1
|
Sonawane JR, Jundale R, Kulkarni AA. Continuous flow synthesis of metal nanowires: protocols, engineering aspects of scale-up and applications. MATERIALS HORIZONS 2025; 12:364-400. [PMID: 39436638 DOI: 10.1039/d4mh00781f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
This review comprehensively covers the translation from batch to continuous flow synthesis of metal nanowires (i.e., silver, copper, gold, and platinum nanowires) and their diverse applications across various sectors. Metal nanowires have attracted significant attention owing to their versatility and feasibility for large-scale synthesis. The efficacy of flow chemistry in nanomaterial synthesis has been extensively demonstrated over the past few decades. Continuous flow synthesis offers scalability, high throughput screening, and robust and reproducible synthesis procedures, making it a promising technology. Silver nanowires, widely used in flexible electronics, transparent conductive films, and sensors, have benefited from advancements in continuous flow synthesis aimed at achieving high aspect ratios and uniform diameters, though challenges in preventing agglomeration during large-scale production remain. Copper nanowires, considered as a cost-effective alternative to silver nanowires for conductive materials, have benefited from continuous flow synthesis methods that minimize oxidation and enhance stability, yet scaling up these processes requires precise control of reducing environments and copper ion concentration. A critical evaluation of various metal nanowire ink formulations is conducted, aiming to identify formulations that exhibit superior properties with lower metal solid content. This study delves into the intricacies of continuous flow synthesis methods for metal nanowires, emphasizing the exploration of engineering considerations essential for the design of continuous flow reactors. Furthermore, challenges associated with large-scale synthesis are addressed, highlighting the process-related issues.
Collapse
Affiliation(s)
- Jayesh R Sonawane
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Pune - 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Rajashri Jundale
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Pune - 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Amol A Kulkarni
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Pune - 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
2
|
Anusha JR, Citarasu T, Uma G, Vimal S, Kamaraj C, Kumar V, Muzammil K, Mani Sankar M. Recent advances in nanotechnology-based modifications of micro/nano PET plastics for green energy applications. CHEMOSPHERE 2024; 352:141417. [PMID: 38340992 DOI: 10.1016/j.chemosphere.2024.141417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/06/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Poly(ethylene terephthalate) (PET) plastic is an omnipresent synthetic polymer in our lives, which causes negative impacts on the ecosystem. It is crucial to take mandatory action to control the usage and sustainable disposal of PET plastics. Recycling plastics using nanotechnology offers potential solutions to the challenges associated with traditional plastic recycling methods. Nano-based degradation techniques improve the degradation process through the influence of catalysts. It also plays a crucial role in enhancing the efficiency and effectiveness of recycling processes and modifying them into value-added products. The modified PET waste plastics can be utilized to manufacture batteries, supercapacitors, sensors, and so on. The waste PET modification methods have massive potential for research, which can play major role in removing post-consumer plastic waste. The present review discusses the effects of micro/nano plastics in terrestrial and marine ecosystems and its impacts on plants and animals. Briefly, the degradation and bio-degradation methods in recent research were explored. The depolymerization methods used for the production of monomers from PET waste plastics were discussed in detail. Carbon nanotubes, fullerene, and graphene nanosheets synthesized from PET waste plastics were delineated. The reuse of nanotechnologically modified PET waste plastics for potential green energy storage products, such as batteries, supercapacitors, and sensors were presented in this review.
Collapse
Affiliation(s)
- J R Anusha
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamilnadu, 629 502, India
| | - T Citarasu
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamilnadu, 629 502, India
| | - G Uma
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamilnadu, 629 502, India
| | - S Vimal
- Department of Biochemistry, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamilnadu, India.
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu - 603203, India
| | - Vinay Kumar
- Department of Community Medicine, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| | - M Mani Sankar
- Department of Biochemistry, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamilnadu, India
| |
Collapse
|
3
|
Ahn J, Gu J, Hwang B, Kang H, Hwang S, Jeon S, Jeong J, Park I. Printed fabric heater based on Ag nanowire/carbon nanotube composites. NANOTECHNOLOGY 2019; 30:455707. [PMID: 31349233 DOI: 10.1088/1361-6528/ab35eb] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The increasing demand for smart fabrics has inspired extensive research in the field of nanomaterial-based wearable heaters. However, existing stretchable heaters employ polymer substrates, and hence require additional substrate-fabric bonding that can result in high thermal contact resistance. Moreover, currently used stretchable fabric heaters suffer from high sheet resistance and require complex fabrication processes. In addition, conventional fabrication methods do not allow for patternability, thus hindering the fabrication of wearable heaters with diverse designs. Herein, we propose an improved spray coating method well suited for the preparation of patternable heaters on commercial fabrics, combining the structural stability of carbon nanotubes with the high electrical conductivity of Ag nanowires to fabricate a stretchable fabric heater with excellent mechanical (stretchability ≈ 50%) and electrical (sheet resistance ≈ 22 Ω sq-1) properties. The fabricated wearable heater reaches typical operating temperatures of 35 °C-55 °C at a low driving voltage of 3-5 V with a proper surface power density of 26.6-72.2 [Formula: see text] (heater area: [Formula: see text]) and maintains a stable heating temperature for more than 30 h. This heater shows a stable performance even when folded or rolled, thus being well suited for the practical wearable applications.
Collapse
Affiliation(s)
- Junseong Ahn
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Martinez PM, Ishteev A, Fahimi A, Velten J, Jurewicz I, Dalton AB, Collins S, Baughman RH, Zakhidov AA. Silver Nanowires on Carbon Nanotube Aerogel Sheets for Flexible, Transparent Electrodes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32235-32243. [PMID: 31411850 DOI: 10.1021/acsami.9b06368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Flexible, free-standing transparent conducting electrodes (TCEs) with simultaneously tunable transmittances up to 98% and sheet resistances down to 11 Ω/sq were prepared by a facile spray-coating method of silver nanowires (AgNWs) onto dry-spun multiwall carbon nanotube (MWNT) aerogels. Counterintuitively, the transmittance of the hybrid electrodes can be increased as the mass density of AgNWs within the MWNT aerogels increases; however, the final achievable transmittance depends on the initial transparency of the MWNT aerogels. Simultaneously, a strong decrease in sheet resistance is obtained when AgNWs form a percolated network along the MWNT aerogel. Additionally, anisotropic reduction in sheet resistance and polarized transmittance of AgNW/MWNT aerogels is achieved with this method. The final AgNW/MWNT hybrid TCEs transmittance and sheet resistance can be fine-tuned by spray-coating mechanisms or by choosing initial MWNT aerogel density. Thus, a wide range of AgNW/MWNT hybrid TCEs with optimized optoelectronic properties can be achieved depending of the requirements needed. Finally, the free-standing AgNW/MWNT hybrid TCEs can be laminated onto a wide range of substrates without the need of a bonding aid.
Collapse
Affiliation(s)
- Patricia M Martinez
- University of Texas at Dallas , NanoTech Institute , Richardson , Texas 75080 , United States
- University of Texas at Dallas , Department of Chemistry , Richardson , Texas 75080 , United States
| | - Arthur Ishteev
- National University of Science and Technology , MISiS , Leninskiy prospect , Moscow , 119049 , Russia
- ITMO University , 49 Kronverksky Pr. St . Petersburg , 197101 , Russia
| | - Azin Fahimi
- University of Surrey , Guildford , Surrey GU2 7XH , United Kingdom
| | - Josef Velten
- University of Texas at Dallas , NanoTech Institute , Richardson , Texas 75080 , United States
| | - Izabela Jurewicz
- University of Surrey , Guildford , Surrey GU2 7XH , United Kingdom
| | - Alan B Dalton
- University of Sussex , Falmer , Brighton BN1 9RH , United Kingdom
| | - Steve Collins
- University of Texas at Dallas , NanoTech Institute , Richardson , Texas 75080 , United States
- University of Texas at Dallas , Department of Chemistry , Richardson , Texas 75080 , United States
| | - Ray H Baughman
- University of Texas at Dallas , NanoTech Institute , Richardson , Texas 75080 , United States
- University of Texas at Dallas , Department of Chemistry , Richardson , Texas 75080 , United States
| | - Anvar A Zakhidov
- University of Texas at Dallas , NanoTech Institute , Richardson , Texas 75080 , United States
- National University of Science and Technology , MISiS , Leninskiy prospect , Moscow , 119049 , Russia
- ITMO University , 49 Kronverksky Pr. St . Petersburg , 197101 , Russia
| |
Collapse
|
5
|
Current development of 1D and 2D metallic nanomaterials for the application of transparent conductors in solar cells: Fabrication and modeling. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.nanoso.2017.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Sun J, Zhou W, Yang H, Zhen X, Ma L, Williams D, Sun X, Lang MF. Highly transparent and flexible circuits through patterning silver nanowires into microfluidic channels. Chem Commun (Camb) 2018; 54:4923-4926. [PMID: 29561033 DOI: 10.1039/c8cc01438h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The development of flexible and transparent devices requires completely transparent and flexible circuits (TFCs). To overcome the disadvantages of the previously reported TFCs that are partially transparent, lacking pattern control, or labor consuming, we achieve true TFCs via a facile process with precise pattern control, exhibiting concurrent high transparency, conductivity, flexibility, stretchability, and robustness. A highly transparent and flexible conductive film is first made through spin coating silver nanowires (AgNWs) onto polydimethylsiloxane (PDMS), and demonstrates simultaneous high transparency (90.86%) and low sheet resistance (3.22 Ω sq-1). Taking advantage of microfluidic technology, circuits with ultraprecise and complex patterns from the microscale to milliscale are obtained through spin coating of AgNWs into microfluidic channels on PDMS. Without elaborate processing, this method may be suitable for mass production, which would contribute enormously to potential applications in wearable medical equipment and transparent electronic devices.
Collapse
Affiliation(s)
- Jing Sun
- College of Environmental and Chemical Engineering, Institute of Microanalysis, Dalian University, Dalian 116622, China.
| | - Wenhui Zhou
- College of Environmental and Chemical Engineering, Institute of Microanalysis, Dalian University, Dalian 116622, China.
| | - Haibo Yang
- College of Environmental and Chemical Engineering, Institute of Microanalysis, Dalian University, Dalian 116622, China.
| | - Xue Zhen
- College of Environmental and Chemical Engineering, Institute of Microanalysis, Dalian University, Dalian 116622, China.
| | - Longfei Ma
- College of Environmental and Chemical Engineering, Institute of Microanalysis, Dalian University, Dalian 116622, China.
| | - Dirk Williams
- UCLA HSSEAS, 1805 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Xudong Sun
- College of Environmental and Chemical Engineering, Institute of Microanalysis, Dalian University, Dalian 116622, China. and Liaoning Engineering Laboratory of Special Optical Functional Crystals, Dalian University, Dalian 116622, China and School of Materials Science and Engineering, Northeastern University, Shenyang, China
| | - Ming-Fei Lang
- Medical College, Institute of Microanalysis, Dalian University, Dalian 116622, China.
| |
Collapse
|
7
|
Wang D, Li D, Muhammad J, Zhou Y, Wang Z, Lu S, Dong X, Zhang Z. In situ synthesis and electronic transport of the carbon-coated Ag@C/MWCNT nanocomposite. RSC Adv 2018; 8:7450-7456. [PMID: 35539142 PMCID: PMC9078491 DOI: 10.1039/c8ra00078f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/30/2018] [Indexed: 11/21/2022] Open
Abstract
A nanocomposite of Ag@C nanocapsules dispersed in a multi-walled carbon nanotube (MWCNT) matrix was fabricated in situ by a facile arc-discharge plasma approach, using bulk Ag as the raw target and methane gas as the carbon source. It was found that the Ag@C nanocapsules were ∼10 nm in mean diameter, and the MWCNTs had 17–32 graphite layers in the wall with a thickness of 7–10 nm, while a small quantity of spherical carbon cages (giant fullerenes) were also involved with approximately 20–30 layers of the graphite shell. Typical dielectric behavior was dominant in the electronic transport of Ag@C/MWCNT nanocomposites; however, this was greatly modified by metallic Ag cores with respect to pure MWCNTs. A temperature-dependent resistance and I–V relationship provided evidence of a transition from Mott–David variable range hopping [ln ρ(T) ∼ T−1/4] to Shklovskii–Efros variable range hopping [ln ρ(T) ∼ T−1/2] at 5.4 K. A Coulomb gap, ΔC ≈ 0.05 meV, was obtained for the Ag@C/MWCNT nanocomposite system. An electric transition from ln ρ(T) ∼ T−1/4 to ln ρ(T) ∼ T−1/2 hopping conduction happened at 5.4 K in situ synthesis of Ag@C/MWCNTs nanocomposite.![]()
Collapse
Affiliation(s)
- Dongxing Wang
- Key Laboratory of Materials Modification by Laser
- Ion and Electron Beams (Ministry of Education)
- School of Materials Science and Engineering
- Dalian University of Technology
- Dalian 116023
| | - Da Li
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research
- International Center for Materials Physics
- Chinese Academy of Sciences
- Shenyang 110016
| | - Javid Muhammad
- Key Laboratory of Materials Modification by Laser
- Ion and Electron Beams (Ministry of Education)
- School of Materials Science and Engineering
- Dalian University of Technology
- Dalian 116023
| | - Yuanliang Zhou
- Key Laboratory of Materials Modification by Laser
- Ion and Electron Beams (Ministry of Education)
- School of Materials Science and Engineering
- Dalian University of Technology
- Dalian 116023
| | - Ziming Wang
- Key Laboratory of Materials Modification by Laser
- Ion and Electron Beams (Ministry of Education)
- School of Materials Science and Engineering
- Dalian University of Technology
- Dalian 116023
| | - Sansan Lu
- Key Laboratory of Materials Modification by Laser
- Ion and Electron Beams (Ministry of Education)
- School of Materials Science and Engineering
- Dalian University of Technology
- Dalian 116023
| | - Xinglong Dong
- Key Laboratory of Materials Modification by Laser
- Ion and Electron Beams (Ministry of Education)
- School of Materials Science and Engineering
- Dalian University of Technology
- Dalian 116023
| | - Zhidong Zhang
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research
- International Center for Materials Physics
- Chinese Academy of Sciences
- Shenyang 110016
| |
Collapse
|
8
|
Song Y, Kim S, Heller MJ. An Implantable Transparent Conductive Film with Water Resistance and Ultrabendability for Electronic Devices. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42302-42312. [PMID: 29124937 DOI: 10.1021/acsami.7b11801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recently, instead of indium tin oxide, the random mesh pattern of metallic nanowires for flexible transparent conducting electrodes (FTCEs) has received a great amount of interest due to its flexibility, low resistance, reasonable price, and compliant processes. Mostly, nanowires for FTCEs are fabricated by spray or mayer coating methods. However, the metallic nanowire layer of FTCEs, which is fabricated by these methods, has a spiked surface roughness and low junction contact between the nanowires that lead to their high sheet resistance value. Also, the nanowires on FTCEs are easy to peel-off through exterior forces such as bending, twisting, or contact. To solve these problems, we demonstrate novel methods through which silver nanowires (AgNWs) are deposited onto a nanosize porous nitrocellulose (NC) substrate by electrophoretic deposition (EPD) and an opaque and porous substrate. Respectively, through dimethyl sulfoxide treatment, AgNWs on NC (AgNW/NC) is changed to the transparent and nonporous FTCEs. This enhances the junction contact of the AgNWs by EPD and also allows a permanent attachment of AgNWs onto the substrate. To show the mechanical strength of the AgNWs on the transparent nitrocellulose (AgNW/TNC), it is tested by applying diverse mechanical stress, such as a binding test (3M peel-off), compressing, bending, twisting, and folding. Next, we demonstrate that AgNW/TNC can be effectively implanted onto normal newspapers and papers. As paper electronics, light-emitting diodes, which are laminated onto paper, are successfully operated through a basic AgNW/TNC strip circuit. Finally, it is demonstrated that AgNW/TNC and AgNW/TNC on paper are water resistant for 15 min due to the insulation properties of the nonporous substrate.
Collapse
Affiliation(s)
- Youngjun Song
- StandardBioelectronics. Co. , Dosan-ro 341beon-gil, Seo-gu, Daejeon 35320, Korea
- Environment & Energy Research Team, Hyundai Motor Co. , 37, Cheoldobangmulgwan-ro, Uiwang-si 16082, Gyeonggi-do, Korea
| | | | | |
Collapse
|