1
|
Shah BA, Malhotra H, Papade SE, Dhamale T, Ingale OP, Kasarlawar ST, Phale PS. Microbial degradation of contaminants of emerging concern: metabolic, genetic and omics insights for enhanced bioremediation. Front Bioeng Biotechnol 2024; 12:1470522. [PMID: 39364263 PMCID: PMC11446756 DOI: 10.3389/fbioe.2024.1470522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
The perpetual release of natural/synthetic pollutants into the environment poses major risks to ecological balance and human health. Amongst these, contaminants of emerging concern (CECs) are characterized by their recent introduction/detection in various niches, thereby causing significant hazards and necessitating their removal. Pharmaceuticals, plasticizers, cyanotoxins and emerging pesticides are major groups of CECs that are highly toxic and found to occur in various compartments of the biosphere. The sources of these compounds can be multipartite including industrial discharge, improper disposal, excretion of unmetabolized residues, eutrophication etc., while their fate and persistence are determined by factors such as physico-chemical properties, environmental conditions, biodegradability and hydrological factors. The resultant exposure of these compounds to microbiota has imposed a selection pressure and resulted in evolution of metabolic pathways for their biotransformation and/or utilization as sole source of carbon and energy. Such microbial degradation phenotype can be exploited to clean-up CECs from the environment, offering a cost-effective and eco-friendly alternative to abiotic methods of removal, thereby mitigating their toxicity. However, efficient bioprocess development for bioremediation strategies requires extensive understanding of individual components such as pathway gene clusters, proteins/enzymes, metabolites and associated regulatory mechanisms. "Omics" and "Meta-omics" techniques aid in providing crucial insights into the complex interactions and functions of these components as well as microbial community, enabling more effective and targeted bioremediation. Aside from natural isolates, metabolic engineering approaches employ the application of genetic engineering to enhance metabolic diversity and degradation rates. The integration of omics data will further aid in developing systemic-level bioremediation and metabolic engineering strategies, thereby optimising the clean-up process. This review describes bacterial catabolic pathways, genetics, and application of omics and metabolic engineering for bioremediation of four major groups of CECs: pharmaceuticals, plasticizers, cyanotoxins, and emerging pesticides.
Collapse
Affiliation(s)
- Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sandesh E Papade
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Tushar Dhamale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Omkar P Ingale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sravanti T Kasarlawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
2
|
Malhotra H, Dhamale T, Kaur S, Kasarlawar ST, Phale PS. Metabolic engineering of Pseudomonas bharatica CSV86 T to degrade Carbaryl (1-naphthyl- N-methylcarbamate) via the salicylate-catechol route. Microbiol Spectr 2024; 12:e0028424. [PMID: 38869268 PMCID: PMC11302072 DOI: 10.1128/spectrum.00284-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 06/14/2024] Open
Abstract
Pseudomonas bharatica CSV86T displays the unique property of preferential utilization of aromatic compounds over simple carbon sources like glucose and glycerol and their co-metabolism with organic acids. Well-characterized growth conditions, aromatic compound metabolic pathways and their regulation, genome sequence, and advantageous eco-physiological traits (indole acetic acid production, alginate production, fusaric acid resistance, organic sulfur utilization, and siderophore production) make it an ideal host for metabolic engineering. Strain CSV86T was engineered for Carbaryl (1-naphthyl-N-methylcarbamate) degradation via salicylate-catechol route by expression of a Carbaryl hydrolase (CH) and a 1-naphthol 2-hydroxylase (1NH). Additionally, the engineered strain exhibited faster growth on Carbaryl upon expression of the McbT protein (encoded by the mcbT gene, a part of Carbaryl degradation upper operon of Pseudomonas sp. C5pp). Bioinformatic analyses predict McbT to be an outer membrane protein, and Carbaryl-dependent expression suggests its probable role in Carbaryl uptake. Enzyme activity and protein analyses suggested periplasmic localization of CH (carrying transmembrane domain plus signal peptide sequence at the N-terminus) and 1NH, enabling compartmentalization of the pathway. Enzyme activity, whole-cell oxygen uptake, spent media analyses, and qPCR results suggest that the engineered strain preferentially utilizes Carbaryl over glucose. The plasmid-encoded degradation property was stable for 75-90 generations even in the absence of selection pressure (kanamycin or Carbaryl). These results indicate the utility of P. bharatica CSV86T as a potential host for engineering various aromatic compound degradation pathways.IMPORTANCEThe current study describes engineering of Carbaryl metabolic pathway in Pseudomonas bharatica CSV86T. Carbaryl, a naphthalene-derived carbamate pesticide, is known to act as an endocrine disruptor, mutagen, cytotoxin, and carcinogen. Removal of xenobiotics from the environment using bioremediation faces challenges, such as slow degradation rates, instability of the degradation phenotype, and presence of simple carbon sources in the environment. The engineered CSV86-MEC2 overcomes these disadvantages as Carbaryl was degraded preferentially over glucose. Furthermore, the plasmid-borne degradation phenotype is stable, and presence of glucose and organic acids does not repress Carbaryl metabolism in the strain. The study suggests the role of outer membrane protein McbT in Carbaryl transport. This work highlights the suitability of P. bharatica CSV86T as an ideal host for engineering aromatic pollutant degradation pathways.
Collapse
Affiliation(s)
- Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Tushar Dhamale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sukhjeet Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sravanti T. Kasarlawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Prashant S. Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
3
|
Wang Y, Guan Q, Jiao W, Li J, Zhao R, Zhang X, Fan W, Wang C. Isolation, identification and transcriptome analysis of triadimefon-degrading strain Enterobacter hormaechei TY18. Biodegradation 2024; 35:551-564. [PMID: 38530488 DOI: 10.1007/s10532-024-10076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024]
Abstract
Triadimefon, a type of triazole systemic fungicide, has been extensively used to control various fungal diseases. However, triadimefon could lead to severe environmental pollution, and even threatens human health. To eliminate triadimefon residues, a triadimefon-degrading bacterial strain TY18 was isolated from a long-term polluted site and was identified as Enterobacter hormaechei. Strain TY18 could grow well in a carbon salt medium with triadimefon as the sole nitrogen source, and could efficiently degrade triadimefon. Under triadimefon stress, a total of 430 differentially expressed genes (DEGs), including 197 up-regulated and 233 down-regulated DEGs, were identified in strain TY18 using transcriptome sequencing (RNA-Seq). Functional classification and enrichment analysis revealed that these DEGs were mainly related to amino acid transport and metabolism, carbohydrate transport and metabolism, small molecule and pyrimidine metabolism. Interestingly, the DEGs encoding monooxygenase and hydrolase activity acting on carbon-nitrogen were highly up-regulated, might be mainly responsible for the metabolism in triadimefon. Our findings in this work suggest that strain E. hormaechei TY18 could efficiently degrade triadimefon for the first time. They provide a great potential to manage triadimefon biodegradation in the environment successfully.
Collapse
Affiliation(s)
- Yan Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Qi Guan
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Wenhui Jiao
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- Experiment Teaching Center, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jiangbo Li
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Rui Zhao
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiqian Zhang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Weixin Fan
- Experiment Teaching Center, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Chunwei Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
4
|
Ke Z, Zhu Q, Zhang M, Gao S, jiang M, Zhou Y, Qiu J, Cheng M, Yan X, Wang J, Hong Q. Unveiling the regulatory mechanisms of salicylate degradation gene cluster cehGHIR4 in Rhizobium sp. strain X9. Appl Environ Microbiol 2023; 89:e0080223. [PMID: 37800922 PMCID: PMC10617420 DOI: 10.1128/aem.00802-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/19/2023] [Indexed: 10/07/2023] Open
Abstract
In a previous study, the novel gene cluster cehGHI was found to be involved in salicylate degradation through the CoA-mediated pathway in Rhizobium sp. strain X9 (Mol Microbiol 116:783-793, 2021). In this study, an IclR family transcriptional regulator CehR4 was identified. In contrast to other regulators involved in salicylate degradation, cehR4 forms one operon with the gentisyl-CoA thioesterase gene cehI, while cehG and cehH (encoding salicylyl-CoA ligase and salicylyl-CoA hydroxylase, respectively) form another operon. cehGH and cehIR4 are divergently transcribed, and their promoters overlap. The results of the electrophoretic mobility shift assay and DNase I footprinting showed that CehR4 binds to the 42-bp motif between genes cehH and cehI, thus regulating transcription of cehGH and cehIR4. The repeat sequences IR1 (5'-TTTATATAAA-3') and IR2 (5'-AATATAGAAA-3') in the motif are key sites for CehR4 binding. The arrangement of cehGH and cehIR4 and the conserved binding motif of CehR4 were also found in other bacterial genera. The results disclose the regulatory mechanism of salicylate degradation through the CoA pathway and expand knowledge about the systems controlled by IclR family transcriptional regulators.IMPORTANCEThe long-term residue of aromatic compounds in the environment has brought great threat to the environment and human health. Microbial degradation plays an important role in the elimination of aromatic compounds in the environment. Salicylate is a common intermediate metabolite in the degradation of various aromatic compounds. Recently, Rhizobium sp. strain X9, capable of degrading the pesticide carbaryl, was isolated from carbaryl-contaminated soil. Salicylate is the intermediate metabolite that appeared during the degradation of carbaryl, and a novel salicylate degradation pathway and the involved gene cluster cehGHIR4 have been identified. This study identified and characterized the IclR transcription regulator CehR4 that represses transcription of cehGHIR4 gene cluster. Additionally, the genetic arrangements of cehGH and cehIR4 and the binding sites of CehR4 were also found in other bacterial genera. This study provides insights into the biodegradation of salicylate and provides an application in the bioremediation of aromatic compound-contaminated environments.
Collapse
Affiliation(s)
- Zhijian Ke
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo, Zhejiang, China
| | - Qian Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mingliang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Siyuan Gao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mingli jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yidong Zhou
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Minggen Cheng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jinbo Wang
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo, Zhejiang, China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Malhotra H, Saha BK, Phale PS. Development of efficient modules for recombinant protein expression and periplasmic localiszation in Pseudomonas bharatica CSV86 T. Protein Expr Purif 2023; 210:106310. [PMID: 37211150 DOI: 10.1016/j.pep.2023.106310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Escherichia coli has been widely employed as a host for heterologous protein expression. However, due to certain limitations, alternative hosts like Pseudomonas, Lactococcus and Bacillus are being explored. Pseudomonas bharatica CSV86T, a novel soil isolate, preferentially degrades wide range of aromatics over simple carbon sources like glucose and glycerol. Strain also possesses advantageous eco-physiological traits, making it an ideal host for engineering xenobiotic degradation pathways, which necessitates the development of heterologous expression systems. Based on the efficient growth, short lag-phase and rapid metabolism of naphthalene, Pnah and Psal promoters (regulated by NahR) were selected for expression. Pnah was found to be strong and leaky as compared to Psal, using 1-naphthol 2-hydroxylase (1NH, ∼66 kDa) as reporter gene in strain CSV86T. The Carbaryl hydrolase (CH, ∼72kDa) from Pseudomonas sp. C5pp was expressed under Pnah in strain CSV86T and could successfully be translocated to the periplasm due to the presence of the Tmd + Sp sequence. The recombinant CH was purified from the periplasmic fraction and the kinetic characteristics were found to be similar to the native protein from strain C5pp. These results potentiate the suitability of P. bharatica CSV86T as a desirable host, while Pnah and the Tmd + Sp can be employed for overexpression and periplasmic localisation, respectively. Such tools find application in heterologous protein expression and metabolic engineering applications.
Collapse
Affiliation(s)
- Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai, 400076, India
| | - Braja Kishor Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai, 400076, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
6
|
Zhou Y, Xia C, Zhang J, Shen Z, Li Z, Zhang M, Sun L, Liu D, Hong Q. Co-inducible Catabolism of 2-Naphthol Initiated by Hydroxylase CehC1C2 in Rhizobium sp. X9 Removed Its Ecotoxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:626-634. [PMID: 36583641 DOI: 10.1021/acs.jafc.2c06619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
2-Naphthol, which originates from various industrial activities, is widely disseminated through the discharge of industrial wastewater and is, thus, harmful to the water ecosystem, agricultural production, and human health. In this study, the carbaryl degrading strain Rhizobium sp. X9 was proven to be able to degrade 2-naphthol and reduce its toxicity to rice (Oryza sativa) and Chlorella ellipsoidea. Two-component hydroxylase CehC1C2 is responsible for the initial step of degradation and generates 1,2-dihydroxynaphthalene, which is further degraded by the ceh cluster. The transcription of gene cluster cehC1C2 could be induced when both 2-naphthol and glucose were added. A bioinformatic analysis revealed that two transcriptional regulators, the inhibitor CehR2 and the activator CehR3, could be involved in this process. Our study elucidated the molecular mechanism of microbial degradation of 2-naphthol and provided an effective strategy for the in situ remediation of 2-naphthol contamination in the environment.
Collapse
Affiliation(s)
- Yidong Zhou
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs and Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Chunli Xia
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Jiazhuo Zhang
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Zhenyang Shen
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Zhaojing Li
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Mingliang Zhang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs and Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Lijun Sun
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Dong Liu
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Qing Hong
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs and Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
7
|
Liu G, Zhang D, Zhao T, Yang H, Jiang J, Li J, Zhang H, Xu X, Hu X. Identification of Cladosporium fulvum infection responsive genes in tomato through cDNA-AFLP. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2116997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Guan Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, Heilongjiang, PR China
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, PR China
| | - Dongye Zhang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, Heilongjiang, PR China
| | - Tingting Zhao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Huanhuan Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Jingbin Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Jingfu Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - He Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Xiangyang Xu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Xiaohang Hu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, Heilongjiang, PR China
| |
Collapse
|
8
|
Sun M, Xu W, Zhang W, Guang C, Mu W. Microbial elimination of carbamate pesticides: specific strains and promising enzymes. Appl Microbiol Biotechnol 2022; 106:5973-5986. [PMID: 36063179 DOI: 10.1007/s00253-022-12141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
Abstract
Carbamate pesticides are widely used in the environment, and compared with other pesticides in nature, they are easier to decompose and have less durability. However, due to the improper use of carbamate pesticides, some nontarget organisms still may be harmed. To this end, it is necessary to investigate effective removal or elimination methods for carbamate pesticides. Current effective elimination methods could be divided into four categories: physical removal, chemical reaction, biological degradation, and enzymatic degradation. Physical removal primarily includes elution, adsorption, and supercritical fluid extraction. The chemical reaction includes Fenton oxidation, photo-radiation, and net electron reduction. Biological degradation is an environmental-friendly manner, which achieves degradation by the metabolism of microorganisms. Enzymatic degradation is more promising due to its high substrate specificity and catalytic efficacy. All in all, this review primarily summarizes the property of carbamate pesticides and the traditional degradation methods as well as the promising biological elimination. KEY POINTS: • The occurrence and toxicity of carbamate pesticides were shown. • Biological degradation strains against carbamate pesticides were presented. • Promising enzymes responsible for the degradation of carbamates were discussed.
Collapse
Affiliation(s)
- Minwen Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
9
|
Zhang M, Bai X, Li Q, Zhang L, Zhu Q, Gao S, Ke Z, Jiang M, Hu J, Qiu J, Hong Q. Functional analysis, diversity, and distribution of carbendazim hydrolases MheI and CbmA, responsible for the initial step in carbendazim degradation. Environ Microbiol 2022; 24:4803-4817. [PMID: 35880585 DOI: 10.1111/1462-2920.16139] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/29/2022]
Abstract
Strains Rhodococcus qingshengii djl-6 and Rhodococcus jialingiae djl-6-2 both harbor the typical carbendazim degradation pathway with the hydrolysis of carbendazim to 2-aminobenzimidazole (2-AB) as the initial step. However, the enzymes involved in this process are still unknown. In this study, the previous reported carbendazim hydrolase MheI was found in strain djl-6, but not in strain djl-6-2, then another carbendazim hydrolase CbmA was obtained by a four-step purification strategy from strain djl-6-2. CbmA was classified as a member of the amidase signature superfamily with conserved catalytic site residues Ser157, Ser181, and Lys82, while MheI was classified as a member of the Abhydrolase superfamily with conserved catalytic site residues Ser77 and His224. The catalytic efficiency (kcat /Km ) of MheI (24.0-27.9 μM-1 min-1 ) was 200 times more than that of CbmA (0.032-0.21 μM-1 min-1 ). The mheI gene (plasmid encoded) was highly conserved (> 99% identity) in the strains from different bacterial genera and its plasmid encoded flanked by mobile genetic elements. The cmbA gene was highly conserved only in strains of the genus Rhodococcus and it was chromosomally encoded. Overall, the function, diversity, and distribution of carbendazim hydrolases MheI and CbmA will provide insights into the microbial degradation of carbendazim.
Collapse
Affiliation(s)
- Mingliang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Xuekun Bai
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Qian Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Lu Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Qian Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Siyuan Gao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Zhijian Ke
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Mingli Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Junqiang Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| |
Collapse
|
10
|
The Novel Amidase PcnH Initiates the Degradation of Phenazine-1-Carboxamide in Sphingomonas histidinilytica DS-9. Appl Environ Microbiol 2022; 88:e0054322. [PMID: 35579476 PMCID: PMC9195955 DOI: 10.1128/aem.00543-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Phenazines are an important class of secondary metabolites and are primarily named for their heterocyclic phenazine cores, including phenazine-1-carboxylic acid (PCA) and its derivatives, such as phenazine-1-carboxamide (PCN) and pyocyanin (PYO). Although several genes involved in the degradation of PCA and PYO have been reported so far, the genetic foundations of PCN degradation remain unknown. In this study, a PCN-degrading bacterial strain, Sphingomonas histidinilytica DS-9, was isolated. The gene pcnH, encoding a novel amidase responsible for the initial step of PCN degradation, was cloned by genome comparison and subsequent experimental validation. PcnH catalyzed the hydrolysis of the amide bond of PCN to produce PCA, which shared low identity (only 26 to 33%) with reported amidases. The Km and kcat values of PcnH for PCN were 33.22 ± 5.70 μM and 18.71 ± 0.52 s-1, respectively. PcnH has an Asp-Lys-Cys motif, which is conserved among amidases of the isochorismate hydrolase-like (IHL) superfamily. The replacement of Asp37, Lys128, and Cys163 with alanine in PcnH led to the complete loss of enzymatic activity. Furthermore, the genes pcaA1A2A3A4 and pcnD were found to encode PCA 1,2-dioxygenase and 1,2-dihydroxyphenazine (2OHPC) dioxygenase, which were responsible for the subsequent degradation steps of PCN. The PCN-degradative genes were highly conserved in some bacteria of the genus Sphingomonas, with slight variations in the sequence identities. IMPORTANCE Phenazines have been widely acknowledged as a natural antibiotic for more than 150 years, but their degradation mechanisms are still not completely elucidated. Compared with the studies on the degradation mechanism of PCA and PYO, little is known regarding PCN degradation by far. Previous studies have speculated that its initial degradation step may be catalyzed by an amidase, but no further studies have been conducted. This study identified a novel amidase, PcnH, that catalyzed the hydrolysis of PCN to PCA. In addition, the PCA 1,2-dioxygenase PcaA1A2A3A4 and 2OHPC dioxygenase PcnD were also found to be involved in the subsequent degradation steps of PCN in S. histidinilytica DS-9. And the genes responsible for PCN catabolism are highly conserved in some strains of Sphingomonas. These results deepen our understanding of the PCN degradation mechanism.
Collapse
|
11
|
Cheng M, Chen D, Parales RE, Jiang J. Oxygenases as Powerful Weapons in the Microbial Degradation of Pesticides. Annu Rev Microbiol 2022; 76:325-348. [PMID: 35650666 DOI: 10.1146/annurev-micro-041320-091758] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oxygenases, which catalyze the reductive activation of O2 and incorporation of oxygen atoms into substrates, are widely distributed in aerobes. They function by switching the redox states of essential cofactors that include flavin, heme iron, Rieske non-heme iron, and Fe(II)/α-ketoglutarate. This review summarizes the catalytic features of flavin-dependent monooxygenases, heme iron-dependent cytochrome P450 monooxygenases, Rieske non-heme iron-dependent oxygenases, Fe(II)/α-ketoglutarate-dependent dioxygenases, and ring-cleavage dioxygenases, which are commonly involved in pesticide degradation. Heteroatom release (hydroxylation-coupled hetero group release), aromatic/heterocyclic ring hydroxylation to form ring-cleavage substrates, and ring cleavage are the main chemical fates of pesticides catalyzed by these oxygenases. The diversity of oxygenases, specificities for electron transport components, and potential applications of oxygenases are also discussed. This article summarizes our current understanding of the catalytic mechanisms of oxygenases and a framework for distinguishing the roles of oxygenases in pesticide degradation. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Minggen Cheng
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs and Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China;
| | - Dian Chen
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California, USA
| | - Jiandong Jiang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs and Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China;
| |
Collapse
|
12
|
Jiang Z, Qu L, Song G, Liu J, Zhong G. The Potential Binding Interaction and Hydrolytic Mechanism of Carbaryl with the Novel Esterase PchA in Pseudomonas sp. PS21. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2136-2145. [PMID: 35147028 DOI: 10.1021/acs.jafc.1c06465] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microbial bioremediation is a very potent and eco-friendly approach to alleviate pesticide pollution in agricultural ecosystems, and hydrolase is an effective element for contaminant degradation. In the present study, a novel Mn2+-dependent esterase, PchA, that efficiently hydrolyzes carbamate pesticides with aromatic structures was identified from Pseudomonas sp. PS21. The hydrolytic activity was confirmed to be related closely to the core catalytic domain, which consists of six residues. The crucial residues indirectly stabilized the position of carbaryl via chelating Mn2+ according to the binding model clarified by molecular simulations, and the additional hydrophobic interactions between carbaryl with several hydrophobic residues also stabilized the binding conformation. The residue Glu398, by serving as the general base, might activate a water molecule and facilitate PchA catalysis. This work offers valuable insights into the binding interaction and hydrolytic mechanism of carbaryl with the hydrolase PchA and will be crucial to designing strategies leading to the protein variants that are capable of degrading related contaminants.
Collapse
Affiliation(s)
- Zhiyan Jiang
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Liwen Qu
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Gaopeng Song
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Jie Liu
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Guohua Zhong
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, P.R. China
| |
Collapse
|
13
|
Two LysR family transcriptional regulators, McbH and McbN, activate the operons responsible for the midstream and downstream pathways of carbaryl degradation in Pseudomonas sp. strain XWY-1, respectively. Appl Environ Microbiol 2021; 88:e0206021. [PMID: 34936841 DOI: 10.1128/aem.02060-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, a LysR family transcriptional regulator McbG that activates the mcbBCDEF gene cluster involved in the upstream pathway (from carbaryl to salicylate) of carbaryl degradation in Pseudomonas sp. strain XWY-1 has been identified by us (Appl. Environ. Microbiol. 2021, 87(9): e02970-20.). In this study, we identified McbH and McbN, which activate mcbIJKLM cluster (responsible for the midstream pathway, from salicylate to gentisate) and mcbOPQ cluster (responsible for the downstream pathway, from gentisate to pyruvate and fumarate), respectively. They both belong to the LysR family of transcriptional regulators. Gene disruption and complementation study reveal that McbH is essential for transcription of the mcbIJKLM cluster in response to salicylate and McbN is indispensable for the transcription of the mcbOPQ cluster in response to gentisate. The results of electrophoretic mobility shift assay (EMSA) and DNase I footprinting showed that McbH binds to the 52-bp motif in the mcbIJKLM promoter area and McbN binds to the 58-bp motif in the mcbOPQ promoter area. The key sequence of McbH binding to mcbIJKLM promoter is a 13-bp motif that conforms to the typical characteristics of LysR family. However, the 12-bp motif that is different from the typical characteristics of the LysR family regulator binding site sequence is identified as the key sequence for McbN to bind to the mcbOPQ promoter. This study reveals the regulatory mechanism for the midstream and downstream pathway of carbaryl degradation in strain XWY-1 and further enriches the members of the LysR transcription regulator family. IMPORTANCE: The enzyme-encoding genes involved in the complete degradation pathway of carbaryl in Pseudomonas sp. strain XWY-1 include mcbABCDEF, mcbIJKLM and mcbOPQ. Previous studies demonstrated that the mcbA gene responsible for hydrolysis of carbaryl to 1-naphthol is constitutively expressed and the transcription of mcbBCDEF was regulated by McbG. However, the transcription regulation mechanisms of mcbIJKLM and mcbOPQ have not been investigated yet. In this study, we identified two LysR-type transcriptional regulators, McbH and McbN, which activate the mcbIJKLM cluster responsible for the degradation of salicylate to gentisate and mcbOPQ cluster responsible for the degradation of gentisate to pyruvate and fumarate, respectively. The 13-bp motif is critical for McbH to bind to the promoter of mcbIJKLM, and 12-bp motif different from the typical characteristics of the LTTR binding sequence affects the binding of McbN to promoter. These findings help to expand the understanding of the regulatory mechanism of microbial degradation of carbaryl.
Collapse
|
14
|
Mishra S, Pang S, Zhang W, Lin Z, Bhatt P, Chen S. Insights into the microbial degradation and biochemical mechanisms of carbamates. CHEMOSPHERE 2021; 279:130500. [PMID: 33892453 DOI: 10.1016/j.chemosphere.2021.130500] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/01/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Carbamate compounds are commonly applied in agricultural sectors as alternative options to the recalcitrant organochlorine pesticides due to their easier breakdown and less persistent nature. However, the large-scale use of carbamates also leads to toxic environmental residues, causing severe toxicity in various living systems. The toxic effects of carbamates are due to their inhibitor activity against the acetylchlolinesterase enzyme. This enzyme is crucial for neurotransmission signaling in living beings. Hence, from the environmental point of view, the elimination of carbamates is a worldwide concern and priority. Microbial technology can be deliberated as a potential tool that can work efficiently and as an ecofriendly option for the dissipation of carbamate insecticides from contaminated environments by improving biodegradation processes via metabolic activities of microorganisms. A variety of bacterial and fungal species have been isolated and characterized and are capable of degrading a broad range of carbamates in soil and water environments. In addition, microbial carbamate hydrolase genes (mcd, cehA, cahA, cfdJ, and mcbA) were strongly implicated in the evolution of new metabolic functions and carbamate hydrolase enzymes. However, the accurate localization and appropriate functions of carbamate hydrolase enzymes/genes are very limited. To explore the information on the degradation routes of carbamates and promote the application of biodegradation, a study of molecular techniques is required to unlock insights regarding the degradation specific genes and enzymes. Hence, this review discusses the deep understanding of carbamate degradation mechanisms with microbial strains, metabolic pathways, molecular mechanisms, and their genetic basis in degradation.
Collapse
Affiliation(s)
- Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
15
|
Ke Z, Zhu Q, Jiang W, Zhou Y, Zhang M, Jiang M, Hong Q. Heterologous expression and exploration of the enzymatic properties of the carbaryl hydrolase CarH from a newly isolated carbaryl-degrading strain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112666. [PMID: 34416635 DOI: 10.1016/j.ecoenv.2021.112666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Carbaryl is the representative of carbamate insecticide. As an acetylcholinesterase inhibitor, it poses potential threat to humans and other non-target organisms. Agrobacterium sp. XWY-2, which could grow with carbaryl as the sole carbon source, was isolated and characterized. The carH gene, encoding a carbaryl hydrolase, was cloned from strain XWY-2 and expressed in Escherichia coli BL21 (DE3). CarH was able to hydrolyze carbamate pesticides including carbaryl, carbofuran, isoprocarb, propoxur and fenobucarb efficiently, while it hydrolyzed oxamyl and aldicarb poorly. The optimal pH of CarH was 8.0 and the optimal temperature was 30 ℃. The apparent Km and kcat values of CarH for carbaryl were 38.01 ± 2.81 μM and 0.33 ± 0.01 s-1, respectively. The point mutation experiment demonstrated that His341, His343, His346, His416 and D437 are the key sites for CarH to hydrolyze carbaryl.
Collapse
Affiliation(s)
- Zhijian Ke
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Qian Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wankui Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yidong Zhou
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Mingliang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Mingli Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
16
|
Phale PS, Mohapatra B, Malhotra H, Shah BA. Eco-physiological portrait of a novel Pseudomonas sp. CSV86: an ideal host/candidate for metabolic engineering and bioremediation. Environ Microbiol 2021; 24:2797-2816. [PMID: 34347343 DOI: 10.1111/1462-2920.15694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022]
Abstract
Pseudomonas sp. CSV86, an Indian soil isolate, degrades wide range of aromatic compounds like naphthalene, benzoate and phenylpropanoids, amongst others. Isolate displays the unique and novel property of preferential utilization of aromatics over glucose and co-metabolizes them with organic acids. Interestingly, as compared to other Pseudomonads, strain CSV86 harbours only high-affinity glucokinase pathway (and absence of low-affinity oxidative route) for glucose metabolism. Such lack of gluconate loop might be responsible for the novel phenotype of preferential utilization of aromatics. The genome analysis and comparative functional mining indicated a large genome (6.79 Mb) with significant enrichment of regulators, transporters as well as presence of various secondary metabolite production clusters, suggesting its eco-physiological and metabolic versatility. Strain harbours various integrative conjugative elements (ICEs) and genomic islands, probably acquired through horizontal gene transfer events, leading to genome mosaicity and plasticity. Naphthalene degradation genes are arranged as regulonic clusters and found to be part of ICECSV86nah . Various eco-physiological properties and absence of major pathogenicity and virulence factors (risk group-1) in CSV86 suggest it to be an ideal candidate for bioremediation. Further, strain can serve as an ideal chassis for metabolic engineering to degrade various xenobiotics preferentially over simple carbon sources for efficient remediation.
Collapse
Affiliation(s)
- Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, Maharashtra, 400076, India
| | - Balaram Mohapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, Maharashtra, 400076, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, Maharashtra, 400076, India
| | - Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, Maharashtra, 400076, India
| |
Collapse
|
17
|
Malhotra H, Kaur S, Phale PS. Conserved Metabolic and Evolutionary Themes in Microbial Degradation of Carbamate Pesticides. Front Microbiol 2021; 12:648868. [PMID: 34305823 PMCID: PMC8292978 DOI: 10.3389/fmicb.2021.648868] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Carbamate pesticides are widely used as insecticides, nematicides, acaricides, herbicides and fungicides in the agriculture, food and public health sector. However, only a minor fraction of the applied quantity reaches the target organisms. The majority of it persists in the environment, impacting the non-target biota, leading to ecological disturbance. The toxicity of these compounds to biota is mediated through cholinergic and non-cholinergic routes, thereby making their clean-up cardinal. Microbes, specifically bacteria, have adapted to the presence of these compounds by evolving degradation pathways and thus play a major role in their removal from the biosphere. Over the past few decades, various genetic, metabolic and biochemical analyses exploring carbamate degradation in bacteria have revealed certain conserved themes in metabolic pathways like the enzymatic hydrolysis of the carbamate ester or amide linkage, funnelling of aryl carbamates into respective dihydroxy aromatic intermediates, C1 metabolism and nitrogen assimilation. Further, genomic and functional analyses have provided insights on mechanisms like horizontal gene transfer and enzyme promiscuity, which drive the evolution of degradation phenotype. Compartmentalisation of metabolic pathway enzymes serves as an additional strategy that further aids in optimising the degradation efficiency. This review highlights and discusses the conclusions drawn from various analyses over the past few decades; and provides a comprehensive view of the environmental fate, toxicity, metabolic routes, related genes and enzymes as well as evolutionary mechanisms associated with the degradation of widely employed carbamate pesticides. Additionally, various strategies like application of consortia for efficient degradation, metabolic engineering and adaptive laboratory evolution, which aid in improvising remediation efficiency and overcoming the challenges associated with in situ bioremediation are discussed.
Collapse
Affiliation(s)
| | | | - Prashant S. Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
18
|
Degradation studies of pendimethalin by indigenous soil bacterium Pseudomonas strain PD1 using spectrophotometric scanning and FTIR. Arch Microbiol 2021; 203:4499-4507. [PMID: 34146112 DOI: 10.1007/s00203-021-02439-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/27/2021] [Accepted: 06/11/2021] [Indexed: 11/26/2022]
Abstract
In this study pendimethalin degrading indigenous soil bacterium was isolated from rice field (supplemented with pendimethalin) and identified as, Pseudomonas strain PD1 on the basis of 16S rRNA phylogenetic analysis. Biodegradation of pendimethalin by this strain was evaluated by spectrophotometric scanning and FTIR analysis of degraded compounds in minimal salt media. Decrease in concentration of pendimethalin at λmax (430 nm) under spectrophotometric scanning is a measurement of time taken by bacterium strain PD1 to degrade pendimethalin. Degraded products were further analyzed by comparing stretching and bending pattern of chemical groups attached to compounds using FTIR spectroscopy. FTIR profile represented disappearance of nitrate group in degraded product by bacterium strain PD1 in minimal salt medium. Molecular docking of pendimethalin on nitro-reductase was done to suggest first enzyme of pathway used by bacterium strain PD1 to degrade pendimethalin. Analysis on degradation by strain PD1 shows that newly isolated strain PD1 can degrade 77.05% of pendimethalin at 50 mgL-1 concentration in 30 h incubation under room temperature. Thus, the study here shed a light on degradation potential of Pseudomonas.
Collapse
|
19
|
Zhou Y, Gao S, Zhang M, Jiang W, Ke Z, Qiu J, Xu J, Hong Q. Unveiling the CoA mediated salicylate catabolic mechanism in Rhizobium sp. X9. Mol Microbiol 2021; 116:783-793. [PMID: 34121246 DOI: 10.1111/mmi.14771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 11/28/2022]
Abstract
Salicylate is a typical aromatic compound widely distributed in nature. Microbial degradation of salicylate has been well studied and salicylate hydroxylases play essential roles in linking the peripheral and ring-cleavage catabolic pathways. The direct hydroxylation of salicylate catalyzed by salicylate-1-hydroxylase or salicylate-5-hydroxylase has been well studied. However, the CoA mediated salicylate 5-hydroxylation pathway has not been characterized in detail. Here, we elucidate the molecular mechanism of the reaction in the conversion of salicylate to gentisate in the carbaryl-degrading strain Rhizobium sp. X9. Three enzymes (salicylyl-CoA ligase CehG, salicylyl-CoA hydroxylase CehH and gentisyl-CoA thioesterase CehI) catalyzed the conversion of salicylate to gentisate via a route, including CoA thioester formation, hydroxylation and thioester hydrolysis. Further analysis indicated that genes cehGHI are also distributed in other bacteria from terrestrial environment and marine sediments. These genomic evidences highlight the role of this salicylate degradation pathway in the carbon cycle of soil organic compounds and marine sediments. Our findings of this three-step strategy enhanced the current understanding of CoA mediated degradation of salicylate.
Collapse
Affiliation(s)
- Yidong Zhou
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Siyuan Gao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingliang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wankui Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhijian Ke
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
20
|
McbG, a LysR Family Transcriptional Regulator, Activates the mcbBCDEF Gene Cluster Involved in the Upstream Pathway of Carbaryl Degradation in Pseudomonas sp. Strain XWY-1. Appl Environ Microbiol 2021; 87:AEM.02970-20. [PMID: 33579686 DOI: 10.1128/aem.02970-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/06/2021] [Indexed: 11/20/2022] Open
Abstract
Although enzyme-encoding genes involved in the degradation of carbaryl have been reported in Pseudomonas sp. strain XWY-1, no regulator has been identified yet. In the mcbABCDEF cluster responsible for the upstream pathway of carbaryl degradation (from carbaryl to salicylate), the mcbA gene is constitutively expressed, while mcbBCDEF is induced by 1-naphthol, the hydrolysis product of carbaryl by McbA. In this study, we identified McbG, a transcriptional activator of the mcbBCDEF cluster. McbG is a 315-amino-acid protein with a molecular mass of 35.7 kDa. It belongs to the LysR family of transcriptional regulators and shows 28.48% identity to the pentachlorophenol (PCP) degradation transcriptional activation protein PcpR from Sphingobium chlorophenolicum ATCC 39723. Gene disruption and complementation studies reveal that mcbG is essential for transcription of the mcbBCDEF cluster in response to 1-naphthol in strain XWY-1. The results of the electrophoretic mobility shift assay (EMSA) and DNase I footprinting show that McbG binds to the 25-bp motif in the mcbBCDEF promoter area. The palindromic sequence TATCGATA within the motif is essential for McbG binding. The binding site is located between the -10 box and the transcription start site. In addition, McbG can repress its own transcription. The EMSA results show that a 25-bp motif in the mcbG promoter area plays an important role in McbG binding to the promoter of mcbG This study reveals the regulatory mechanism for the upstream pathway of carbaryl degradation in strain XWY-1. The identification of McbG increases the variety of regulatory models within the LysR family of transcriptional regulators.IMPORTANCE Pseudomonas sp. strain XWY-1 is a carbaryl-degrading strain that utilizes carbaryl as the sole carbon and energy source for growth. The functional genes involved in the degradation of carbaryl have already been reported. However, the regulatory mechanism has not been investigated yet. Previous studies demonstrated that the mcbA gene, responsible for hydrolysis of carbaryl to 1-naphthol, is constitutively expressed in strain XWY-1. In this study, we identified a LysR-type transcriptional regulator, McbG, which activates the mcbBCDEF gene cluster responsible for the degradation of 1-naphthol to salicylate and represses its own transcription. The DNA binding site of McbG in the mcbBCDEF promoter area contains a palindromic sequence, which affects the binding of McbG to DNA. These findings enhance our understanding of the mechanism of microbial degradation of carbaryl.
Collapse
|
21
|
Mohapatra B, Phale PS. Microbial Degradation of Naphthalene and Substituted Naphthalenes: Metabolic Diversity and Genomic Insight for Bioremediation. Front Bioeng Biotechnol 2021; 9:602445. [PMID: 33791281 PMCID: PMC8006333 DOI: 10.3389/fbioe.2021.602445] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/09/2021] [Indexed: 12/21/2022] Open
Abstract
Low molecular weight polycyclic aromatic hydrocarbons (PAHs) like naphthalene and substituted naphthalenes (methylnaphthalene, naphthoic acids, 1-naphthyl N-methylcarbamate, etc.) are used in various industries and exhibit genotoxic, mutagenic, and/or carcinogenic effects on living organisms. These synthetic organic compounds (SOCs) or xenobiotics are considered as priority pollutants that pose a critical environmental and public health concern worldwide. The extent of anthropogenic activities like emissions from coal gasification, petroleum refining, motor vehicle exhaust, and agricultural applications determine the concentration, fate, and transport of these ubiquitous and recalcitrant compounds. Besides physicochemical methods for cleanup/removal, a green and eco-friendly technology like bioremediation, using microbes with the ability to degrade SOCs completely or convert to non-toxic by-products, has been a safe, cost-effective, and promising alternative. Various bacterial species from soil flora belonging to Proteobacteria (Pseudomonas, Pseudoxanthomonas, Comamonas, Burkholderia, and Novosphingobium), Firmicutes (Bacillus and Paenibacillus), and Actinobacteria (Rhodococcus and Arthrobacter) displayed the ability to degrade various SOCs. Metabolic studies, genomic and metagenomics analyses have aided our understanding of the catabolic complexity and diversity present in these simple life forms which can be further applied for efficient biodegradation. The prolonged persistence of PAHs has led to the evolution of new degradative phenotypes through horizontal gene transfer using genetic elements like plasmids, transposons, phages, genomic islands, and integrative conjugative elements. Systems biology and genetic engineering of either specific isolates or mock community (consortia) might achieve complete, rapid, and efficient bioremediation of these PAHs through synergistic actions. In this review, we highlight various metabolic routes and diversity, genetic makeup and diversity, and cellular responses/adaptations by naphthalene and substituted naphthalene-degrading bacteria. This will provide insights into the ecological aspects of field application and strain optimization for efficient bioremediation.
Collapse
Affiliation(s)
- Balaram Mohapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
22
|
Carbamate C-N Hydrolase Gene ameH Responsible for the Detoxification Step of Methomyl Degradation in Aminobacter aminovorans Strain MDW-2. Appl Environ Microbiol 2020; 87:AEM.02005-20. [PMID: 33097501 DOI: 10.1128/aem.02005-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022] Open
Abstract
Methomyl {bis[1-methylthioacetaldehyde-O-(N-methylcarbamoyl)oximino]sulfide} is a highly toxic oxime carbamate insecticide. Several methomyl-degrading microorganisms have been reported so far, but the role of specific enzymes and genes in this process is still unexplored. In this study, a protein annotated as a carbamate C-N hydrolase was identified in the methomyl-degrading strain Aminobacter aminovorans MDW-2, and the encoding gene was termed ameH A comparative analysis between the mass fingerprints of AmeH and deduced proteins of the strain MDW-2 genome revealed AmeH to be a key enzyme of the detoxification step of methomyl degradation. The results also demonstrated that AmeH was a functional homodimer with a subunit molecular mass of approximately 34 kDa and shared the highest identity (27%) with the putative formamidase from Schizosaccharomyces pombe ATCC 24843. AmeH displayed maximal enzymatic activity at 50°C and pH 8.5. Km and k cat of AmeH for methomyl were 87.5 μM and 345.2 s-1, respectively, and catalytic efficiency (k cat/Km ) was 3.9 μM-1 s-1 Phylogenetic analysis revealed AmeH to be a member of the FmdA_AmdA superfamily. Additionally, five key amino acid residues (162, 164, 191, 193, and 207) of AmeH were identified by amino acid variations.IMPORTANCE Based on the structural characteristic, carbamate insecticides can be classified into oxime carbamates (methomyl, aldicarb, oxamyl, etc.) and N-methyl carbamates (carbaryl, carbofuran, isoprocarb, etc.). So far, research on the degradation of carbamate pesticides has mainly focused on the detoxification step and hydrolysis of their carbamate bond. Several genes, such as cehA, mcbA, cahA, and mcd, and their encoding enzymes have also been reported to be involved in the detoxification step. However, none of these enzymes can hydrolyze methomyl. In this study, a carbamate C-N hydrolase gene, ameH, responsible for the detoxification step of methomyl in strain MDW-2 was cloned and the key amino acid sites of AmeH were investigated. These findings provide insight into the microbial degradation mechanism of methomyl.
Collapse
|
23
|
Zhou Y, Ke Z, Ye H, Hong M, Xu Y, Zhang M, Jiang W, Hong Q. Hydrolase CehA and a Novel Two-Component 1-Naphthol Hydroxylase CehC1C2 are Responsible for the Two Initial Steps of Carbaryl Degradation in Rhizobium sp. X9. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14739-14747. [PMID: 33264024 DOI: 10.1021/acs.jafc.0c03845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Carbaryl is a widely used carbamate pesticide in agriculture. The strain Rhizobium sp. X9 possesses the typical carbaryl degradation pathway in which carbaryl is mineralized via 1-naphthol, salicylate, and gentisate. In this study, we cloned a carbaryl hydrolase gene cehA and a novel two-component 1-naphthol hydroxylase gene cehC1C2. CehA mediates carbaryl hydrolysis to 1-naphthol and CehC1, an FMNH2 or FADH2-dependent monooxygenase belonging to the HpaB superfamily, and hydroxylates 1-naphthol in the presence of reduced nicotinamide-adenine dinucleotide (FMN)/flavin adenine dinucleotide (FAD), and the reductase CehC2. CehC1 has the highest amino acid similarity (58%) with the oxygenase component of a two-component 4-nitrophenol 2-monooxygenase, while CehC2 has the highest amino acid similarity (46%) with its reductase component. CehC1C2 could utilize both FAD and FMN as the cofactor during the hydroxylation, although higher catalytic activity was observed with FAD as the cofactor. The optimal molar ratio of CehC1 to CehC2 was 2:1. The Km and Kcat/Km values of CehC1 for 1-naphthol were 74.71 ± 16.07 μM and (8.29 ± 2.44) × 10-4 s-1·μM-1, respectively. Moreover, the enzyme activities and substrate spectrum between CehC1C2 and previously reported 1-naphthol hydroxylase McbC were compared. The results suggested that McbC had a higher 1-naphthol hydroxylation activity, while CehC1C2 had a broader substrate spectrum.
Collapse
Affiliation(s)
- Yidong Zhou
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhijian Ke
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Hangting Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Mengting Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yifei Xu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Mingliang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Wankui Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
24
|
Hu K, Wang X, Zhu J, Liu A, Ao X, He L, Chen S, Zhou K, Yang Y, Zou L, Liu S. Characterization of carbaryl-degrading strain Bacillus licheniformis B-1 and its hydrolase identification. Biodegradation 2020; 31:139-152. [PMID: 32306137 DOI: 10.1007/s10532-020-09899-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/08/2020] [Indexed: 10/24/2022]
Abstract
Pesticides introduced inadvertently or deliberately into environment by anthropogenic activity have caused growing global public concern, therefore the search of approaches for elimination of such xenobiotics should be encouraged. A cypermethrin-degrading bacterial strain Bacillus licheniformis B-1 was found to efficiently degrade carbaryl in LB medium at concentrations of 50-300 mg L-1 within 48 h, during which temperature and pH played important roles as reflected by increase in pollutant depletion. A stimulatory effect of Fe3+ and Mn2+ on microbial growth was observed, whereas Cu2+ caused inhibition of degradation. Results showed that 1-naphthol was a major transformation product of carbaryl which was further metabolised. An approximately 29 kDa carbaryl-degrading enzyme was purified from B-1 with 15.93-fold purification and an overall yield of 6.02% was achieved using ammonium sulphate precipitation, DEAE-Sepharose CL-6B anion-exchange chromatography and Sephadex G-100 gel filtration. The enzyme was identified through nano reversed-phase liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry as a phosphodiesterase (PDE). This is the first report on the characterization of carbaryl-degrading by Bacillus spp. and the role of a PDE in carbaryl-detoxifying. Also, strain B-1 showed versatile in carbosulfan, isoprocarb and chlorpyrifos degradation, demonstrating as ideal candidate for environment bioremediation.
Collapse
Affiliation(s)
- Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China.,Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Xingjie Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Jiawen Zhu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China.,Institute of Food Processing and Safety, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Kang Zhou
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China. .,Institute of Food Processing and Safety, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China.
| |
Collapse
|
25
|
Phale PS, Malhotra H, Shah BA. Degradation strategies and associated regulatory mechanisms/features for aromatic compound metabolism in bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2020; 112:1-65. [PMID: 32762865 DOI: 10.1016/bs.aambs.2020.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As a result of anthropogenic activity, large number of recalcitrant aromatic compounds have been released into the environment. Consequently, microbial communities have adapted and evolved to utilize these compounds as sole carbon source, under both aerobic and anaerobic conditions. The constitutive expression of enzymes necessary for metabolism imposes a heavy energy load on the microbe which is overcome by arrangement of degradative genes as operons which are induced by specific inducers. The segmentation of pathways into upper, middle and/or lower operons has allowed microbes to funnel multiple compounds into common key aromatic intermediates which are further metabolized through central carbon pathway. Various proteins belonging to diverse families have evolved to regulate the transcription of individual operons participating in aromatic catabolism. These proteins, complemented with global regulatory mechanisms, carry out the regulation of aromatic compound metabolic pathways in a concerted manner. Additionally, characteristics like chemotaxis, preferential utilization, pathway compartmentalization and biosurfactant production confer an advantage to the microbe, thus making bioremediation of the aromatic pollutants more efficient and effective.
Collapse
Affiliation(s)
- Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India.
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
26
|
Jiang W, Gao Q, Zhang L, Wang H, Zhang M, Liu X, Zhou Y, Ke Z, Wu C, Qiu J, Hong Q. Identification of the key amino acid sites of the carbofuran hydrolase CehA from a newly isolated carbofuran-degrading strain Sphingbium sp. CFD-1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109938. [PMID: 31759739 DOI: 10.1016/j.ecoenv.2019.109938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
A novel carbofuran-degrading strain CFD-1 was isolated and preliminarily identified as Sphingbium sp. This strain was able to utilize carbofuran as the sole carbon source for growth. The carbofuran hydrolase gene cehA was cloned from strain CFD-1 and expressed in Escherichia coli. CehA could hydrolyze carbamate pesticides including carbofuran and carbaryl efficiently, while it showed poor hydrolysis ability against isoprocarb, propoxur, oxamyl and aldicarb. CehA displayed maximal enzymatic activity at 40 °C and pH 7.0. The apparent Km and Kcat values of CehA for carbofuran were 133.22 ± 5.70 μM and 9.48 ± 0.89 s-1, respectively. The site-directed mutation experiment showed that His313, His315, His453 and His495 played important roles in the hydrolysis of carbofuran by CehA. Furthermore, the sequence of cehA is highly conserved among different carbofuran-degrading strains, and there are mobile elements around cehA, indicating that it may be transferred horizontally between different strains.
Collapse
Affiliation(s)
- Wankui Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Qinqin Gao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Lu Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Hui Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Mingliang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Xiaoan Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yidong Zhou
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Zhijian Ke
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Chenglong Wu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
27
|
Phale PS, Shah BA, Malhotra H. Variability in Assembly of Degradation Operons for Naphthalene and its derivative, Carbaryl, Suggests Mobilization through Horizontal Gene Transfer. Genes (Basel) 2019; 10:genes10080569. [PMID: 31357661 PMCID: PMC6723655 DOI: 10.3390/genes10080569] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 01/14/2023] Open
Abstract
In the biosphere, the largest biological laboratory, increased anthropogenic activities have led microbes to evolve and adapt to the changes occurring in the environment. Compounds, specifically xenobiotics, released due to such activities persist in nature and undergo bio-magnification in the food web. Some of these compounds act as potent endocrine disrupters, mutagens or carcinogens, and therefore their removal from the environment is essential. Due to their persistence, microbial communities have evolved to metabolize them partially or completely. Diverse biochemical pathways have evolved or been assembled by exchange of genetic material (horizontal gene transfer) through various mobile genetic elements like conjugative and non-conjugative plasmids, transposons, phages and prophages, genomic islands and integrative conjugative elements. These elements provide an unlimited opportunity for genetic material to be exchanged across various genera, thus accelerating the evolution of a new xenobiotic degrading phenotype. In this article, we illustrate examples of the assembly of metabolic pathways involved in the degradation of naphthalene and its derivative, Carbaryl, which are speculated to have evolved or adapted through the above-mentioned processes.
Collapse
Affiliation(s)
- Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai-400 076, India.
| | - Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai-400 076, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai-400 076, India
| |
Collapse
|
28
|
Kaur P, Balomajumder C. Simultaneous biodegradation of mixture of carbamates by newly isolated Ascochyta sp. CBS 237.37. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:590-599. [PMID: 30476821 DOI: 10.1016/j.ecoenv.2018.11.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
In this study, a mixture of carbamates (CRBs) degrading Carb.1b strain was isolated from soil. Based on the morphology and 18S rRNA sequence analysis, the strain was identified as an Ascochyta sp. CBS 237.37 with accession number MG786925. The isolate was employed in two growth mediums (added carbon and carbon-free) enriched with varied concentrations of CRBs ranging from 25 to 85 mg L-1 to assess its degradation efficacy. As determined by the Response Surface Methodology (RSM), optimum parameters for the degradation were: pH value of 7.5 and temperature of 28 °C. The degradation was inhibited at higher concentrations and was found to be 91.2%/94.8%, 67.25%/71.75%, 55.81%/59.81%, 46.85%/49.57% and 36%/40.80% (in carbon-free/added carbon) after 20 d. The removal of the higher concentration CRBs was comparatively slower, and the obtained degradation rate constant (Kavg) 0.03412 d-1. Added carbon and carbon-free medium removed over 86.7%/90.15% of CRBs (85 mgL-1) with the half-life (t1/2) of 26 d and R2 ranging from 0.982 to 0.999; indicating the high tolerance of carb.1b strain towards CRBs. Residual analysis of CRBs biodegradation was performed using GC/MS analysis. This is the first report of degradation of a mixture of CRBs by Ascochyta sp. CBS 237.37. The results of this study can possibly impact the development strategies of bioremediation for the elimination of CRBs.
Collapse
Affiliation(s)
- Parminder Kaur
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Chandrajit Balomajumder
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
29
|
Zhu S, Wang H, Jiang W, Yang Z, Zhou Y, He J, Qiu J, Hong Q. Genome Analysis of Carbaryl-Degrading Strain Pseudomonas putida XWY-1. Curr Microbiol 2019; 76:927-929. [PMID: 30710152 DOI: 10.1007/s00284-019-01637-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
Abstract
Carbaryl was a widely used pesticide in the agriculture industry. The toxicity against non-target organisms and the environmental pollution it caused became the focus of public concern. However, the microbial mechanism of carbaryl degradation was not fully investigated. In the study, we reported the complete genome of the carbaryl-degrading Pseudomonas putida strain XWY-1, which consists of a chromosome (5.9 Mbp) and a plasmid (0.4 Mbp). The carbaryl degradation genes are located on the plasmid. The study on the genome will facilitate to further elucidate the carbaryl degradation and advance the potential biotechnological applications of P. putida strain XWY-1.
Collapse
Affiliation(s)
- Shijun Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Hui Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Wankui Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Zhangong Yang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Yidong Zhou
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.,Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| |
Collapse
|
30
|
Gong T, Xu X, Dang Y, Kong A, Wu Y, Liang P, Wang S, Yu H, Xu P, Yang C. An engineered Pseudomonas putida can simultaneously degrade organophosphates, pyrethroids and carbamates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:1258-1265. [PMID: 30045547 DOI: 10.1016/j.scitotenv.2018.02.143] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 05/21/2023]
Abstract
Agricultural soils are often polluted with a variety of pesticides. Unfortunately, natural microorganisms lack the capacity to simultaneously degrade different types of pesticides. Currently, synthetic biology provides powerful approaches to create versatile degraders. In this work, a biosafety strain Pseudomonas putida KT2440 was engineered for simultaneous degradation of organophosphates, pyrethroids, and carbamates, enhanced oxygen-sequestering capability, and real-time monitoring by targeted insertion of four pesticide-degrading genes, vgb, and gfp into the chromosome using a scarless genome-editing method. The resulting recombinant strain, designated as P. putida KTUe, could completely degrade 50mg/L methyl parathion, chlorpyrifos, fenpropathrin, cypermethrin, carbofuran and carbaryl within 30h when incubated in M9 minimal medium supplemented with 20g/L glucose. In soil remediation studies, all the tested six pesticides (50mg/kg soil each) were completely removed in soils inoculated with P. putida KTUe within 15days. Moreover, Vitreoscilla hemoglobin (VHb)-expressing P. putida KTUe grew faster than P. putida KTUd without VHb expression under oxygen-limited conditions, suggesting that VHb may enhance the capability of this recombinant strain to sequester oxygen. Furthermore, the green fluorescence was observed on the P. putida KTUe cells, suggesting that this green fluorescent protein (GFP)-marked strain may be tracked by fluorescence during bioremediation. Therefore, this recombinant strain may serve as a promising candidate for in situ bioremediation of soil contaminated with multiple pesticides. This work not only underscores the value of P. putida KT2440 as an ideal host for bioremediation but also highlights the power of synthetic biology for expanding the degradation capability of natural degraders.
Collapse
Affiliation(s)
- Ting Gong
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xiaoqing Xu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yulei Dang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Annie Kong
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yunbo Wu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Peixin Liang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Shufang Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Huilei Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
31
|
Noda-Garcia L, Liebermeister W, Tawfik DS. Metabolite–Enzyme Coevolution: From Single Enzymes to Metabolic Pathways and Networks. Annu Rev Biochem 2018; 87:187-216. [DOI: 10.1146/annurev-biochem-062917-012023] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
How individual enzymes evolved is relatively well understood. However, individual enzymes rarely confer a physiological advantage on their own. Judging by its current state, the emergence of metabolism seemingly demanded the simultaneous emergence of many enzymes. Indeed, how multicomponent interlocked systems, like metabolic pathways, evolved is largely an open question. This complexity can be unlocked if we assume that survival of the fittest applies not only to genes and enzymes but also to the metabolites they produce. This review develops our current knowledge of enzyme evolution into a wider hypothesis of pathway and network evolution. We describe the current models for pathway evolution and offer an integrative metabolite–enzyme coevolution hypothesis. Our hypothesis addresses the origins of new metabolites and of new enzymes and the order of their recruitment. We aim to not only survey established knowledge but also present open questions and potential ways of addressing them.
Collapse
Affiliation(s)
- Lianet Noda-Garcia
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel;,
| | - Wolfram Liebermeister
- INRA, Unité MaIAGE, 78352 Jouy en Josas, France
- Institute of Biochemistry, Charité Universitätsmedizin, Berlin, 10117 Berlin, Germany
| | - Dan S. Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel;,
| |
Collapse
|
32
|
Papadopoulou ES, Perruchon C, Vasileiadis S, Rousidou C, Tanou G, Samiotaki M, Molassiotis A, Karpouzas DG. Metabolic and Evolutionary Insights in the Transformation of Diphenylamine by a Pseudomonas putida Strain Unravelled by Genomic, Proteomic, and Transcription Analysis. Front Microbiol 2018; 9:676. [PMID: 29681895 PMCID: PMC5897751 DOI: 10.3389/fmicb.2018.00676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/22/2018] [Indexed: 11/19/2022] Open
Abstract
Diphenylamine (DPA) is a common soil and water contaminant. A Pseudomonas putida strain, recently isolated from a wastewater disposal site, was efficient in degrading DPA. Thorough knowledge of the metabolic capacity, genetic stability and physiology of bacteria during biodegradation of pollutants is essential for their future industrial exploitation. We employed genomic, proteomic, transcription analyses and plasmid curing to (i) identify the genetic network of P. putida driving the microbial transformation of DPA and explore its evolution and origin and (ii) investigate the physiological response of bacterial cells during degradation of DPA. Genomic analysis identified (i) two operons encoding a biphenyl (bph) and an aniline (tdn) dioxygenase, both flanked by transposases and (ii) two operons and several scattered genes encoding the ortho-cleavage of catechol. Proteomics identified 11 putative catabolic proteins, all but BphA1 up-regulated in DPA- and aniline-growing cells, and showed that the bacterium mobilized cellular mechanisms to cope with oxidative stress, probably induced by DPA and its derivatives. Transcription analysis verified the role of the selected genes/operons in the metabolic pathway: DPA was initially transformed to aniline and catechol by a biphenyl dioxygenase (DPA-dioxygenase); aniline was then transformed to catechol which was further metabolized via the ortho-cleavage pathway. Plasmid curing of P. putida resulted in loss of the DPA and aniline dioxygenase genes and the corresponding degradation capacities. Overall our findings provide novel insights into the evolution of the DPA degradation pathway and suggests that the degradation capacity of P. putida was acquired through recruitment of the bph and tdn operons via horizontal gene transfer.
Collapse
Affiliation(s)
- Evangelia S Papadopoulou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| | - Chiara Perruchon
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| | - Sotirios Vasileiadis
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| | - Constantina Rousidou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| | - Georgia Tanou
- School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Martina Samiotaki
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | | | - Dimitrios G Karpouzas
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
33
|
Zhu S, Qiu J, Wang H, Wang X, Jin W, Zhang Y, Zhang C, Hu G, He J, Hong Q. Cloning and expression of the carbaryl hydrolase gene mcbA and the identification of a key amino acid necessary for carbaryl hydrolysis. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:1126-1135. [PMID: 30216972 DOI: 10.1016/j.jhazmat.2017.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/13/2017] [Accepted: 12/03/2017] [Indexed: 06/08/2023]
Abstract
Carbamate hydrolase is the initial and key enzyme for degradation of carbamate pesticides. In the present study, we report the isolation of a carbaryl-degrading strain Pseudomonas sp. XWY-1, the cloning of its carbaryl hydrolase gene (mcbA) and the characterization of McbA. Strain XWY-1 was able to utilize carbaryl as a sole carbon source and degrade it using 1-naphthol as an intermediate. Transposon mutagenesis identified a mutant of XWY-1M that was unable to hydrolyze carbaryl. The transposon-disrupted gene mcbA was cloned by self-formed adaptor PCR, then expressed in Escherichia coli BL21(DE3) and purified. McbA was able to hydrolyze carbamate pesticides including carbaryl, isoprocarb, fenobucarb, carbofuran efficiently, while it hydrolyzed aldicarb, and propoxur poorly. The optimal pH of McbA was 7.0 and the optimal temperature was 40°C. The apparent Km and kcat values of McbA for carbaryl were 77.67±12.31μM and 2.12±0.10s-1, respectively. Three amino acid residues (His467, His477 and His504) in the predicted polymerase/histidinol phosphatase-like domain were shown to be closely related to the activity of McbA, with His504 being the most important, as a replacement of His504 led to the complete loss of activity. This is the first study to identify key amino acids in McbA.
Collapse
Affiliation(s)
- Shijun Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Hui Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiang Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wen Jin
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yingkun Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Chenfei Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Gang Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
34
|
Compartmentalization of the Carbaryl Degradation Pathway: Molecular Characterization of Inducible Periplasmic Carbaryl Hydrolase from Pseudomonas spp. Appl Environ Microbiol 2018; 84:AEM.02115-17. [PMID: 29079626 DOI: 10.1128/aem.02115-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 10/24/2017] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas sp. strains C5pp and C7 degrade carbaryl as the sole carbon source. Carbaryl hydrolase (CH) catalyzes the hydrolysis of carbaryl to 1-naphthol and methylamine. Bioinformatic analysis of mcbA, encoding CH, in C5pp predicted it to have a transmembrane domain (Tmd) and a signal peptide (Sp). In these isolates, the activity of CH was found to be 4- to 6-fold higher in the periplasm than in the cytoplasm. The recombinant CH (rCH) showed 4-fold-higher activity in the periplasm of Escherichia coli The deletion of Tmd showed activity in the cytoplasmic fraction, while deletion of both Tmd and Sp (Tmd+Sp) resulted in expression of the inactive protein. Confocal microscopic analysis of E. coli expressing a (Tmd+Sp)-green fluorescent protein (GFP) fusion protein revealed the localization of GFP into the periplasm. Altogether, these results indicate that Tmd probably helps in anchoring of polypeptide to the inner membrane, while Sp assists folding and release of CH in the periplasm. The N-terminal sequence of the mature periplasmic CH confirms the absence of the Tmd+Sp region and confirms the signal peptidase cleavage site as Ala-Leu-Ala. CH purified from strains C5pp, C7, and rCHΔ(Tmd)a were found to be monomeric with molecular mass of ∼68 to 76 kDa and to catalyze hydrolysis of the ester bond with an apparent Km and Vmax in the range of 98 to 111 μM and 69 to 73 μmol · min-1 · mg-1, respectively. The presence of low-affinity CH in the periplasm and 1-naphthol-metabolizing enzymes in the cytoplasm of Pseudomonas spp. suggests the compartmentalization of the metabolic pathway as a strategy for efficient degradation of carbaryl at higher concentrations without cellular toxicity of 1-naphthol.IMPORTANCE Proteins in the periplasmic space of bacteria play an important role in various cellular processes, such as solute transport, nutrient binding, antibiotic resistance, substrate hydrolysis, and detoxification of xenobiotics. Carbaryl is one of the most widely used carbamate pesticides. Carbaryl hydrolase (CH), the first enzyme of the degradation pathway which converts carbaryl to 1-naphthol, was found to be localized in the periplasm of Pseudomonas spp. Predicted transmembrane domain and signal peptide sequences of Pseudomonas were found to be functional in Escherichia coli and to translocate CH and GFP into the periplasm. The localization of low-affinity CH into the periplasm indicates controlled formation of toxic and recalcitrant 1-naphthol, thus minimizing its accumulation and interaction with various cellular components and thereby reducing the cellular toxicity. This study highlights the significance of compartmentalization of metabolic pathway enzymes for efficient removal of toxic compounds.
Collapse
|
35
|
Yang C, Xu X, Liu Y, Jiang H, Wu Y, Xu P, Liu R. Simultaneous hydrolysis of carbaryl and chlorpyrifos by Stenotrophomonas sp. strain YC-1 with surface-displayed carbaryl hydrolase. Sci Rep 2017; 7:13391. [PMID: 29042673 PMCID: PMC5645314 DOI: 10.1038/s41598-017-13788-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 10/03/2017] [Indexed: 12/24/2022] Open
Abstract
Many sites are often co-contaminated with multiple pesticides. To date, there are no reports on simultaneous degradation of different classes of pesticides by a natural microorganism. In this work, we aim at constructing a live biocatalyst able to simultaneously hydrolyze carbaryl and chlorpyrifos. For this purpose, carbaryl hydrolase (CH) was displayed on the cell surface of a chlorpyrifos-degrading bacterium Stenotrophomonas sp. strain YC-1 using N- and C-terminal domain of ice nucleation protein (INPNC) from Pseudomonas syringae INA5 as an anchoring motif. The localization of INPNC-CH fusion protein in the outer membrane fraction was demonstrated by cell fractionation followed by Western blot analysis. Surface display of INPNC-CH was further confirmed by proteinase accessibility experiment and immunofluorescence microscope. CH was present in an active form on cell surface without causing any growth inhibition, suggesting that the INP-based display system is a useful tool for surface expression of macromolecular heterologous proteins on the bacterial cell surface. Because surface-displayed CH has free access to pesticides, this bacterium can be used as a whole-cell biocatalyst for efficient hydrolysis of pesticides.
Collapse
Affiliation(s)
- Chao Yang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaoqing Xu
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yanping Liu
- Department of Gynaecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Hong Jiang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yunbo Wu
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruihua Liu
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
36
|
Perruchon C, Vasileiadis S, Rousidou C, Papadopoulou ES, Tanou G, Samiotaki M, Garagounis C, Molassiotis A, Papadopoulou KK, Karpouzas DG. Metabolic pathway and cell adaptation mechanisms revealed through genomic, proteomic and transcription analysis of a Sphingomonas haloaromaticamans strain degrading ortho-phenylphenol. Sci Rep 2017; 7:6449. [PMID: 28743883 PMCID: PMC5527002 DOI: 10.1038/s41598-017-06727-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/15/2017] [Indexed: 12/14/2022] Open
Abstract
Ortho-phenylphenol (OPP) is a fungicide contained in agro-industrial effluents produced by fruit-packaging plants. Within the frame of developing bio-strategies to detoxify these effluents, an OPP-degrading Sphingomonas haloaromaticamans strain was isolated. Proteins/genes with a putative catabolic role and bacterium adaptation mechanisms during OPP degradation were identified via genomic and proteomic analysis. Transcription analysis of all putative catabolic genes established their role in the metabolism of OPP. The formation of key transformation products was verified by chromatographic analysis. Genomic analysis identified two orthologous operons encoding the ortho-cleavage of benzoic acid (BA) (ben/cat). The second ben/cat operon was located in a 92-kb scaffold along with (i) an operon (opp) comprising genes for the transformation of OPP to BA and 2-hydroxypenta-2,4-dienoate (and genes for its transformation) and (ii) an incomplete biphenyl catabolic operon (bph). Proteomics identified 13 up-regulated catabolic proteins when S. haloaromaticamans was growing on OPP and/or BA. Transcription analysis verified the key role of the catabolic operons located in the 92-kb scaffold, and flanked by transposases, on the transformation of OPP by S. haloaromaticamans. A flavin-dependent monoxygenase (OppA1), one of the most up-regulated proteins in the OPP-growing cells, was isolated via heterologous expression and its catabolic activity was verified in vitro.
Collapse
Affiliation(s)
- Chiara Perruchon
- Department of Biochemistry and Biotechnology, University of Thessaly, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece
| | - Sotirios Vasileiadis
- University of South Australia, Future Industries Institute, Mawson Lakes, Australia
| | - Constantina Rousidou
- Department of Biochemistry and Biotechnology, University of Thessaly, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece
| | - Evangelia S Papadopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece
| | - Georgia Tanou
- Aristotle University of Thessaloniki, School of Agriculture, Thessaloniki, Greece
| | - Martina Samiotaki
- Biomedical Sciences Research Center "Alexander Fleming", Vari, 16672, Greece
| | - Constantinos Garagounis
- Department of Biochemistry and Biotechnology, University of Thessaly, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece
| | | | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece
| | - Dimitrios G Karpouzas
- Department of Biochemistry and Biotechnology, University of Thessaly, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece.
| |
Collapse
|
37
|
|