This autologous MC cancer immunotherapy could have several advantages over current cell-based cancer immunotherapies and provide new mechanistic strategies for cancer therapeutics alone or in combination with current approaches.
Collapse
Affiliation(s)
- Mohammad Fereydouni
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro (UNCG), Greensboro, NC, United States
| | - Mona Motaghed
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, United States
| | - Elnaz Ahani
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, United States
| | - Tal Kafri
- Gene Therapy Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, United States
| | - Dean D. Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Christopher L. Kepley
- Department of Molecular and Cellular Sciences, Liberty University College of Osteopathic Medicine, Lynchburg, VA, United States
- *Correspondence: Christopher L. Kepley,
| |
Collapse
|
17
|
Peña-Romero AC, Orenes-Piñero E. Dual Effect of Immune Cells within Tumour Microenvironment: Pro- and Anti-Tumour Effects and Their Triggers. Cancers (Basel) 2022; 14:1681. [PMID: 35406451 PMCID: PMC8996887 DOI: 10.3390/cancers14071681] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Our body is constantly exposed to pathogens or external threats, but with the immune response that our body can develop, we can fight off and defeat possible attacks or infections. Nevertheless, sometimes this threat comes from an internal factor. Situations such as the existence of a tumour also cause our immune system (IS) to be put on alert. Indeed, the link between immunology and cancer is evident these days, with IS being used as one of the important targets for treating cancer. Our IS is able to eliminate those abnormal or damaged cells found in our body, preventing the uncontrolled proliferation of tumour cells that can lead to cancer. However, in several cases, tumour cells can escape from the IS. It has been observed that immune cells, the extracellular matrix, blood vessels, fat cells and various molecules could support tumour growth and development. Thus, the developing tumour receives structural support, irrigation and energy, among other resources, making its survival and progression possible. All these components that accompany and help the tumour to survive and to grow are called the tumour microenvironment (TME). Given the importance of its presence in the tumour development process, this review will focus on one of the components of the TME: immune cells. Immune cells can support anti-tumour immune response protecting us against tumour cells; nevertheless, they can also behave as pro-tumoural cells, thus promoting tumour progression and survival. In this review, the anti-tumour and pro-tumour immunity of several immune cells will be discussed. In addition, the TME influence on this dual effect will be also analysed.
Collapse
Affiliation(s)
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, 30120 Murcia, Spain;
| |
Collapse
|
18
|
Leveque E, Rouch A, Syrykh C, Mazières J, Brouchet L, Valitutti S, Espinosa E, Lafouresse F. Phenotypic and Histological Distribution Analysis Identify Mast Cell Heterogeneity in Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14061394. [PMID: 35326546 PMCID: PMC8946292 DOI: 10.3390/cancers14061394] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary During the fight against tumor, some cells of the immune system such as cytotoxic lymphocytes eliminate tumoral cells while others such as tumor-associated macrophages favor tumor development. Mast cells (MCs) are multifaceted immune cells whose role in cancer is still poorly understood. Moreover, MCs are poorly characterized in the context of cancer and their presence in the tumor microenvironment has been reported to be either associated with good or bad prognosis. In this pilot study we characterized tumor-associated MCs (TAMCs) in lung cancer. We showed that TAMCs exhibited a typical phenotype and can be classified in two subsets according to alphaE integrin (CD103) expression. CD103+ TAMCs appeared more mature, more prone to interact with CD4+ T cells, and located closer to cancer cells than their CD103− counterpart. This study revealed that a high frequency of total TAMC correlated with better overall survival and progression free survival in patients and underlined MC heterogeneity in cancer. Abstract Mast cells (MCs) are multifaceted innate immune cells often present in the tumor microenvironment (TME). However, MCs have been only barely characterized in studies focusing on global immune infiltrate phenotyping. Consequently, their role in cancer is still poorly understood. Furthermore, their prognosis value is confusing since MCs have been associated with good and bad (or both) prognosis depending on the cancer type. In this pilot study performed on a surgical cohort of 48 patients with Non-Small Cell Lung Cancer (NSCLC), we characterized MC population within the TME and in matching non-lesional lung areas, by multicolor flow cytometry and confocal microscopy. Our results showed that tumor-associated MCs (TAMCs) harbor a distinct phenotype as compared with MCs present in non-lesional counterpart of the lung. Moreover, we found two TAMCs subsets based on the expression of CD103 (also named alphaE integrin). CD103+ TAMCs appeared more mature, more prone to interact with CD4+ T cells, and located closer to cancer cells than their CD103− counterpart. In spite of these characteristics, we did not observe a prognosis advantage of a high frequency of CD103+ TAMCs, while a high frequency of total TAMC correlated with better overall survival and progression free survival. Together, this study reveals that TAMCs constitute a heterogeneous population and indicates that MC subsets should be considered for patients’ stratification and management in future research.
Collapse
Affiliation(s)
- Edouard Leveque
- Centre de Recherche en Cancérologie de Toulouse (CRCT), UMR1037, INSERM, UMR5071, CNRS, Université Toulouse 3, 31037 Toulouse, France; (E.L.); (A.R.); (S.V.); (E.E.)
| | - Axel Rouch
- Centre de Recherche en Cancérologie de Toulouse (CRCT), UMR1037, INSERM, UMR5071, CNRS, Université Toulouse 3, 31037 Toulouse, France; (E.L.); (A.R.); (S.V.); (E.E.)
- Thoracic Surgery Department, Hôpital Larrey, CHU Toulouse, 31000 Toulouse, France;
| | - Charlotte Syrykh
- Department of Pathology, Institut Universitaire du Cancer—Oncopole de Toulouse, 31059 Toulouse, France;
| | - Julien Mazières
- Thoracic Oncology Department, Hôpital Larrey, CHU Toulouse, 31000 Toulouse, France;
| | - Laurent Brouchet
- Thoracic Surgery Department, Hôpital Larrey, CHU Toulouse, 31000 Toulouse, France;
| | - Salvatore Valitutti
- Centre de Recherche en Cancérologie de Toulouse (CRCT), UMR1037, INSERM, UMR5071, CNRS, Université Toulouse 3, 31037 Toulouse, France; (E.L.); (A.R.); (S.V.); (E.E.)
- Department of Pathology, Institut Universitaire du Cancer—Oncopole de Toulouse, 31059 Toulouse, France;
| | - Eric Espinosa
- Centre de Recherche en Cancérologie de Toulouse (CRCT), UMR1037, INSERM, UMR5071, CNRS, Université Toulouse 3, 31037 Toulouse, France; (E.L.); (A.R.); (S.V.); (E.E.)
| | - Fanny Lafouresse
- Centre de Recherche en Cancérologie de Toulouse (CRCT), UMR1037, INSERM, UMR5071, CNRS, Université Toulouse 3, 31037 Toulouse, France; (E.L.); (A.R.); (S.V.); (E.E.)
- Correspondence:
| |
Collapse
|
19
|
Mast Cell–Tumor Interactions: Molecular Mechanisms of Recruitment, Intratumoral Communication and Potential Therapeutic Targets for Tumor Growth. Cells 2022; 11:cells11030349. [PMID: 35159157 PMCID: PMC8834237 DOI: 10.3390/cells11030349] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/08/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) are tissue-resident immune cells that are important players in diseases associated with chronic inflammation such as cancer. Since MCs can infiltrate solid tumors and promote or limit tumor growth, a possible polarization of MCs to pro-tumoral or anti-tumoral phenotypes has been proposed and remains as a challenging research field. Here, we review the recent evidence regarding the complex relationship between MCs and tumor cells. In particular, we consider: (1) the multifaceted role of MCs on tumor growth suggested by histological analysis of tumor biopsies and studies performed in MC-deficient animal models; (2) the signaling pathways triggered by tumor-derived chemotactic mediators and bioactive lipids that promote MC migration and modulate their function inside tumors; (3) the possible phenotypic changes on MCs triggered by prevalent conditions in the tumor microenvironment (TME) such as hypoxia; (4) the signaling pathways that specifically lead to the production of angiogenic factors, mainly VEGF; and (5) the possible role of MCs on tumor fibrosis and metastasis. Finally, we discuss the novel literature on the molecular mechanisms potentially related to phenotypic changes that MCs undergo into the TME and some therapeutic strategies targeting MC activation to limit tumor growth.
Collapse
|
20
|
Zheng M, Lin Y, Xu J, Gao J, Gong W, Xie S, Yu Y, Lin J. Study on degranulation of mast cells under C48/80 treatment by electroporation-assisted and ultrasound-assisted surface-enhanced Raman spectrascopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120331. [PMID: 34536894 DOI: 10.1016/j.saa.2021.120331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Both electroporation-assisted and ultrasound-assisted delivery methods can rapidly deliver nanoparticles into living cells for surface-enhanced Raman scattering (SERS) detection, but these two methods have never been compared. In this study, electroporation-assisted SERS and ultrasound-assisted SERS were employed to detect the biochemical changes of degranulated mast cells induced by mast cell stimulator (C48/80). The results showed that the cell damage of electroporation based on controllable electric pulse was smaller than that of ultrasound based on cavitation. Transmission electron microscope images of cells indicated that the nanoparticles delivered by electroporation were mainly distributed in the cytoplasm, while ultrasound could transport nanoparticles to the cytoplasm and nucleus. Therefore, electroporation-assisted SERS mainly detects the biochemical information of cytoplasm, while ultrasound-assisted SERS gets more spectral signals of nucleic acid. Both methods can obtain high quality SERS signal of cells. With drug treatment, the SERS peak intensity of 733 cm-1 attributed to phosphatidylserine decreased significantly, which may be due to the activation of mast cell degranulation pathway stimulated by C48/80 agonist, resulting in a large amount of intracellular serine being used to synthesize tryptase, while the production of phosphatidylserine decreased. Further, based on principal component analysis and linear discriminant analysis (PCA-LDA approach), ultrasound-assisted SERS could achieve better sensitivity, specificity and accuracy in the discrimination and identification of drug-treated degranulated mast cells than electroporation assisted SERS. This exploratory work is helpful to realize the real-time dynamic SERS detection of intracellular biochemical components, and it also has great potential in intracellular SERS analysis, such as the cytotoxicity assay of anti-tumor drugs or cancer cell screening.
Collapse
Affiliation(s)
- Mengmeng Zheng
- MOE Key Laboratory of Optoelectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Yamin Lin
- MOE Key Laboratory of Optoelectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Jianshu Xu
- MOE Key Laboratory of Optoelectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Jiamin Gao
- MOE Key Laboratory of Optoelectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Wei Gong
- MOE Key Laboratory of Optoelectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Shusen Xie
- MOE Key Laboratory of Optoelectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Yun Yu
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| | - Juqiang Lin
- MOE Key Laboratory of Optoelectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China; School of opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, Fujian, China.
| |
Collapse
|
21
|
Li L, Yu X, Ma G, Ji Z, Bao S, He X, Song L, Yu Y, Shi M, Liu X. Identification of an Innate Immune-Related Prognostic Signature in Early-Stage Lung Squamous Cell Carcinoma. Int J Gen Med 2021; 14:9007-9022. [PMID: 34876838 PMCID: PMC8643179 DOI: 10.2147/ijgm.s341175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 12/26/2022] Open
Abstract
Background Early-stage lung squamous cell carcinoma (LUSC) progression is accompanied by changes in immune microenvironments and the expression of immune-related genes (IRGs). Identifying innate IRGs associated with prognosis may improve treatment and reveal new immunotherapeutic targets. Methods Gene expression profiles and clinical data of early-stage LUSC patients were obtained from the Gene Expression Omnibus and The Cancer Genome Atlas databases and IRGs from the InnateDB database. Univariate and multivariate Cox regression and LASSO regression analyses were performed to identify an innate IRG signature model prognostic in patients with early-stage LUSC. The predictive ability of this model was assessed by time-dependent receiver operator characteristic curve analysis, with the independence of the model-determined risk score assessed by univariate and multivariate Cox regression analyses. Overall survival (OS) in early-stage LUSC patients was assessed using a nomogram and decision curve analysis (DCA). Functional and biological pathways were determined by gene set enrichment analysis, and differences in biological functions and immune microenvironments between the high- and low-risk groups were assessed by ESTIMATE and the CIBERSORT algorithm. Results A signature involving six IRGs (SREBF2, GP2, BMX, NR1H4, DDX41, and GOPC) was prognostic of OS. Samples were divided into high- and low-risk groups based on median risk scores. OS was significantly shorter in the high-risk than in the low-risk group in the training (P < 0.001), GEO validation (P = 0.00021) and TCGA validation (P = 0.034) cohorts. Multivariate Cox regression analysis showed that risk score was an independent risk factor for OS, with the combination of risk score and T stage being optimally predictive of clinical benefit. GSEA, ESTIMATE, and the CIBERSORT algorithm showed that immune cell infiltration was higher and immune-related pathways were more strongly expressed in the low-risk group. Conclusion A signature that includes these six innate IRGs may predict prognosis in patients with early-stage LUSC.
Collapse
Affiliation(s)
- Liang Li
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Xue Yu
- Department of Pediatrics, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 420100, People's Republic of China
| | - Guanqiang Ma
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Zhiqi Ji
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Shihao Bao
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Xiaopeng He
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Liang Song
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Yang Yu
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Mo Shi
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Xiangyan Liu
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| |
Collapse
|
22
|
Im K, Combes AJ, Spitzer MH, Satpathy AT, Krummel MF. Archetypes of checkpoint-responsive immunity. Trends Immunol 2021; 42:960-974. [PMID: 34642094 PMCID: PMC8724347 DOI: 10.1016/j.it.2021.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 01/10/2023]
Abstract
Responsiveness to immune checkpoint blockade (ICB) therapy in cancer is currently predicted by disparate individual measures - with varying degrees of accuracy - including tumor mutation burden, tumor-infiltrating T cell densities, dendritic cell frequencies, and the expression of checkpoint ligands. We propose that many of these individual parameters are linked, forming two distinct 'reactive' immune archetypes - collections of cells and gene expression - in ICB-responsive patients. We hypothesize that these are 'seeds' of antitumor immunity and are supported by specific elements of the tumor microenvironment (TME) and by actions of the microbiome. Although removing 'immunosuppressive' factors in the TME is important, understanding and parsing reactive immunity is crucial for optimal prognosis and for engaging this biology with candidate therapies to increase tumor cure rates.
Collapse
Affiliation(s)
- Kwok Im
- Department of Pathology and ImmunoX Initiative, University of California at San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Alexis J Combes
- Department of Pathology and ImmunoX Initiative, University of California at San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Matthew H Spitzer
- Department of Otolaryngology, School of Medicine, University of California at San Francisco, San Franciso, CA 94143, USA
| | | | - Matthew F Krummel
- Department of Pathology and ImmunoX Initiative, University of California at San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
23
|
Pang Z, Chen X, Wang Y, Wang Y, Yan T, Wan J, Du J. Comprehensive analyses of the heterogeneity and prognostic significance of tumor-infiltrating immune cells in non-small-cell lung cancer: Development and validation of an individualized prognostic model. Int Immunopharmacol 2020; 86:106744. [PMID: 32623229 DOI: 10.1016/j.intimp.2020.106744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 01/01/2023]
Abstract
Understanding the role of tumor-infiltrating immune cells (TIICs) in non-small cell lung cancer (NSCLC) is critical to finding new prognostic biomarkers and improving prognostic evaluation. Herein, we aimed to comprehensively analyze tumor-infiltrating pattern of TIICs in NSCLC and build a TIICs-associated, risk-stratification prognostic model for clinical practice. We applied CIBERSORT and ESTIMATE computational methods to analyze RNA-seq samples of 852 NSCLC patients from The Cancer Genome Atlas (TCGA). Prognotic factors were identified by univariate and multivariate Cox regression analyses for overall survival (OS). A novel model was developed to predict the 1-, 3- and 5-year OS of NSCLC based on the TCGA cohort, validated by external validation cohorts (GSE31210, GSE37745), and then evaluated by C-indexes and calibration plots. Significant heterogeneity in the infiltrating patterns of TIICs was shown among various pathological subtypes of NSCLC and between different genders. Further analyses showed that abundances of naive B cells (NBCs), T cells and mast cells (MCs) were positively correlated with prognosis. Tumor samples with high T cells abundances tended to have higher expression levels of immune checkpoint genes (PD-1, PD-L1, CTLA-4). A new immune-gene related index (IGRI) was built by five immune-related differentially expressed genes (DEGs) including BTK, CCR2, CLEC10A, NCR3 and PRKCB, which were closely correlated with TIICs abundances and prognosis. Tumor stage, IGRI, abundances of NBCs, T cells, MCs and NK cells were significant independent prognostic factors and were included in the nomogram as predictors. The internal and external calibration plots of the nomogram were in excellent agreement. This study reveals that TIICs are significantly correlated with clinicopathological features and prognosis in NSCLC and thus can be potential prognostic biomarker or therapeutic target. The remarkable heterogeneity of TIICs suggests that specific infiltrating patterns of TIICs should also be taken into consideration when determining individualized immunotherapy strategies for NSCLC patients.
Collapse
Affiliation(s)
- Zhaofei Pang
- Institute of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xiaowei Chen
- Institute of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yu Wang
- Institute of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yadong Wang
- Institute of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Tao Yan
- Institute of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Jun Wan
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
24
|
Abstract
Early mast cell (MC) infiltration has been reported in a wide range of human and animal tumors particularly malignant melanoma and breast and colorectal cancer. The consequences of their presence in the tumor microenvironment (TME) or at their margins still remain unclear as it is associated with a good or poor prognosis based on the type and anatomical site of the tumor. Within the tumor, MC interactions occur with infiltrated immune cells, tumor cells, and extracellular matrix (ECM) through direct cell-to-cell interactions or release of a broad range of mediators capable of remodeling the TME. MCs actively contribute to angiogenesis and induce neovascularization by releasing the classical proangiogenic factors including VEGF, FGF-2, PDGF, and IL-6, and nonclassical proangiogenic factors mainly proteases including tryptase and chymase. MCs support tumor invasiveness by releasing a broad range of matrix metalloproteinases (MMPs). MC presence within the tumor gained additional significance when it was assumed that controlling its activation by tyrosine kinase inhibitors (imatinib and masitinib) and tryptase inhibitors (gabexate and nafamostat mesylate) or controlling their interactions with other cell types may have therapeutic benefit.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Frank A Redegeld
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands.
| |
Collapse
|
25
|
Komi DEA, Mortaz E, Amani S, Tiotiu A, Folkerts G, Adcock IM. The Role of Mast Cells in IgE-Independent Lung Diseases. Clin Rev Allergy Immunol 2020; 58:377-387. [PMID: 32086776 PMCID: PMC7244458 DOI: 10.1007/s12016-020-08779-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mast cells (MCs) are granular cells of the innate immune system which develop from CD34+/CD117+ progenitors and play a role in orchestrating adaptive immune responses. They have a well-known role in allergic reactions following immunoglobulin (Ig)E-mediated activation of the cell-surface expressed IgE high-affinity receptor (FcεRI). MCs can also respond to various other stimuli due to the expression of a variety of receptors including toll-like receptors (TLRs), immunoglobulin (IgG) receptors (FcγR), complement receptors such as C5a (CD88) expressed by skin MCs, neuropeptides receptors including nerve growth factor receptor, (NGFR), cytokines receptors such as (IL)-1R and IL-3R, and chemokines receptors including CCR-1 and CCR-3. MCs release three groups of mediators upon degranulation differentiated according to their chemical composition, storage, and time to release. These include preformed mediators (mainly histamine, tryptase, and chymase), de novo synthesized mediators such as prostaglandin (PG)D2, leukotriene (LT)B4 and LTD4, and cytokines including IL-1β, IL-3, tumor necrosis factor (TNF)α, and transforming growth factor(TGF)-β. Emerging evidence indicates a role for IgE-independent MC activation in the late-stage asthmatic response as well as in non-allergic airway diseases including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and lung cancer. MC infiltration/activation has been reported in some, but not all, studies of lung cancer. MC-derived TNF-α possesses tumor-suppressive activity while IL-1β supports tumor progression and metastasis. In IPF lungs, an increase in density of tryptase- and chymase-positive MCs (MCTC) and overexpression of TGF-β support the fibrosis progression. MC-derived chymase activates latent TGF-β that induces the differentiation of fibroblasts to matrix-producing myofibroblasts. In summary, increasing evidence highlights a critical role of MCs in non-allergic diseases that may indicate new approaches for therapy.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Saeede Amani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Angelica Tiotiu
- Respiratory Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ian M Adcock
- Respiratory Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
26
|
Shi S, Ye S, Mao J, Ru Y, Lu Y, Wu X, Xu M, Zhu T, Wang Y, Chen Y, Tang X, Xi Y. CMA1 is potent prognostic marker and associates with immune infiltration in gastric cancer. Autoimmunity 2020; 53:210-217. [PMID: 32129682 DOI: 10.1080/08916934.2020.1735371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Background: Chymase 1 (CMA1), a gene known to be expressed in mast cells (MCs), is largely linked to immunity. However, the relationship between CMA1 and prognosis of multiple tumours and tumour-infiltrating lymphocytes (TILs) remains elusive.Methods: The differential expressions of CMA1 in different tumours and their corresponding normal tissues were evaluated via exploring Tumour Immune Estimation Resource (TIMER) and Oncomine database; the correlation within expression level of CMA1 and outcome of cancer patients was evaluated via Kaplan-Meier plotter and Gene Expression Profiling Interactive Analysis (GEPIA) database; the correlation between CMA1 and tumour immune cell infiltration was further investigated by TIMER; additionally, the correlation between CMA1 and gene signature pattern of immune infiltration were checked using TIMER and GEPIA.Results: There were significant differences in CMA1 expression levels between gastric cancer (GC) tissues and adjacent normal tissues. The high expression of CMA1 was closed related to poor overall survival (OS) and progression-free survival (PFS) in patients with GC (OS HR = 1.50, p = .00015; PFS HR = 1.33, p = .016). Especially, in GC patients at N1, N2 and N3 stages, high CMA1 expression was correlated with poor OS and PFS, but not with NO (p = .15, .09). The expression of CMA1 was positively associated with the levels of infiltrated CD4+, CD8+ T cells, neutrophils, macrophages, and dendritic cells (DCs) in GC. Whereas, CMA1 expression was considerably associated with various immune markers.Conclusion: CMA1 is a key gene whose expression level is significantly correlated with GC prognosis and infiltration levels of CD8+, CD4+ T cells, neutrophils, macrophages, and DCs in GC. In addition, the expression of CMA1 may be involved in regulating tumour-associated macrophages (TAMs), dendritic cells, exhausted T cells and regulatory T cells in GC. It suggests that CMA1 could be utilized as a prognostic marker and a sign of immune infiltration in GC.
Collapse
Affiliation(s)
- Shanping Shi
- Diabetes Center, Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Shazhou Ye
- Diabetes Center, Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Jianmei Mao
- Diabetes Center, Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Yuqing Ru
- Diabetes Center, Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Yicong Lu
- Diabetes Center, Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Xiaoyue Wu
- Diabetes Center, Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Mingjun Xu
- Diabetes Center, Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Tingwei Zhu
- Diabetes Center, Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Yibo Wang
- Diabetes Center, Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Yuanming Chen
- Diabetes Center, Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Xiaoli Tang
- Diabetes Center, Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Yang Xi
- Diabetes Center, Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
27
|
Kurihara-Shimomura M, Sasahira T, Shimomura H, Bosserhoff AK, Kirita T. Mast cell chymase promotes angiogenesis and lymphangiogenesis mediated by activation of melanoma inhibitory activity gene family members in oral squamous cell carcinoma. Int J Oncol 2020; 56:1093-1100. [PMID: 32319583 DOI: 10.3892/ijo.2020.4996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Mast cells (MCs) are present in the tumor stroma, and MCs that express the mast cell‑specific proteases tryptase and chymase (MCTC) exhibit several tumor‑related functions. It was previously reported that melanoma inhibitory activity (MIA) gene family members, including MIA, MIA2, and transport and Golgi organization protein 1 (TANGO), possess oncogenic functions in oral squamous cell carcinoma (OSCC). However, the relationships between MCTC, and clinicopathological characteristics and activation of the MIA gene family in OSCC remain unknown. In the present study, the functional roles of MCTC in patients with OSCC were investigated using immunohistochemistry and reverse transcription‑quantitative PCR. In addition, the effects of extracellular chymase on oral cancer cells were examined. In patients with OSCC, MCTC density was significantly affected by tumor progression and nodal metastasis, and was correlated with vessel density. MCTC density was also correlated with MIA and MIA2 expression. In OSCC cells, extracellular chymase promoted the secretion of vascular endothelial growth factor family proteins, and the transmigration and adhesion of HSC3 cells to endothelial cells; knockdown of MIA, MIA2 and TANGO attenuated these effects. The present findings indicated that MCTC act as tumor‑progressive factors in OSCC via the activation and secretion of MIA and MIA2, and the induction of angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
| | - Tomonori Sasahira
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634‑8521, Japan
| | - Hiroyuki Shimomura
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara 634‑8521, Japan
| | - Anja Katrin Bosserhoff
- Institute for Biochemistry, Friedrich‑Alexander University Erlangen‑Nürnberg, D‑91054 Erlangen, Germany
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara 634‑8521, Japan
| |
Collapse
|
28
|
Salamon P, Mekori YA, Shefler I. Lung cancer-derived extracellular vesicles: a possible mediator of mast cell activation in the tumor microenvironment. Cancer Immunol Immunother 2020; 69:373-381. [PMID: 31897659 DOI: 10.1007/s00262-019-02459-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 12/22/2019] [Indexed: 12/15/2022]
Abstract
Activated mast cells are often found in the tumor microenvironment. They have both pro- and anti-tumorigenic roles, depending on the tumor type. Several lines of evidence suggest that the tumor microenvironment contains multiple soluble factors that can drive mast cell recruitment and activation. However, it is not yet clear how mast cells are activated by tumor cells. In this study, we explored whether tumor-derived microvesicles (TMV) from non-small cell lung cancer (NSCLC) cells interact with human mast cells, activate them to release cytokines, and affect their migratory ability. PKH67-labelled TMV isolated from NSCLC cell lines were found to be internalized by mast cells. This internalization was first noticed after 4 h and peaked within 24 h of co-incubation. Furthermore, internalization of TMV derived from NSCLC cell lines or from surgical lung tissue specimens resulted in ERK phosphorylation, enhanced mast cell migratory ability and increased release of cytokines and chemokines, such as TNF-α and MCP-1. Our data are thus, consistent with the conclusion that TMV have the potential to influence mast cell activity and thereby, affect tumorigenesis.
Collapse
Affiliation(s)
- Pazit Salamon
- The Herbert Mast Cell Disorders Center, Laboratory of Allergy and Clinical Immunology, Meir Medical Center, 59 Tchernichovsky St., 4428164, Kfar Saba, Israel
| | - Yoseph A Mekori
- The Herbert Mast Cell Disorders Center, Laboratory of Allergy and Clinical Immunology, Meir Medical Center, 59 Tchernichovsky St., 4428164, Kfar Saba, Israel.,Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.,Tel Hai College, Tel Hai, Israel
| | - Irit Shefler
- The Herbert Mast Cell Disorders Center, Laboratory of Allergy and Clinical Immunology, Meir Medical Center, 59 Tchernichovsky St., 4428164, Kfar Saba, Israel.
| |
Collapse
|
29
|
Abstract
Mast cells are tissue-resident, innate immune cells that play a key role in the inflammatory response and tissue homeostasis. Mast cells accumulate in the tumor stroma of different human cancer types, and increased mast cell density has been associated to either good or poor prognosis, depending on the tumor type and stage. Mast cells play a multifaceted role in the tumor microenvironment by modulating various events of tumor biology, such as cell proliferation and survival, angiogenesis, invasiveness, and metastasis. Moreover, tumor-associated mast cells have the potential to shape the tumor microenvironment by establishing crosstalk with other tumor-infiltrating cells. This chapter reviews the current understanding of the role of mast cells in the tumor microenvironment. These cells have received much less attention than other tumor-associated immune cells but are now recognized as critical components of the tumor microenvironment and could hold promise as a potential target to improve cancer immunotherapy.
Collapse
|
30
|
Paudel S, Mehtani D, Puri N. Mast Cells May Differentially Regulate Growth of Lymphoid Neoplasms by Opposite Modulation of Histamine Receptors. Front Oncol 2019; 9:1280. [PMID: 31824856 PMCID: PMC6881378 DOI: 10.3389/fonc.2019.01280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022] Open
Abstract
Cancer microenvironment is complex and consists of various immune cells. There is evidence for mast cell (MC) infiltration of tumors, but their role thereof is poorly understood. In this study, we explored the effects of mast cell and their mediators on the growth of hematological cancer cells. The affect is demonstrated using RBL-2H3 MCs, and YAC-1, EL4 and L1210 as hematological cancer cell lines. Direct contact with MCs or stimulation by their mediators caused growth inhibition of YAC-1 cells, growth enhancement of EL4 cells and no change in growth of L1210 cells. This effect was confirmed by cancer cell recovery, cell viability, mitochondrial health, and cell cycle analysis. MCs showed mediator release in direct contact with tumor cells. MC mediators' treatment to YAC-1 and EL4 yielded exactly opposite modulations of survival markers, Survivin and COX-2 and apoptosis markers, Caspase-3, Bcl-2, in the two cell lines. Histamine being an important MC mediator, effect of histamine on cell recovery, survival markers and expression of various histamine receptors and their modulation in cancer cells was studied. Again, YAC-1 and EL4 cells showed contrary histamine receptor expression modulation in response to MC mediators. Histamine receptor antagonist co-treatment with MC mediators to the cancer cells suggested a major involvement of H2 and H4 receptor in growth inhibition in YAC-1 cells, and contribution of H1, H2, and H4 receptors in cell growth enhancement in EL4 cells. L1210 showed changes in the histamine receptors' expression but no effect on treatment with receptor antagonists. It can be concluded that anti-cancerous action of MCs or their mediators may include direct growth inhibition, but their role may differ depending on the tumor.
Collapse
Affiliation(s)
- Sandeep Paudel
- Cellular and Molecular Immunology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Deeksha Mehtani
- Cellular and Molecular Immunology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Niti Puri
- Cellular and Molecular Immunology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
31
|
Zheng M, Gao S, Yu Y, Xu J, Huang Z, Li J, Xie S, Lin J. Surface-enhanced Raman spectroscopy analysis of mast cell degranulation induced by low-intensity laser. IET Nanobiotechnol 2019; 13:983-988. [PMID: 31811770 DOI: 10.1049/iet-nbt.2019.0145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mast cell (MC) degranulation is an important step in the healing process. In this study, silver-nanoparticles-based surface-enhanced Raman spectroscopy (SERS) was used to investigate the spectral characteristics of degranulation of MCs activated by low-intensity laser. The significant spectral changes, such as Raman peak intensities, suggested the concentration variation of some degranulated substances. The Raman intensity ratio of 799-554 cm-1 could be used as a potential internal indicator for the degranulation degree of MCs. Principal component analysis (PCA) was employed to reduce the high dimension of spectra into a few principal components (PCs) while retaining the most diagnostically significant information for sample differentiation. Using the diagnostically significant PC scores (P < 0.05), linear discriminate analysis (LDA) was applied to identify different cell degranulation groups with high sensitivity, specificity and accuracy. This exploratory work demonstrates that SERS technique combined with a PCA-LDA algorithm possesses great potential for developing a label-free, comprehensive, non-invasive and accurate method for measuring MC degranulation.
Collapse
Affiliation(s)
- Mengmeng Zheng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| | - Siqi Gao
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| | - Yun Yu
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People's Republic of China
| | - Jianshu Xu
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| | - Zufang Huang
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| | - Juan Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| | - Shusen Xie
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| | - Juqiang Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, People's Republic of China.
| |
Collapse
|
32
|
Kaesler S, Wölbing F, Kempf WE, Skabytska Y, Köberle M, Volz T, Sinnberg T, Amaral T, Möckel S, Yazdi A, Metzler G, Schaller M, Hartmann K, Weide B, Garbe C, Rammensee HG, Röcken M, Biedermann T. Targeting tumor-resident mast cells for effective anti-melanoma immune responses. JCI Insight 2019; 4:125057. [PMID: 31578309 DOI: 10.1172/jci.insight.125057] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 08/27/2019] [Indexed: 12/17/2022] Open
Abstract
Immune checkpoint blockade has revolutionized cancer treatment. Patients developing immune mediated adverse events, such as colitis, appear to particularly benefit from immune checkpoint inhibition. Yet, the contributing mechanisms are largely unknown. We identified a systemic LPS signature in melanoma patients with colitis following anti-cytotoxic T lymphocyte-associated antigen 4 (anti-CTLA-4) checkpoint inhibitor treatment and hypothesized that intestinal microbiota-derived LPS contributes to therapeutic efficacy. Because activation of immune cells within the tumor microenvironment is considered most promising to effectively control cancer, we analyzed human and murine melanoma for known sentinels of LPS. We identified mast cells (MCs) accumulating in and around melanomas and showed that effective melanoma immune control was dependent on LPS-activated MCs recruiting tumor-infiltrating effector T cells by secretion of CXCL10. Importantly, CXCL10 was also upregulated in human melanomas with immune regression and in patients with colitis induced by anti-CTLA-4 antibody. Furthermore, we demonstrate that CXCL10 upregulation and an MC signature at the site of melanomas are biomarkers for better patient survival. These findings provide conclusive evidence for a "Trojan horse treatment strategy" in which the plasticity of cancer-resident immune cells, such as MCs, is used as a target to boost tumor immune defense.
Collapse
Affiliation(s)
- Susanne Kaesler
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Florian Wölbing
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Wolfgang Eberhard Kempf
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Yuliya Skabytska
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Dermatology, Eberhard Karls University, Tübingen, Germany.,Clinical Unit Allergology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Martin Köberle
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Thomas Volz
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Tobias Sinnberg
- Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Teresa Amaral
- Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Sigrid Möckel
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Amir Yazdi
- Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Gisela Metzler
- Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Martin Schaller
- Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University of Basel, Basel, Switzerland
| | - Benjamin Weide
- Department of Dermatology, Eberhard Karls University, Tübingen, Germany.,Department of Immunology, Institute of Cell Biology, and German Cancer Consortium, German Cancer Research Center partner site Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Claus Garbe
- Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute of Cell Biology, and German Cancer Consortium, German Cancer Research Center partner site Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Martin Röcken
- Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Dermatology, Eberhard Karls University, Tübingen, Germany.,Clinical Unit Allergology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| |
Collapse
|
33
|
Ferrari SM, Fallahi P, Galdiero MR, Ruffilli I, Elia G, Ragusa F, Paparo SR, Patrizio A, Mazzi V, Varricchi G, Marone G, Antonelli A. Immune and Inflammatory Cells in Thyroid Cancer Microenvironment. Int J Mol Sci 2019; 20:E4413. [PMID: 31500315 PMCID: PMC6769504 DOI: 10.3390/ijms20184413] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 12/22/2022] Open
Abstract
A hallmark of cancer is the ability of tumor cells to avoid immune destruction. Activated immune cells in tumor microenvironment (TME) secrete proinflammatory cytokines and chemokines which foster the proliferation of tumor cells. Specific antigens expressed by cancer cells are recognized by the main actors of immune response that are involved in their elimination (immunosurveillance). By the recruitment of immunosuppressive cells, decreasing the tumor immunogenicity, or through other immunosuppressive mechanisms, tumors can impair the host immune cells within the TME and escape their surveillance. Within the TME, cells of the innate (e.g., macrophages, mast cells, neutrophils) and the adaptive (e.g., lymphocytes) immune responses are interconnected with epithelial cancer cells, fibroblasts, and endothelial cells via cytokines, chemokines, and adipocytokines. The molecular pattern of cytokines and chemokines has a key role and could explain the involvement of the immune system in tumor initiation and progression. Thyroid cancer-related inflammation is an important target for diagnostic procedures and novel therapeutic strategies. Anticancer immunotherapy, especially immune checkpoint inhibitors, unleashes the immune system and activates cytotoxic lymphocytes to kill cancer cells. A better knowledge of the molecular and immunological characteristics of TME will allow novel and more effective immunotherapeutic strategies in advanced thyroid cancer.
Collapse
Affiliation(s)
- Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Poupak Fallahi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy; (M.R.G.); (G.V.); (G.M.)
- WAO Center of Excellence, 80138 Naples, Italy
| | - Ilaria Ruffilli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Giusy Elia
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Francesca Ragusa
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Sabrina Rosaria Paparo
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Armando Patrizio
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Valeria Mazzi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy; (M.R.G.); (G.V.); (G.M.)
- WAO Center of Excellence, 80138 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy; (M.R.G.); (G.V.); (G.M.)
- WAO Center of Excellence, 80138 Naples, Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| |
Collapse
|
34
|
Varricchi G, Rossi FW, Galdiero MR, Granata F, Criscuolo G, Spadaro G, de Paulis A, Marone G. Physiological Roles of Mast Cells: Collegium Internationale Allergologicum Update 2019. Int Arch Allergy Immunol 2019; 179:247-261. [PMID: 31137021 DOI: 10.1159/000500088] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/02/2019] [Indexed: 11/19/2022] Open
Abstract
Mast cells are immune cells which have a widespread distribution in nearly all tissues. These cells and their mediators are canonically viewed as primary effector cells in allergic disorders. However, in the last years, mast cells have gained recognition for their involvement in several physiological and pathological conditions. They are highly heterogeneous immune cells displaying a constellation of surface receptors and producing a wide spectrum of inflammatory and immunomodulatory mediators. These features enable the cells to act as sentinels in harmful situations as well as respond to metabolic and immune changes in their microenvironment. Moreover, they communicate with many immune and nonimmune cells implicated in several immunological responses. Although mast cells contribute to host responses in experimental infections, there is no satisfactory model to study how they contribute to infection outcome in humans. Mast cells modulate physiological and pathological angiogenesis and lymphangiogenesis, but their role in tumor initiation and development is still controversial. Cardiac mast cells store and release several mediators that can exert multiple effects in the homeostatic control of different cardiometabolic functions. Although mast cells and their mediators have been simplistically associated with detrimental roles in allergic disorders, there is increasing evidence that they can also have homeostatic or protective roles in several pathophysiological processes. These findings may reflect the functional heterogeneity of different subsets of mast cells.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy, .,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy, .,World Allergy Organization (WAO) Center of Excellence, Naples, Italy, .,Institute of Endocrinology and Experimental Oncology (IEOS), CNR, Naples, Italy,
| |
Collapse
|
35
|
Sammarco G, Varricchi G, Ferraro V, Ammendola M, De Fazio M, Altomare DF, Luposella M, Maltese L, Currò G, Marone G, Ranieri G, Memeo R. Mast Cells, Angiogenesis and Lymphangiogenesis in Human Gastric Cancer. Int J Mol Sci 2019; 20:2106. [PMID: 31035644 PMCID: PMC6540185 DOI: 10.3390/ijms20092106] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is diagnosed in nearly one million new patients each year and it remains the second leading cause of cancer-related deaths worldwide. Although gastric cancer represents a heterogeneous group of diseases, chronic inflammation has been shown to play a role in tumorigenesis. Cancer development is a multistep process characterized by genetic and epigenetic alterations during tumour initiation and progression. The stromal microenvironment is important in maintaining normal tissue homeostasis or promoting tumour development. A plethora of immune cells (i.e., lymphocytes, macrophages, mast cells, monocytes, myeloid-derived suppressor cells, Treg cells, dendritic cells, neutrophils, eosinophils, natural killer (NK) and natural killer T (NKT) cells) are components of gastric cancer microenvironment. Mast cell density is increased in gastric cancer and there is a correlation with angiogenesis, the number of metastatic lymph nodes and the survival of these patients. Mast cells exert a protumorigenic role in gastric cancer through the release of angiogenic (VEGF-A, CXCL8, MMP-9) and lymphangiogenic factors (VEGF-C and VEGF-F). Gastric mast cells express the programmed death ligands (PD-L1 and PD-L2) which are relevant as immune checkpoints in cancer. Several clinical undergoing trials targeting immune checkpoints could be an innovative therapeutic strategy in gastric cancer. Elucidation of the role of subsets of mast cells in different human gastric cancers will demand studies of increasing complexity beyond those assessing merely mast cell density and microlocalization.
Collapse
Affiliation(s)
- Giuseppe Sammarco
- Department of Health Science, General Surgery, Magna Graecia University, Medicine School of Germaneto, 88100 Catanzaro, Italy.
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DISMET) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.
- WAO Center of Excellence, 80131 Naples, Italy.
| | - Valentina Ferraro
- Department of Biomedical Sciences and Human Oncology, Unit of Endocrine, Digestive and Emergency Surgery, Aldo Moro University, 74124 Bari, Italy.
| | - Michele Ammendola
- Department of Health Science, General Surgery, Magna Graecia University, Medicine School of Germaneto, 88100 Catanzaro, Italy.
| | - Michele De Fazio
- Department of Emergency and Organ Transplantation, Aldo Moro University, 74124 Bari, Italy.
| | | | - Maria Luposella
- Cardiovascular Disease Unit, San Giovanni di Dio Hospital, 88900 Crotone, Italy.
| | - Lorenza Maltese
- Pathology Unit, Pugliese-Ciaccio Hospital, 88100 Catanzaro, Italy.
| | - Giuseppe Currò
- Department of Health Science, General Surgery, Magna Graecia University, Medicine School of Germaneto, 88100 Catanzaro, Italy.
- Department of Human Pathology of Adult and Evolutive Age G. Barresi, University of Messina, 98122 Messina, Italy.
| | - Gianni Marone
- Department of Translational Medical Sciences (DISMET) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.
- WAO Center of Excellence, 80131 Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131 Naples, Italy.
| | - Girolamo Ranieri
- Interventional Oncology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, 74124 Bari, Italy.
| | - Riccardo Memeo
- Department of Emergency and Organ Transplantation, Aldo Moro University, 74124 Bari, Italy.
| |
Collapse
|
36
|
A Transcriptomic Insight into the Impact of Colon Cancer Cells on Mast Cells. Int J Mol Sci 2019; 20:ijms20071689. [PMID: 30987352 PMCID: PMC6480031 DOI: 10.3390/ijms20071689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) are one of the first immune cells recruited to a tumor. It is well recognized that MCs accumulate in colon cancer lesion and their density is associated with the clinical outcomes. However, the molecular mechanism of how colon cancer cells may modify MC function is still unclear. In this study, primary human MCs were generated from CD34+ progenitor cells and a 3D coculture model was developed to study the interplay between colon cancer cells and MCs. By comparing the transcriptomic profile of colon cancer-cocultured MCs versus control MCs, we identified a number of deregulated genes, such as MMP-2, VEGF-A, PDGF-A, COX2, NOTCH1 and ISG15, which contribute to the enrichment of cancer-related pathways. Intriguingly, pre-stimulation with a TLR2 agonist prior to colon cancer coculture induced upregulation of multiple interferon-inducible genes as well as MHC molecules in MCs. Our study provides an alternative approach to study the influence of colon cancer on MCs. The transcriptome signature of colon cancer-cocultured MCs may potentially reflect the mechanism of how colon cancer cells educate MCs to become pro-tumorigenic in the initial phase and how a subsequent inflammatory signal—e.g., TLR2 ligands—may modify their responses in the cancer milieu.
Collapse
|
37
|
Varricchi G, Raap U, Rivellese F, Marone G, Gibbs BF. Human mast cells and basophils-How are they similar how are they different? Immunol Rev 2019; 282:8-34. [PMID: 29431214 DOI: 10.1111/imr.12627] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells and basophils are key contributors to allergies and other inflammatory diseases since they are the most prominent source of histamine as well as numerous additional inflammatory mediators which drive inflammatory responses. However, a closer understanding of their precise roles in allergies and other pathological conditions has been marred by the considerable heterogeneity that these cells display, not only between mast cells and basophils themselves but also across different tissue locations and species. While both cell types share the ability to rapidly degranulate and release histamine following high-affinity IgE receptor cross-linking, they differ markedly in their ability to either react to other stimuli, generate inflammatory eicosanoids or release immunomodulating cytokines and chemokines. Furthermore, these cells display considerable pharmacological heterogeneity which has stifled attempts to develop more effective anti-allergic therapies. Mast cell- and basophil-specific transcriptional profiling, at rest and after activation by innate and adaptive stimuli, may help to unravel the degree to which these cells differ and facilitate a clearer understanding of their biological functions and how these could be targeted by new therapies.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Ulrike Raap
- Department of Dermatology and Allergology, University of Oldenburg, Oldenburg, Germany
| | - Felice Rivellese
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Bernhard F Gibbs
- Department of Dermatology and Allergology, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
38
|
The dual role of mast cells in tumor fate. Cancer Lett 2018; 433:252-258. [PMID: 29981810 DOI: 10.1016/j.canlet.2018.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023]
Abstract
The exact role of mast cells in tumor growth is not clear and multifaceted. In some cases, mast cells stimulate while in others inhibit this process. This dual role may be explained to some extent by the huge number of bioactive molecules stored in mast cell granules, as well as differences between tumor microenvironment, tumor type, and tumor phase of development.
Collapse
|
39
|
Kuo CHS, Liu CY, Pavlidis S, Lo YL, Wang YW, Chen CH, Ko HW, Chung FT, Lin TY, Wang TY, Lee KY, Guo YK, Wang TH, Yang CT. Unique Immune Gene Expression Patterns in Bronchoalveolar Lavage and Tumor Adjacent Non-Neoplastic Lung Tissue in Non-Small Cell Lung Cancer. Front Immunol 2018; 9:232. [PMID: 29483918 PMCID: PMC5816075 DOI: 10.3389/fimmu.2018.00232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/26/2018] [Indexed: 12/13/2022] Open
Abstract
Background The immune cells in the local environments surrounding non-small cell lung cancer (NSCLC) implicate the balance of pro- and antitumor immunity; however, their transcriptomic profiles remain poorly understood. Methods A transcriptomic microarray study of bronchoalveolar lavage (BAL) cells harvested from tumor-bearing lung segments was performed in a discovery group. The findings were validated (1) in published microarray datasets, (2) in an independent group by RT-qPCR, and (3) in non-diseased and tumor adjacent non-neoplastic lung tissue by immunohistochemistry and in BAL cell lysates by immunoblotting. Result The differential expression of 129 genes was identified in the discovery group. These genes revealed functional enrichment in Fc gamma receptor-dependent phagocytosis and circulating immunoglobulin complex among others. Microarray datasets analysis (n = 607) showed that gene expression of BAL cells of tumor-bearing lung segment was also the unique transcriptomic profile of tumor adjacent non-neoplastic lung of early stage NSCLC and a significantly gradient increase of immunoglobulin genes’ expression for non-diseased lungs, tumor adjacent non-neoplastic lungs, and tumors was identified (ANOVA, p < 2 × 10−16). A 53-gene signature was determined with significant correlation with inhibitory checkpoint PDCD1 (r = 0.59, p = 0.0078) among others, where the nine top genes including IGJ and IGKC were RT-qPCR validated with high diagnostic performance (AUC: 0.920, 95% CI: 0.831–0.985, p = 2.98 × 10−7). Increased staining and expression of IGKC revealed by immunohistochemistry and immunoblotting in tumor adjacent non-neoplastic lung tissues (Wilcoxon signed-rank test, p < 0.001) and in BAL cell lysates (p < 0.01) of NSCLC, respectively, were noted. Conclusion The BAL cells of tumor-bearing lung segments and tumor adjacent non-neoplastic lung tissues present a unique gene expression characterized by IGKC in relation to inhibitory checkpoints. Further study of humoral immune responses to NSCLC is warranted.
Collapse
Affiliation(s)
- Chih-Hsi Scott Kuo
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Computing, Imperial College London, Data Science Institute, London, United Kingdom
| | - Chien-Ying Liu
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Stelios Pavlidis
- Department of Computing, Imperial College London, Data Science Institute, London, United Kingdom
| | - Yu-Lun Lo
- Division of Airway Diseases, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yen-Wen Wang
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Chih-Hung Chen
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - How-Wen Ko
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Fu-Tsai Chung
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Tin-Yu Lin
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Tsai-Yu Wang
- Division of Airway Diseases, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Kang-Yun Lee
- Division of Thoracic Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| | - Yi-Ke Guo
- Department of Computing, Imperial College London, Data Science Institute, London, United Kingdom
| | - Tzu-Hao Wang
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Cheng-Ta Yang
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
40
|
Varricchi G, Galdiero MR, Loffredo S, Lucarini V, Marone G, Mattei F, Marone G, Schiavoni G. Eosinophils: The unsung heroes in cancer? Oncoimmunology 2017; 7:e1393134. [PMID: 29308325 DOI: 10.1080/2162402x.2017.1393134] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022] Open
Abstract
Prolonged low-grade inflammation or smoldering inflammation is a hallmark of a cancer. Eosinophils are components of the immune microenvironment that modulates tumor initiation and progression. Although canonically associated with a detrimental role in allergic disorders, these cells can induce a protective immune response against helminthes, viral and bacterial pathogens. Eosinophils are a source of anti-tumorigenic (e.g., TNF-α, granzyme, cationic proteins, and IL-18) and protumorigenic molecules (e.g., pro-angiogenic factors) depending on the milieu. In several neoplasias (e.g., melanoma, gastric, colorectal, oral and prostate cancer) eosinophils play an anti-tumorigenic role, in others (e.g., Hodgkin's lymphoma, cervical carcinoma) have been linked to poor prognosis, whereas in yet others they are apparently innocent bystanders. These seemingly conflicting results suggest that the role of eosinophils and their mediators could be cancer-dependent. The microlocalization (e.g., peritumoral vs intratumoral) of eosinophils could be another important aspect in the initiation/progression of solid and hematological tumors. Increasing evidence in experimental models indicates that activation/recruitment of eosinophils could represent a new therapeutic strategy for certain tumors (e.g., melanoma). Many unanswered questions should be addressed before we understand whether eosinophils are an ally, adversary or neutral bystanders in different types of human cancers.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Valeria Lucarini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy.,Monaldi Hospital Pharmacy, Naples, Italy
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council (CNR), Naples, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
41
|
Brockmeyer P, Kling A, Schulz X, Perske C, Schliephake H, Hemmerlein B. High mast cell density indicates a longer overall survival in oral squamous cell carcinoma. Sci Rep 2017; 7:14677. [PMID: 29116177 PMCID: PMC5677084 DOI: 10.1038/s41598-017-15406-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/26/2017] [Indexed: 02/07/2023] Open
Abstract
This study evaluates the effects of tumour-associated mast cells on the prognosis of patients suffering from oral squamous cell carcinoma (OSCC). Tryptase-positive (MCT+) and CD117-positive (CD117+) mast cells were immunohistochemically evaluated in tissue samples of 118 OSCC patients. Besides, various clinicopathological parameters, the influence of the MCT+ and CD117+ mast cell density on overall survival and the incidence of first local recurrence was analysed by Cox regression and competing risk regression. Among all investigated parameters, multiple Cox regression revealed a significant influence of the MCT+ (cut-off at 14.87 mast cells/mm2 stroma; p = 0.0027) and CD117+ mast cell density (cut-off at 33.19 mast cells/mm2 stroma; p = 0.004), the age at primary diagnosis, and the T and N stage (all p-values < 0.05) on overall survival. Patients with a low mast cell density showed a significantly poorer overall survival rate compared to those with a high mast cell density in the tumour-associated stroma. Competing risk regression revealed a significant influence of the resection status (R) on the incidence of first local recurrence (p = 0.0023). A high mast cell density in the tumour-associated stroma of oral squamous cell carcinoma indicates a longer patient survival.
Collapse
Affiliation(s)
- Phillipp Brockmeyer
- Department of Oral and Maxillofacial Surgery, University Medical Centre Goettingen, Goettingen, Germany.
| | - Alexander Kling
- Department of Oral and Maxillofacial Surgery, University Medical Centre Goettingen, Goettingen, Germany
| | - Xenia Schulz
- Department of Medical Statistics, University Medical Centre Goettingen, Goettingen, Germany
| | - Christina Perske
- Department of Pathology, University Medical Centre Goettingen, Goettingen, Germany
| | - Henning Schliephake
- Department of Oral and Maxillofacial Surgery, University Medical Centre Goettingen, Goettingen, Germany
| | - Bernhard Hemmerlein
- Department of Pathology, University Medical Centre Goettingen, Goettingen, Germany.,Institute of Pathology, Helios Klinikum Krefeld, Krefeld, Germany
| |
Collapse
|
42
|
Ly D, Zhu CQ, Cabanero M, Tsao MS, Zhang L. Role for High-Affinity IgE Receptor in Prognosis of Lung Adenocarcinoma Patients. Cancer Immunol Res 2017; 5:821-829. [PMID: 28775209 DOI: 10.1158/2326-6066.cir-16-0392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/17/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022]
Abstract
Cancer development and biology is influenced by the host immune system. Emerging data indicate that the context of immune cell infiltrates may contribute to cancer prognosis. However, the types of infiltrating immune cells that are critical for cancer development remain controversial. In attempts to gain insights into the immune networks that regulate and/or predict tumor progression, gene expression analysis was conducted on microarray datasets of resected tumor samples from 128 early-stage non-small cell lung cancer (NSCLC) adenocarcinoma patients. By limiting analysis to immune-related genes, we identified a 9-gene signature using MAximizing R Square Algorithm that selected for the greatest separation between favorable and adverse prognostic patient subgroups. The prognostic value of this 9-gene signature was validated in 10 additional independently published microarray datasets of lung adenocarcinoma [n = 1,097; overall survival hazard ratio (HR), 2.05; 95% confidence interval, 1.64-2.56; P < 0.0001] and was found to be an independent prognostic indicator relative to tumor stage (overall survival HR, 2.09, 95% confidence interval, 1.65-2.66; P < 0.0001). Network analysis revealed that genes associated with Fcε complex (FCER1, MS4A2) formed the largest and most significant pathway of the signature. Using immunohistochemistry, we validated that MS4A2, the β subunit of the IgE receptor expressed on mast cells, is a favorable prognostic indicator and show that MS4A2 gene expression is an independent prognostic marker for early-stage lung cancer patient survival. Cancer Immunol Res; 5(9); 821-9. ©2017 AACR.
Collapse
Affiliation(s)
- Dalam Ly
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Chang-Qi Zhu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael Cabanero
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. .,Departments of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Li Zhang
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Departments of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Lin C, Liu H, Zhang H, Cao Y, Li R, Wu S, Li H, He H, Xu J, Sun Y. Tryptase expression as a prognostic marker in patients with resected gastric cancer. Br J Surg 2017; 104:1037-1044. [PMID: 28542986 DOI: 10.1002/bjs.10546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 12/21/2016] [Accepted: 02/22/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Mast cells play important roles in the progression of various malignancies, but their prognostic value in gastric cancer is unknown. Tryptase expression, as an indicator of mast cell activity, was therefore evaluated to see whether this could be incorporated usefully into a prognostic nomogram after surgery in patients with gastric cancer. METHODS Tissue microarrays from patients with gastric cancer were created from formalin-fixed, paraffin-embedded resection specimens. Tryptase density was assessed by immunohistochemistry, and the association between tryptase expression and prognosis was evaluated. Semiquantitative scoring was devised to determine an optimal cut-off value that correlated with survival. A prognostic nomogram was then developed incorporating tryptase expression scores along with other variables known to be related to survival. RESULTS Tissue microarrays were generated from 419 patients having surgery for gastric cancer. Increased tryptase expression was associated with better overall and recurrence-free survival (both P < 0·001). Tryptase expression was an independent favourable prognostic factor for overall (HR 0·72; P = 0·027) and recurrence-free (HR 0·74; P = 0·044) survival. The accuracy of an established prognostic model was improved when tryptase expression was added. CONCLUSION Tryptase expression is an independent prognostic factor for overall and recurrence-free survival in patients with gastric cancer after surgical resection.
Collapse
Affiliation(s)
- C Lin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - H Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - H Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Y Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - R Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - S Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - H Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - H He
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - J Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Y Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Varricchi G, Galdiero MR, Loffredo S, Marone G, Iannone R, Marone G, Granata F. Are Mast Cells MASTers in Cancer? Front Immunol 2017; 8:424. [PMID: 28446910 PMCID: PMC5388770 DOI: 10.3389/fimmu.2017.00424] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/27/2017] [Indexed: 12/19/2022] Open
Abstract
Prolonged low-grade inflammation or smoldering inflammation is a hallmark of cancer. Mast cells form a heterogeneous population of immune cells with differences in their ultra-structure, morphology, mediator content, and surface receptors. Mast cells are widely distributed throughout all tissues and are stromal components of the inflammatory microenvironment that modulates tumor initiation and development. Although canonically associated with allergic disorders, mast cells are a major source of pro-tumorigenic (e.g., angiogenic and lymphangiogenic factors) and antitumorigenic molecules (e.g., TNF-α and IL-9), depending on the milieu. In certain neoplasias (e.g., gastric, thyroid and Hodgkin's lymphoma) mast cells play a pro-tumorigenic role, in others (e.g., breast cancer) a protective role, whereas in yet others they are apparently innocent bystanders. These seemingly conflicting results suggest that the role of mast cells and their mediators could be cancer specific. The microlocalization (e.g., peritumoral vs intratumoral) of mast cells is another important aspect in the initiation/progression of solid and hematologic tumors. Increasing evidence in certain experimental models indicates that targeting mast cells and/or their mediators represent a potential therapeutic target in cancer. Thus, mast cells deserve focused consideration also as therapeutic targets in different types of tumors. There are many unanswered questions that should be addressed before we understand whether mast cells are an ally, adversary, or innocent bystanders in human cancers.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Monaldi Hospital Pharmacy, Naples, Italy
| | - Raffaella Iannone
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| |
Collapse
|