1
|
Colón DF, Wanderley CW, Turato WM, Borges VF, Franchin M, Castanheira FVS, Nascimento D, Prado D, Haruo Fernandes de Lima M, Volpon LC, Kavaguti SK, Carlotti AP, Carmona F, Franklin BS, Cunha TM, Alves-Filho JC, Cunha FQ. Paediatric sepsis survivors are resistant to sepsis-induced long-term immune dysfunction. Br J Pharmacol 2024; 181:1308-1323. [PMID: 37990806 DOI: 10.1111/bph.16286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/19/2023] [Accepted: 08/17/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Sepsis-surviving adult individuals commonly develop immunosuppression and increased susceptibility to secondary infections, an outcome mediated by the axis IL-33/ILC2s/M2 macrophages/Tregs. Nonetheless, the long-term immune consequences of paediatric sepsis are indeterminate. We sought to investigate the role of age in the genesis of immunosuppression following sepsis. EXPERIMENTAL APPROACH Here, we compared the frequency of Tregs, the activation of the IL-33/ILC2s axis in M2 macrophages and the DNA methylation of epithelial lung cells from post-septic infant and adult mice. Likewise, sepsis-surviving mice were inoculated intranasally with Pseudomonas aeruginosa or by subcutaneous inoculation of the B16 melanoma cell line. Finally, blood samples from sepsis-surviving patients were collected and the concentration of IL-33 and Tregs frequency were assessed. KEY RESULTS In contrast to 6-week-old mice, 2-week-old mice were resistant to secondary infection and did not show impairment in tumour controls upon melanoma challenge. Mechanistically, increased IL-33 levels, Tregs expansion, and activation of ILC2s and M2-macrophages were observed in 6-week-old but not 2-week-old post-septic mice. Moreover, impaired IL-33 production in 2-week-old post-septic mice was associated with increased DNA methylation in lung epithelial cells. Notably, IL-33 treatment boosted the expansion of Tregs and induced immunosuppression in 2-week-old mice. Clinically, adults but not paediatric post-septic patients exhibited higher counts of Tregs and seral IL-33 levels. CONCLUSION AND IMPLICATIONS These findings demonstrate a crucial and age-dependent role for IL-33 in post-sepsis immunosuppression. Thus, a better understanding of this process may lead to differential treatments for adult and paediatric sepsis.
Collapse
Affiliation(s)
- David F Colón
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
- Departments of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos W Wanderley
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, University of São Paulo, Ribeirão Preto, Brazil
| | - Walter M Turato
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
| | - Vanessa F Borges
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, University of São Paulo, Ribeirão Preto, Brazil
| | - Marcelo Franchin
- School of Dentistry, Alfenas Federal University, Alfenas, Brazil
| | | | - Daniele Nascimento
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
- Departments of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, Brazil
| | - Douglas Prado
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, University of São Paulo, Ribeirão Preto, Brazil
| | - Mikhael Haruo Fernandes de Lima
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
- Departments of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, Brazil
| | - Leila C Volpon
- Department of Pediatrics, University of São Paulo, Ribeirão Preto, Brazil
| | - Silvia K Kavaguti
- Department of Pediatrics, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana P Carlotti
- Physiology & Pharmacology Calgary, University of Calgary, Calgary, Canada
| | - Fabio Carmona
- Department of Pediatrics, University of São Paulo, Ribeirão Preto, Brazil
| | - Bernardo S Franklin
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Thiago M Cunha
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, University of São Paulo, Ribeirão Preto, Brazil
| | - Jose Carlos Alves-Filho
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
- Departments of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando Q Cunha
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
2
|
Chauhan N, Soni S, Gupta A, Aslam M, Jain U. Interpretative immune targets and contemporary position for vaccine development against SARS-CoV-2: A systematic review. J Med Virol 2021; 93:1967-1982. [PMID: 33270225 PMCID: PMC7753271 DOI: 10.1002/jmv.26709] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/29/2020] [Indexed: 12/17/2022]
Abstract
The year 2020 started with the emergence of novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which causes COVID-19 infection. Soon after the first evidence was reported in Wuhan, China, the World Health Organization declared global public health emergency and imminent need to understand the pathogenicity of the virus was required in limited time. Once the genome sequence of the virus was delineated, scientists across the world started working on the development of vaccines. Although, some laboratories have been using previously developed vaccine platforms from severe acute respiratory syndrome coronavirus (SARS) and middle east respiratory syndrome-related coronavirus and apply them in COVID-19 vaccines due to genetic similarities between coronaviruses. We have conducted a literature review to assess the background and current status of COVID-19 vaccines. The worldwide implementation and strategies for COVID-19 vaccine development are summarized from studies reported in years 2015-2020. While discussing the vaccine candidates, we have also explained interpretative immune responses of SARS-CoV-2 infection. There are several vaccine candidates at preclinical and clinical stages; however, only 42 vaccines are under clinical trials. Therefore, more industry collaborations and financial supports to COVID-19 studies are needed for mass-scale vaccine development. To develop effective vaccine platforms against SARS-CoV-2, the genetic resemblance with other coronaviruses are being evaluated which may further promote fast-track trials on previously developed SARS-CoV vaccines.
Collapse
Affiliation(s)
- Nidhi Chauhan
- Amity Institute of Nanotechnology (AINT)Amity University Uttar Pradesh (AUUP)NoidaIndia
| | - Shringika Soni
- Amity Institute of Nanotechnology (AINT)Amity University Uttar Pradesh (AUUP)NoidaIndia
| | - Abhinandan Gupta
- Amity Institute of Nanotechnology (AINT)Amity University Uttar Pradesh (AUUP)NoidaIndia
| | - Mohammad Aslam
- Rahat Hospital and Research Centre, Noor Mahal, AVAS VikasRampurIndia
| | - Utkarsh Jain
- Amity Institute of Nanotechnology (AINT)Amity University Uttar Pradesh (AUUP)NoidaIndia
| |
Collapse
|
3
|
Benest J, Rhodes S, Afrough S, Evans T, White R. Response Type and Host Species may be Sufficient to Predict Dose-Response Curve Shape for Adenoviral Vector Vaccines. Vaccines (Basel) 2020; 8:vaccines8020155. [PMID: 32235634 PMCID: PMC7349762 DOI: 10.3390/vaccines8020155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
Vaccine dose-response curves can follow both saturating and peaking shapes. Dose-response curves for adenoviral vector vaccines have not been systematically described. In this paper, we explore the dose-response shape of published adenoviral animal and human studies. Where data were informative, dose-response was approximately five times more likely to be peaking than saturating. There was evidence that host species and response type may be sufficient for prediction of dose-response curve shape. Dose-response curve shape prediction could decrease clinical trial costs, accelerating the development of life-saving vaccines.
Collapse
Affiliation(s)
- John Benest
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (S.R.); (R.W.)
- Correspondence:
| | - Sophie Rhodes
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (S.R.); (R.W.)
| | - Sara Afrough
- Vaccitech Ltd., The Schrodinger Building, Heatley Road, The Oxford Science Park, Oxford OX4 4GE, UK (T.E.)
| | - Thomas Evans
- Vaccitech Ltd., The Schrodinger Building, Heatley Road, The Oxford Science Park, Oxford OX4 4GE, UK (T.E.)
| | - Richard White
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (S.R.); (R.W.)
| |
Collapse
|
4
|
Afrough S, Rhodes S, Evans T, White R, Benest J. Immunologic Dose-Response to Adenovirus-Vectored Vaccines in Animals and Humans: A Systematic Review of Dose-Response Studies of Replication Incompetent Adenoviral Vaccine Vectors when Given via an Intramuscular or Subcutaneous Route. Vaccines (Basel) 2020; 8:E131. [PMID: 32192058 PMCID: PMC7157626 DOI: 10.3390/vaccines8010131] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
Optimal vaccine dosing is important to ensure the greatest protection and safety. Analysis of dose-response data, from previous studies, may inform future studies to determine the optimal dose. Implementing more quantitative modelling approaches in vaccine dose finding have been recently suggested to accelerate vaccine development. Adenoviral vectored vaccines are in advanced stage of development for a variety of prophylactic and therapeutic indications, however dose-response has not yet been systematically determined. To further inform adenoviral vectored vaccines dose identification, historical dose-response data should be systematically reviewed. A systematic literature review was conducted to collate and describe the available dose-response studies for adenovirus vectored vaccines. Of 2787 papers identified by Medline search strategy, 35 were found to conform to pre-defined criteria. The majority of studies were in mice or humans and studied adenovirus serotype 5. Dose-response data were available for 12 different immunological responses. The majority of papers evaluated three dose levels, only two evaluated more than five dose levels. The most common dosing range was 107-1010 viral particles in mouse studies and 108-1011 viral particles in human studies. Data were available on adenovirus vaccine dose-response, primarily on adenovirus serotype 5 backbones and in mice and humans. These data could be used for quantitative adenoviral vectored vaccine dose optimisation analysis.
Collapse
Affiliation(s)
- Sara Afrough
- Vaccitech Ltd., The Schrodinger Building, Heatley Road, The Oxford Science Park, Oxford OX4 4GE, UK;
| | - Sophie Rhodes
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (S.R.); (R.W.); (J.B.)
| | - Thomas Evans
- Vaccitech Ltd., The Schrodinger Building, Heatley Road, The Oxford Science Park, Oxford OX4 4GE, UK;
| | - Richard White
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (S.R.); (R.W.); (J.B.)
| | - John Benest
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (S.R.); (R.W.); (J.B.)
| |
Collapse
|
5
|
Colón DF, Wanderley CW, Franchin M, Silva CM, Hiroki CH, Castanheira FVS, Donate PB, Lopes AH, Volpon LC, Kavaguti SK, Borges VF, Speck-Hernandez CA, Ramalho F, Carlotti AP, Carmona F, Alves-Filho JC, Liew FY, Cunha FQ. Neutrophil extracellular traps (NETs) exacerbate severity of infant sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:113. [PMID: 30961634 PMCID: PMC6454713 DOI: 10.1186/s13054-019-2407-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 03/25/2019] [Indexed: 12/13/2022]
Abstract
Background Neutrophil extracellular traps (NETs) are innate defense mechanisms that are also implicated in the pathogenesis of organ dysfunction. However, the role of NETs in pediatric sepsis is unknown. Methods Infant (2 weeks old) and adult (6 weeks old) mice were submitted to sepsis by intraperitoneal (i.p.) injection of bacteria suspension or lipopolysaccharide (LPS). Neutrophil infiltration, bacteremia, organ injury, and concentrations of cytokine, NETs, and DNase in the plasma were measured. Production of reactive oxygen and nitrogen species and release of NETs by neutrophils were also evaluated. To investigate the functional role of NETs, mice undergoing sepsis were treated with antibiotic plus rhDNase and the survival, organ injury, and levels of inflammatory markers and NETs were determined. Blood samples from pediatric and adult sepsis patients were collected and the concentrations of NETs measured. Results Infant C57BL/6 mice subjected to sepsis or LPS-induced endotoxemia produced significantly higher levels of NETs than the adult mice. Moreover, compared to that of the adult mice, this outcome was accompanied by increased organ injury and production of inflammatory cytokines. The increased NETs were associated with elevated expression of Padi4 and histone H3 citrullination in the neutrophils. Furthermore, treatment of infant septic mice with rhDNase or a PAD-4 inhibitor markedly attenuated sepsis. Importantly, pediatric septic patients had high levels of NETs, and the severity of pediatric sepsis was positively correlated with the level of NETs. Conclusion This study reveals a hitherto unrecognized mechanism of pediatric sepsis susceptibility and suggests that NETs represents a potential target to improve clinical outcomes of sepsis. Electronic supplementary material The online version of this article (10.1186/s13054-019-2407-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David F Colón
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Carlos W Wanderley
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, 60020-181, CE, Brazil
| | - Marcelo Franchin
- Department of Pharmacology, University of Campinas, Campinas, 13083-970, SP, Brazil
| | - Camila M Silva
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, 60020-181, CE, Brazil
| | - Carlos H Hiroki
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Fernanda V S Castanheira
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Paula B Donate
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Alexandre H Lopes
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Leila C Volpon
- Pediatrics, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Silvia K Kavaguti
- Pediatrics, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Vanessa F Borges
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Cesar A Speck-Hernandez
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Fernando Ramalho
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Ana P Carlotti
- Pediatrics, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Fabio Carmona
- Pediatrics, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Jose C Alves-Filho
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Foo Y Liew
- Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, G128QQ, UK. .,School of Biology and Basic Medical Science, Soochow University, Suzhou, 215006, JS, China.
| | - Fernando Q Cunha
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
6
|
Fougeroux C, Holst PJ. Future Prospects for the Development of Cost-Effective Adenovirus Vaccines. Int J Mol Sci 2017; 18:ijms18040686. [PMID: 28420073 PMCID: PMC5412272 DOI: 10.3390/ijms18040686] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 01/13/2023] Open
Abstract
Vaccination is one of the most efficient tools for disease prevention, and a continuously growing field of research. However, despite progress, we still need more efficient and cost-effective vaccines that would improve access to those in need. In this review, we will describe the status of virus-vectored vaccine technology with a focus on adenoviral-based vaccines. Adenovirus (Ad) vaccines have proven to be efficient in military vaccinations against Ad4 and Ad7 and as highly efficient vectored vaccines against rabies. The question of how other adenovirus-based vaccines can become as efficient as the rabies vaccine is the underlying theme in this review. Here, we will first give an overview of the basic properties of vectored vaccines, followed by an introduction to the characteristics of adenoviral vectors and previously tested modifications of the vector backbone and expression cassettes, with a focus on how they can contribute to increased vaccine cost-effectiveness. Finally, we will highlight a few successful examples of research that have attempted to improve the use of adenoviral-based vaccines by improving the transgene immunogenicity.
Collapse
Affiliation(s)
- Cyrielle Fougeroux
- Department of Immunology and Microbiology, Copenhagen University, København K 1014, Denmark.
| | - Peter J Holst
- Department of Immunology and Microbiology, Copenhagen University, København K 1014, Denmark.
| |
Collapse
|