1
|
Zhu C, Lu X, Cai T, Zhu K, Shi L, Chen Y, Wang T, Yang Y, Tu D, Fu Q, Huang J, Zhen Y. Firefly toxin lucibufagins evolved after the origin of bioluminescence. PNAS NEXUS 2024; 3:pgae215. [PMID: 38919269 PMCID: PMC11197309 DOI: 10.1093/pnasnexus/pgae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Fireflies were believed to originally evolve their novel bioluminescence as warning signals to advertise their toxicity to predators, which was later adopted in adult mating. Although the evolution of bioluminescence has been investigated extensively, the warning signal hypothesis of its origin has not been tested. In this study, we test this hypothesis by systematically determining the presence or absence of firefly toxin lucibufagins (LBGs) across firefly species and inferring the time of origin of LBGs. We confirm the presence of LBGs in the subfamily Lampyrinae, but more importantly, we reveal the absence of LBGs in other lineages, including the subfamilies of Luciolinae, Ototretinae, and Psilocladinae, two incertae sedis lineages, and the Rhagophthalmidae family. Ancestral state reconstructions for LBGs based on firefly phylogeny constructed using genomic data suggest that the presence of LBGs in the common ancestor of the Lampyrinae subfamily is highly supported but unsupported in more ancient nodes, including firefly common ancestors. Our results suggest that firefly LBGs probably evolved much later than the evolution of bioluminescence. We thus conclude that firefly bioluminescence did not originally evolve as direct warning signals for toxic LBGs and advise that future studies should focus on other hypotheses. Moreover, LBG toxins are known to directly target and inhibit the α subunit of Na+, K+-ATPase (ATPα). We further examine the effects of amino acid substitutions in firefly ATPα on its interactions with LBGs. We find that ATPα in LBG-containing fireflies is relatively insensitive to LBGs, which suggests that target-site insensitivity contributes to LBG-containing fireflies' ability to deal with their own toxins.
Collapse
Affiliation(s)
- Chengqi Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Xiaoli Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Tianlong Cai
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Kangli Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Lina Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yinjuan Chen
- Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Tianyu Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yaoming Yang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Dandan Tu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Qi Fu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Jing Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Ying Zhen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
2
|
Foquet B, Rapkin J, Sharma MD, Sadd BM, Sakaluk SK, Hunt J. Transcriptomic responses of females to consumption of nuptial food gifts as a potential mediator of sexual conflict in decorated crickets. J Evol Biol 2023; 36:183-194. [PMID: 36357978 DOI: 10.1111/jeb.14114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 09/02/2022] [Indexed: 11/12/2022]
Abstract
Nuptial food gift provisioning by males to females at mating is a strategy in many insects that is thought to be shaped by sexual conflict or sexual selection, as it affords males access to a female's physiology. While males often attempt to use these gifts to influence female behaviour to their own advantage, females can evolve counter mechanisms. In decorated crickets, the male's nuptial gift comprises part of the spermatophore, the spermatophylax, the feeding on which deters the female from prematurely terminating sperm transfer. However, ingested compounds in the spermatophylax and attachment of the sperm-containing ampulla could further influence female physiology and behaviour. We investigated how mating per se and these two distinct routes of potential male-mediated manipulation influence the female transcriptomic response. We conducted an RNA sequencing experiment on gut and head tissues from females for whom nuptial food gift consumption and receipt of an ejaculation were independently manipulated. In the gut tissue, we found that females not permitted to feed during mating exhibited decreased overall gene expression, possibly caused by a reduced gut function, but this was countered by feeding on the spermatophylax or a sham gift. In the head tissue, we found only low numbers of differentially expressed genes, but a gene co-expression network analysis revealed that ampulla attachment and spermatophylax consumption independently induce distinct gene expression patterns. This study provides evidence that spermatophylax feeding alters the female post-mating transcriptomic response in decorated crickets, highlighting its potential to mediate sexual conflict in this system.
Collapse
Affiliation(s)
- Bert Foquet
- Behavior, Ecology, Evolution & Systematics Section, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - James Rapkin
- Center for Ecology and Conservation, University of Exeter, Cornwall, UK
| | - Manmohan D Sharma
- Center for Ecology and Conservation, University of Exeter, Cornwall, UK
| | - Ben M Sadd
- Behavior, Ecology, Evolution & Systematics Section, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Scott K Sakaluk
- Behavior, Ecology, Evolution & Systematics Section, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - John Hunt
- Center for Ecology and Conservation, University of Exeter, Cornwall, UK.,School of Science, Western Sydney University, Richmond, New South Wales, Australia
| |
Collapse
|
3
|
Williamson NG, Walsh CM, Kijimoto T. Comparative metabolomic analysis of polyphenic horn development in the dung beetle Onthophagus taurus. PLoS One 2022; 17:e0265222. [PMID: 35298496 PMCID: PMC8929603 DOI: 10.1371/journal.pone.0265222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/25/2022] [Indexed: 11/19/2022] Open
Abstract
Organisms alter their phenotypes in response to changing environmental conditions. The developmental basis of this phenomenon, phenotypic plasticity, is a topic of broad interest in many fields of biology. While insects provide a suitable model for studying the genetic basis of phenotypic plasticity, the physiological aspects of plasticity are not fully understood. Here, we report the physiological basis of polyphenism, an extreme form of phenotypic plasticity by utilizing a dung beetle species, Onthophagus taurus. We highlighted the metabolome between sexes as well as two distinct male morphs—large and small horns. Unlike results from previous transcriptomic studies, the comparative metabolomic study revealed that differences in metabolite level were more prominent between animals with different body sizes than different sexes. Our results also indicate that specific metabolites and biochemical pathways may be active during horn size determination.
Collapse
Affiliation(s)
- Naomi G. Williamson
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, United States of America
| | - Callee M. Walsh
- Shared Research Facilities, West Virginia University, Morgantown, West Virginia, United States of America
| | - Teiya Kijimoto
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
4
|
Scolari F, Khamis FM, Pérez-Staples D. Beyond Sperm and Male Accessory Gland Proteins: Exploring Insect Reproductive Metabolomes. Front Physiol 2021; 12:729440. [PMID: 34690804 PMCID: PMC8529219 DOI: 10.3389/fphys.2021.729440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/14/2021] [Indexed: 01/13/2023] Open
Abstract
Insect seminal fluid, the non-sperm component of the ejaculate, comprises a variegated set of molecules, including, but not limited to, lipids, proteins, carbohydrates, salts, hormones, nucleic acids, and vitamins. The identity and functional role of seminal fluid proteins (SFPs) have been widely investigated, in multiple species. However, most of the other small molecules in insect ejaculates remain uncharacterized. Metabolomics is currently adopted to deepen our understanding of complex biological processes and in the last 15years has been applied to answer different physiological questions. Technological advances in high-throughput methods for metabolite identification such as mass spectrometry and nuclear magnetic resonance (NMR) are now coupled to an expanded bioinformatics toolbox for large-scale data analysis. These improvements allow for the processing of smaller-sized samples and for the identification of hundreds to thousands of metabolites, not only in Drosophila melanogaster but also in disease vectors, animal, and agricultural pests. In this review, we provide an overview of the studies that adopted metabolomics-based approaches in insects, with a particular focus on the reproductive tract (RT) of both sexes and the ejaculate. Progress in the field of metabolomics will contribute not only to achieve a deeper understanding of the composition of insect ejaculates and how they are affected by endogenous and exogenous factors, but also to provide increasingly powerful tools to decipher the identity and molecular interactions between males and females during and after mating.
Collapse
Affiliation(s)
- Francesca Scolari
- Institute of Molecular Genetics (IGM)-CNR "Luigi Luca Cavalli-Sforza", Pavia, Italy
| | - Fathiya M Khamis
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Diana Pérez-Staples
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Mexico
| |
Collapse
|
5
|
Huck DT, Klein MS, Meuti ME. Determining the effects of nutrition on the reproductive physiology of male mosquitoes. JOURNAL OF INSECT PHYSIOLOGY 2021; 129:104191. [PMID: 33428881 DOI: 10.1016/j.jinsphys.2021.104191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Nutrition affects multiple aspects of insect physiology such as body size and fecundity, but we lack a detailed understanding of how nutrition influences the reproductive physiology of male insects such as mosquitoes. Given that female mosquitoes are vectors of many deadly diseases and can quickly proliferate, understanding how male nutrition impacts female fecundity could be of critical importance. To uncover the relationship between nutrition in adult male mosquitoes and its impacts on reproductive physiology, we reared larvae of the Northern house mosquito, Culex pipiens, on a standard lab diet and divided adult males among three different dietary treatments: low (3%), moderate (10%), and high (20%) sucrose. We found that although overall body size did not differ among treatments, one-week-old males raised on the 3% sucrose diet had significantly smaller male accessory glands (MAGs) compared to males that consumed the 10% and the 20% sucrose diets. Diet affected whole-body lipid content but did not affect whole-body protein content. Using nuclear magnetic resonance (NMR) spectroscopy, we found that diet altered the metabolic composition of the MAGs, including changes in lactic acid, formic acid, and glucose. We also observed changes in protein and lipid abundance and composition in MAGs. Females who mated with males on the 3% diet were found to produce significantly fewer larvae than females who had mated with males on the 10% diet. Taken together, our results demonstrate that the diet of adult male mosquitoes clearly affects male reproductive physiology and female fecundity.
Collapse
Affiliation(s)
- Derek T Huck
- Department of Entomology, The Ohio State University, 2021 Coffey Rd, Columbus, OH 43210, United States.
| | - Matthias S Klein
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Rd, Columbus, OH 43210, United States.
| | - Megan E Meuti
- Department of Entomology, The Ohio State University, 2021 Coffey Rd, Columbus, OH 43210, United States.
| |
Collapse
|
6
|
Ramm SA. Seminal fluid and accessory male investment in sperm competition. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200068. [PMID: 33070740 DOI: 10.1098/rstb.2020.0068] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sperm production and allocation strategies have been a central concern of sperm competition research for the past 50 years. But during the 'sexual cascade' there may be strong selection for alternative routes to maximizing male fitness. Especially with the evolution of internal fertilization, a common and by now well-studied example is the accessory ejaculate investment represented by seminal fluid, the complex mixture of proteins, peptides and other components transferred to females together with sperm. How seminal fluid investment should covary with sperm investment probably depends on the mechanism of seminal fluid action. If seminal fluid components boost male paternity success by directly enhancing sperm function or use, we might often expect a positive correlation between the two forms of male investment, whereas trade-offs seem more likely if seminal fluid acts independently of sperm. This is largely borne out by a broad taxonomic survey to establish the prevailing patterns of seminal fluid production and allocation during animal evolution, in light of which I discuss the gaps that remain in our understanding of this key ejaculate component and its relationship to sperm investment, before outlining promising approaches for examining seminal fluid-mediated sperm competitiveness in the post-genomic era. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Steven A Ramm
- Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| |
Collapse
|
7
|
Discovery of Two Novel Negeviruses in a Dungfly Collected from the Arctic. Viruses 2020; 12:v12070692. [PMID: 32604989 PMCID: PMC7412485 DOI: 10.3390/v12070692] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Negeviruses are a proposed group of insect-specific viruses that can be separated into two distinct phylogenetic clades, Nelorpivirus and Sandewavirus. Negeviruses are well-known for their wide geographic distribution and broad host range among hematophagous insects. In this study, the full genomes of two novel negeviruses from each of these clades were identified by RNA extraction and sequencing from a single dungfly (Scathophaga furcata) collected from the Arctic Yellow River Station, where these genomes are the first negeviruses from cold zone regions to be discovered. Nelorpivirus dungfly1 (NVD1) and Sandewavirus dungfly1 (SVD1) have the typical negevirus genome organization and there was a very high coverage of viral transcripts. Small interfering RNAs derived from both viruses were readily detected in S. furcata, clearly showing that negeviruses are targeted by the host antiviral RNA interference (RNAi) pathway. These results and subsequent in silico analysis (studies) of public database and published virome data showed that the hosts of nege-like viruses include insects belonging to many orders as well as various non-insects in addition to the hematophagous insects previously reported. Phylogenetic analysis reveals at least three further groups of negeviruses, as well as several poorly resolved solitary branches, filling in the gaps within the two sub-groups of negeviruses and plant-associated viruses in the Kitaviridae. The results of this study will contribute to a better understanding of the geographic distribution, host range, evolution and host antiviral immune responses of negeviruses.
Collapse
|
8
|
Comparative Transcriptomics Reveals Gene Families Associated with Predatory Behavior in Photuris femme fatale Fireflies. Genes (Basel) 2020; 11:genes11060627. [PMID: 32517321 PMCID: PMC7348864 DOI: 10.3390/genes11060627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Identifying the basis of phenotypic variation is a key objective of genetics. This work has been mostly limited to model systems with a plethora of genetic manipulation and functional characterization tools. With the development of high-throughput sequencing and new computational tools, it is possible to identify candidate genes related to phenotypic variation in non-model organisms. Fireflies are excellent for studying phenotypic variation because of their diverse and well-characterized behaviors. Most adult fireflies emit a single mating flash pattern and do not eat. In contrast, adult females of many species in the genus Photuris employ multiple flash patterns and prey upon mate-seeking males of other firefly species. To investigate the genetic basis for this variation, we used comparative transcriptomics to identify positively selected genes between a predatory firefly, Photuris sp., and a non-predatory relative, Photuris frontalis, controlling for genes generally under selection in fireflies by comparing to a Photinus firefly. Nine gene families were identified under positive selection in the predatory versus non-predatory Photuris comparison, including genes involved in digestion, detoxification, vision, reproduction, and neural processes. These results generate intriguing hypotheses about the genetic basis for insect behavior and highlight the utility of comparative transcriptomic tools to investigate complex behaviors in non-model systems.
Collapse
|
9
|
Do male seminal donations shape female post-mating receptivity in a usually monandrous moth? Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2776-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Fallon TR, Lower SE, Chang CH, Bessho-Uehara M, Martin GJ, Bewick AJ, Behringer M, Debat HJ, Wong I, Day JC, Suvorov A, Silva CJ, Stanger-Hall KF, Hall DW, Schmitz RJ, Nelson DR, Lewis SM, Shigenobu S, Bybee SM, Larracuente AM, Oba Y, Weng JK. Firefly genomes illuminate parallel origins of bioluminescence in beetles. eLife 2018; 7:e36495. [PMID: 30324905 PMCID: PMC6191289 DOI: 10.7554/elife.36495] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/23/2018] [Indexed: 12/31/2022] Open
Abstract
Fireflies and their luminous courtships have inspired centuries of scientific study. Today firefly luciferase is widely used in biotechnology, but the evolutionary origin of bioluminescence within beetles remains unclear. To shed light on this long-standing question, we sequenced the genomes of two firefly species that diverged over 100 million-years-ago: the North American Photinus pyralis and Japanese Aquatica lateralis. To compare bioluminescent origins, we also sequenced the genome of a related click beetle, the Caribbean Ignelater luminosus, with bioluminescent biochemistry near-identical to fireflies, but anatomically unique light organs, suggesting the intriguing hypothesis of parallel gains of bioluminescence. Our analyses support independent gains of bioluminescence in fireflies and click beetles, and provide new insights into the genes, chemical defenses, and symbionts that evolved alongside their luminous lifestyle.
Collapse
Affiliation(s)
- Timothy R Fallon
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Department of BiologyMassachusetts Institute of TechnologyCambridgeUnited States
| | - Sarah E Lower
- Department of Molecular Biology and GeneticsCornell UniversityIthacaUnited States
- Department of BiologyBucknell UniversityLewisburgUnited States
| | - Ching-Ho Chang
- Department of BiologyUniversity of RochesterRochesterUnited States
| | - Manabu Bessho-Uehara
- Department of Environmental BiologyChubu UniversityKasugaiJapan
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
- Monterey Bay Aquarium Research InstituteMoss LandingUnited States
| | - Gavin J Martin
- Department of BiologyBrigham Young UniversityProvoUnited States
| | - Adam J Bewick
- Department of GeneticsUniversity of GeorgiaAthensUnited States
| | - Megan Behringer
- Biodesign Center for Mechanisms of EvolutionArizona State UniversityTempeUnited States
| | - Humberto J Debat
- Center of Agronomic Research, National Institute of Agricultural TechnologyCórdobaArgentina
| | - Isaac Wong
- Department of BiologyUniversity of RochesterRochesterUnited States
| | - John C Day
- Centre for Ecology and Hydrology (CEH)WallingfordUnited Kingdom
| | - Anton Suvorov
- Department of BiologyBrigham Young UniversityProvoUnited States
| | - Christian J Silva
- Department of BiologyUniversity of RochesterRochesterUnited States
- Department of Plant SciencesUniversity of California DavisDavisUnited States
| | | | - David W Hall
- Department of GeneticsUniversity of GeorgiaAthensUnited States
| | | | - David R Nelson
- Department of Microbiology Immunology and BiochemistryUniversity of Tennessee HSCMemphisUnited States
| | - Sara M Lewis
- Department of BiologyTufts UniversityMedfordUnited States
| | - Shuji Shigenobu
- NIBB Core Research FacilitiesNational Institute for Basic BiologyOkazakiJapan
| | - Seth M Bybee
- Department of BiologyBrigham Young UniversityProvoUnited States
| | | | - Yuichi Oba
- Department of Environmental BiologyChubu UniversityKasugaiJapan
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Department of BiologyMassachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
11
|
Meslin C, Cherwin TS, Plakke MS, Hill J, Small BS, Goetz BJ, Wheat CW, Morehouse NI, Clark NL. Structural complexity and molecular heterogeneity of a butterfly ejaculate reflect a complex history of selection. Proc Natl Acad Sci U S A 2017; 114:E5406-E5413. [PMID: 28630352 PMCID: PMC5502654 DOI: 10.1073/pnas.1707680114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Male ejaculates are often structurally complex, and this complexity is likely to influence key reproductive interactions between males and females. However, despite its potential evolutionary significance, the molecular underpinnings of ejaculate structural complexity have received little empirical attention. To address this knowledge gap, we sought to understand the biochemical and functional properties of the structurally complex ejaculates of Pieris rapae butterflies. Males in this species produce large ejaculates called spermatophores composed of an outer envelope, an inner matrix, and a bolus of sperm. Females are thought to benefit from the nutrition contained in the soluble inner matrix through increases in longevity and fecundity. However, the indigestible outer envelope of the spermatophore delays female remating, allowing males to monopolize paternity for longer. Here, we show that these two nonsperm-containing spermatophore regions, the inner matrix and the outer envelope, differ in their protein composition and functional properties. We also reveal how these divergent protein mixtures are separately stored in the male reproductive tract and sequentially transferred to the female reproductive tract during spermatophore assembly. Intriguingly, we discovered large quantities of female-derived proteases in both spermatophore regions shortly after mating, which may contribute to spermatophore digestion and hence, female control over remating rate. Finally, we report evidence of past selection on these spermatophore proteins and female proteases, indicating a complex evolutionary history. Our findings illustrate how structural complexity of ejaculates may allow functionally and/or spatially associated suites of proteins to respond rapidly to divergent selective pressures, such as sexual conflict or reproductive cooperation.
Collapse
Affiliation(s)
- Camille Meslin
- Institut National de la Recherche Agronomique (INRA), Institute of Ecology and Environmental Sciences of Paris (IEES-Paris), 78026 Versailles Cedex, France
| | - Tamara S Cherwin
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Melissa S Plakke
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | | | - Brandon S Small
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260
| | - Breanna J Goetz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | | | - Nathan I Morehouse
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260;
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221
| | - Nathan L Clark
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260;
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|