1
|
Iqbal S, Xu J, Saleem Arif M, Shakoor A, Worthy FR, Gui H, Khan S, Bu D, Nader S, Ranjitkar S. Could soil microplastic pollution exacerbate climate change? A meta-analysis of greenhouse gas emissions and global warming potential. ENVIRONMENTAL RESEARCH 2024; 252:118945. [PMID: 38631466 DOI: 10.1016/j.envres.2024.118945] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/26/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Microplastics pollution and climate change are primarily investigated in isolation, despite their joint threat to the environment. Greenhouse gases (GHGs) are emitted during: the production of plastic and rubber, the use and degradation of plastic, and after contamination of environment. This is the first meta-analysis to assess underlying causal relationships and the influence of likely mediators. We included 60 peer-reviewed empirical studies; estimating GHGs emissions effect size and global warming potential (GWP), according to key microplastics properties and soil conditions. We investigated interrelationships with microbe functional gene expression. Overall, microplastics contamination was associated with increased GHGs emissions, with the strongest effect (60%) on CH4 emissions. Polylactic-acid caused 32% higher CO2 emissions, but only 1% of total GWP. Phenol-formaldehyde had the greatest (175%) GWP via 182% increased N2O emissions. Only polystyrene resulted in reduced GWP by 50%, due to N2O mitigation. Polyethylene caused the maximum (60%) CH4 emissions. Shapes of microplastics differed in GWP: fiber had the greatest GWP (66%) whereas beads reduced GWP by 53%. Films substantially increased emissions of all GHGs: 14% CO2, 10% N2O and 60% CH4. Larger-sized microplastics had higher GWP (125%) due to their 9% CO2 and 63% N2O emissions. GWP rose sharply if soil microplastics content exceeded 0.5%. Higher CO2 emissions, ranging from 4% to 20%, arose from soil which was either fine, saturated or had high-carbon content. Higher N2O emissions, ranging from 10% to 95%, arose from soils that had either medium texture, saturated water content or low-carbon content. Both CO2 and N2O emissions were 43%-56% higher from soils with neutral pH. We conclude that microplastics contamination can cause raised GHGs emissions, posing a risk of exacerbating climate-change. We show clear links between GHGs emissions, microplastics properties, soil characteristics and soil microbe functional gene expression. Further research is needed regarding underlying mechanisms and processes.
Collapse
Affiliation(s)
- Shahid Iqbal
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China; Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Science, Honghe, 654400, Yunnan, China.
| | - Jianchu Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China; Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Science, Honghe, 654400, Yunnan, China; East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming, Yunnan, China
| | - Muhammad Saleem Arif
- Department of Environmental Sciences, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Awais Shakoor
- Soils West, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA, 6105, Australia; Teagasc, Environment, Soils and Land Use Department, Johnstown Castle, Co, Wexford, Y35 Y521, Ireland; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Fiona R Worthy
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Heng Gui
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China; Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Science, Honghe, 654400, Yunnan, China
| | - Sehroon Khan
- Department of Biotechnology, Faculty of Natural Sciences, University of Science and Technology Bannu, Bannu Township, 28100, Bannu, Khyber Pakhtunhuwa, Pakistan
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Joint Laboratory on Integrated Crop-Tree-Livestock Systems, Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR), And World Agroforestry Center (ICRAF), Beijing, 100193, China
| | - Sadia Nader
- Department of Biotechnology, Faculty of Natural Sciences, University of Science and Technology Bannu, Bannu Township, 28100, Bannu, Khyber Pakhtunhuwa, Pakistan
| | - Sailesh Ranjitkar
- N. Gene Solution of Natural Innovation, Kathmandu, Nepal; School of Development Studies, Lumbini Buddhist University, Devdaha, Nepal; MICD, Faculty of Humanities and Social Science, Mid-West University, Lalitpur, Nepal
| |
Collapse
|
2
|
Kabange NR, Mun BG, Lee SM, Kwon Y, Lee D, Lee GM, Yun BW, Lee JH. Nitric oxide: A core signaling molecule under elevated GHGs (CO 2, CH 4, N 2O, O 3)-mediated abiotic stress in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:994149. [PMID: 36407609 PMCID: PMC9667792 DOI: 10.3389/fpls.2022.994149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Nitric oxide (NO), an ancient molecule with multiple roles in plants, has gained momentum and continues to govern plant biosciences-related research. NO, known to be involved in diverse physiological and biological processes, is a central molecule mediating cellular redox homeostasis under abiotic and biotic stresses. NO signaling interacts with various signaling networks to govern the adaptive response mechanism towards stress tolerance. Although diverging views question the role of plants in the current greenhouse gases (GHGs) budget, it is widely accepted that plants contribute, in one way or another, to the release of GHGs (carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and ozone (O3)) to the atmosphere, with CH4 and N2O being the most abundant, and occur simultaneously. Studies support that elevated concentrations of GHGs trigger similar signaling pathways to that observed in commonly studied abiotic stresses. In the process, NO plays a forefront role, in which the nitrogen metabolism is tightly related. Regardless of their beneficial roles in plants at a certain level of accumulation, high concentrations of CO2, CH4, and N2O-mediating stress in plants exacerbate the production of reactive oxygen (ROS) and nitrogen (RNS) species. This review assesses and discusses the current knowledge of NO signaling and its interaction with other signaling pathways, here focusing on the reported calcium (Ca2+) and hormonal signaling, under elevated GHGs along with the associated mechanisms underlying GHGs-induced stress in plants.
Collapse
Affiliation(s)
- Nkulu Rolly Kabange
- Department of Southern Area Crop Science, National Institute of Crop Science Rural Development Administration (RDA), Miryang, South Korea
| | - Bong-Gyu Mun
- Laboratory of Molecular Pathology and Plant Functional Genomics, Kyungpook National University, Daegu, South Korea
| | - So-Myeong Lee
- Department of Southern Area Crop Science, National Institute of Crop Science Rural Development Administration (RDA), Miryang, South Korea
| | - Youngho Kwon
- Department of Southern Area Crop Science, National Institute of Crop Science Rural Development Administration (RDA), Miryang, South Korea
| | - Dasol Lee
- Laboratory of Molecular Pathology and Plant Functional Genomics, Kyungpook National University, Daegu, South Korea
| | - Geun-Mo Lee
- Laboratory of Molecular Pathology and Plant Functional Genomics, Kyungpook National University, Daegu, South Korea
| | - Byung-Wook Yun
- Laboratory of Molecular Pathology and Plant Functional Genomics, Kyungpook National University, Daegu, South Korea
| | - Jong-Hee Lee
- Department of Southern Area Crop Science, National Institute of Crop Science Rural Development Administration (RDA), Miryang, South Korea
| |
Collapse
|
3
|
Qin Y, Xi B, Sun X, Zhang H, Xue C, Wu B. Methane Emission Reduction and Biological Characteristics of Landfill Cover Soil Amended With Hydrophobic Biochar. Front Bioeng Biotechnol 2022; 10:905466. [PMID: 35757810 PMCID: PMC9213677 DOI: 10.3389/fbioe.2022.905466] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Biochar-amended landfill cover soil (BLCS) can promote CH4 and O2 diffusion, but it increases rainwater entry in the rainy season, which is not conducive to CH4 emission reduction. Hydrophobic biochar–amended landfill cover soil (HLCS) was prepared to investigate the changes in CH4 emission reduction and biological characteristics, and BLCS was prepared as control. Results showed that rainwater retention time in HLCS was reduced by half. HLCS had a higher CH4 reduction potential, achieving 100% CH4 removal at 25% CH4 content of landfill gas, and its main contributors to CH4 reduction were found to be at depths of 10–30 cm (upper layer) and 50–60 cm (lower layer). The relative abundances of methane-oxidizing bacteria (MOB) in the upper and lower layers of HLCS were 55.93% and 46.93%, respectively, higher than those of BLCS (50.80% and 31.40%, respectively). Hydrophobic biochar amended to the landfill cover soil can realize waterproofing, ventilation, MOB growth promotion, and efficient CH4 reduction.
Collapse
Affiliation(s)
- Yongli Qin
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Beidou Xi
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaojie Sun
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Hongxia Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Chennan Xue
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Beibei Wu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| |
Collapse
|
4
|
Glodowska M, Welte CU, Kurth JM. Metabolic potential of anaerobic methane oxidizing archaea for a broad spectrum of electron acceptors. Adv Microb Physiol 2022; 80:157-201. [PMID: 35489791 DOI: 10.1016/bs.ampbs.2022.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Methane (CH4) is a potent greenhouse gas significantly contributing to the climate warming we are currently facing. Microorganisms play an important role in the global CH4 cycle that is controlled by the balance between anaerobic production via methanogenesis and CH4 removal via methanotrophic oxidation. Research in recent decades advanced our understanding of CH4 oxidation, which until 1976 was believed to be a strictly aerobic process. Anaerobic oxidation of methane (AOM) coupled to sulfate reduction is now known to be an important sink of CH4 in marine ecosystems. Furthermore, in 2006 it was discovered that anaerobic CH4 oxidation can also be coupled to nitrate reduction (N-DAMO), demonstrating that AOM may be much more versatile than previously thought and linked to other electron acceptors. In consequence, an increasing number of studies in recent years showed or suggested that alternative electron acceptors can be used in the AOM process including FeIII, MnIV, AsV, CrVI, SeVI, SbV, VV, and BrV. In addition, humic substances as well as biochar and perchlorate (ClO4-) were suggested to mediate AOM. Anaerobic methanotrophic archaea, the so-called ANME archaea, are key players in the AOM process, yet we are still lacking deeper understanding of their metabolism, electron acceptor preferences and their interaction with other microbial community members. It is still not clear whether ANME archaea can oxidize CH4 and reduce metallic electron acceptors independently or via electron transfer to syntrophic partners, interspecies electron transfer, nanowires or conductive pili. Therefore, the aim of this review is to summarize and discuss the current state of knowledge about ANME archaea, focusing on their physiology, metabolic flexibility and potential to use various electron acceptors.
Collapse
Affiliation(s)
- Martyna Glodowska
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands.
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands.
| | - Julia M Kurth
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Shakoor A, Arif MS, Shahzad SM, Farooq TH, Ashraf F, Altaf MM, Ahmed W, Tufail MA, Ashraf M. Does biochar accelerate the mitigation of greenhouse gaseous emissions from agricultural soil? - A global meta-analysis. ENVIRONMENTAL RESEARCH 2021; 202:111789. [PMID: 34333013 DOI: 10.1016/j.envres.2021.111789] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Greenhouse gaseous (GHGs) emissions from cropland soils are one of the major contributors to global warming. However, the extent and pattern of these climatic breakdowns are usally determined by the management practices in-place. The use of biochar on cropland soils holds a great promise for increasing the overall crop productivity. Nevertheless, biochar application to agricultural soils has grown in popularity as a strategy to off-set the negative feedback associated with agriculture GHGs emissions, i.e., CO2 (carbon dioxide), CH4 (methane), and N2O (nitrous oxide). Despite increasing efforts to uncover the potential of biochar to mitigate the farmland GHGs effects, there has been little synthesis of how different types of biochar affect GHGs fluxes from cropland soils under varied experimental conditions. Here, we presented a meta-analysis of the interactions between biochar and GHGs emissions across global cropland soils, with field experiments showing the strongest GHG mitigation potential, i.e. CO2 (RR = -0.108) and CH4 (RR = -0.399). The biochar pyrolysis temperature, feedstock, C: N ratio, and pH were also found to be important factors influencing GHGs emissions. A prominent reduction in N2O (RR = -0.13) and CH4 (RR = -1.035) emissions was observed in neutral soils (pH = 6.6-7.3), whereas acidic soils (pH ≤ 6.5) accounted for the strongest mitigation effect on CO2 compared to N2O and CH4 emissions. We also found that a biochar application rate of 30 t ha-1 was best for mitigating GHGs emissions while achieving optimal crop yield. According to our meta-analysis, maize crop receiving biochar amendment showed a significant mitigation potential for CO2, N2O, and CH4 emissions. On the other hand, the use of biochar had shown significant impact on the global warming potential (GWP) of total GHGs emissions. The current data synthesis takes the lead in analyzing emissions status and mitigation potential for three of the most common GHGs from cropland soils and demonstrates that biochar application can significantly reduce the emissions budget from agriculture.
Collapse
Affiliation(s)
- Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Avinguda Alcalde Rovira Roure 191, 25198, Lleida, Spain.
| | - Muhammad Saleem Arif
- Department of Environmental Sciences & Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Sher Muhammad Shahzad
- Department of Soil and Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha, 40100, Punjab, Pakistan
| | - Taimoor Hassan Farooq
- Bangor College China, a Joint Unit of Bangor University, Wales, UK and Central South University of Forestry and Technology, Changsha 410004, China
| | - Fatima Ashraf
- Department of Chemistry, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Mohsin Altaf
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Waqas Ahmed
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Muhammad Aammar Tufail
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123, Trento, Italy
| | - Muhammad Ashraf
- Department of Soil Science, Faculty of Agriculture, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| |
Collapse
|
6
|
Yin X, Peñuelas J, Sardans J, Xu X, Chen Y, Fang Y, Wu L, Singh BP, Tavakkoli E, Wang W. Effects of nitrogen-enriched biochar on rice growth and yield, iron dynamics, and soil carbon storage and emissions: A tool to improve sustainable rice cultivation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117565. [PMID: 34182398 DOI: 10.1016/j.envpol.2021.117565] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/19/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Biochar is often applied to paddy soils as a soil improver, as it retains nutrients and increases C sequestration; as such, it is a tool in the move towards C-neutral agriculture. Nitrogen (N) fertilizers have been excessively applied to rice paddies, particularly in small farms in China, because N is the major limiting factor for rice production. In paddy soils, dynamic changes in iron (Fe) continuously affect soil emissions of methane (CH4) and carbon dioxide (CO2); however, the links between Fe dynamics and greenhouse gas emissions, dissolved organic carbon (DOC), and rice yields following application of biochar remain unclear. The aims of this study were to examine the effects of two rates of nitrogen (N)-enriched biochar (4 and 8 t ha-1 y-1) on paddy soil C emissions and storage, rice yields, and Fe dynamics in subtropical early and late rice growing seasons. Field application of N-enriched biochar at 4 and 8 t ha-1 increased C emissions in early and late rice, whereas application at 4 t ha-1 significantly increased rice yields. The results of a culture experiment and a field experiment showed that the application of N-enriched biochar increased soil Fe2+concentration. There were positive correlations between Fe2+concentrations and soil CO2, CH4, and total C emissions, and with soil DOC concentrations. On the other way around, these correlations were negative for soil Fe3+concentrations. In the soil culture experiment, under the exclusion of plant growth, N-enriched biochar reduced cumulative soil emissions of CH4 and CO2. We conclude that moderate inputs of N-rich biochar (4 t ha-1) increase rice crop yield and biomass, and soil DOC concentrations, while moderating soil cumulative C emissions, in part, by the impacts of biochar on soil Fe dynamics. We suggest that water management strategies, such as dry-wet cycles, should be employed in rice cultivation to increase Fe2+ oxidation for the inhibition of soil CH4 and CO2 production. Overall, we showed that application of 4 t ha-1 of N-enriched biochar may represent a potential tool to improve sustainable food production and security, while minimizing negative environmental impacts.
Collapse
Affiliation(s)
- Xiaolei Yin
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain; King Abdelaziz University, P.O.Box 80216, Jeddah, 21589, Saudi Arabia.
| | - Xuping Xu
- College of Life Science, Fujian Normal University, Fuzhou, 350108, China
| | - Youyang Chen
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
| | - Yunying Fang
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, 2568, Australia
| | - Liangquan Wu
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bhupinder Pal Singh
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, 2568, Australia
| | - Ehsan Tavakkoli
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia
| | - Weiqi Wang
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| |
Collapse
|
7
|
Plaimart J, Acharya K, Mrozik W, Davenport RJ, Vinitnantharat S, Werner D. Coconut husk biochar amendment enhances nutrient retention by suppressing nitrification in agricultural soil following anaerobic digestate application. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115684. [PMID: 33010549 PMCID: PMC7762785 DOI: 10.1016/j.envpol.2020.115684] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/31/2020] [Accepted: 09/15/2020] [Indexed: 05/29/2023]
Abstract
Anaerobic digestate and biochar are by-products of the biogasification and pyrolysis of agricultural wastes. This study tested the hypothesis that combined application of anaerobic pig/cattle manure digestate and coconut husk (CH) biochar can improve soil nutrient conditions, whilst minimizing atmospheric and groundwater pollution risks. Microcosms simulated digestate application to agricultural soil with and without CH biochar. Ammonia volatilization and nutrient leaching were quantified after simulated heavy rainfalls. Archaeal and bacterial community and abundance changes in soils were quantified via next generation sequencing and qPCR of 16S rRNA genes. Nitrifying bacteria were additionally quantified by qPCR of functional genes. It was found that CH biochar retarded nitrate leaching via slower nitrification in digestate-amended soil. CH biochar reduced both nitrifying archaea and bacteria abundance in soil by 71-83 percent in the top 4 cm soil layer and 66-80 percent in the deeper soil layer one month after the digestate application. Methanotroph abundances were similarly reduced in the CH biochar amended soils. These findings demonstrate combined benefits of anaerobic digestate and CH biochar application which are relevant for the development of a more circular rural economy with waste minimization, renewable energy production, nutrient recycling and reduced water pollution from agricultural land.
Collapse
Affiliation(s)
- Jidapa Plaimart
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Kishor Acharya
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Wojciech Mrozik
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Russell J Davenport
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Soydoa Vinitnantharat
- Environmental Technology Program, School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - David Werner
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom.
| |
Collapse
|
8
|
Shakoor A, Ashraf F, Shakoor S, Mustafa A, Rehman A, Altaf MM. Biogeochemical transformation of greenhouse gas emissions from terrestrial to atmospheric environment and potential feedback to climate forcing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38513-38536. [PMID: 32770337 DOI: 10.1007/s11356-020-10151-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Carbon dioxide (CO2) is mainly universal greenhouse gas associated with climate change. However, beyond CO2, some other greenhouse gases (GHGs) like methane (CH4) and nitrous oxide (N2O), being two notable gases, contribute to global warming. Since 1900, the concentrations of CO2 and non-CO2 GHG emissions have been elevating, and due to the effects of the previous industrial revolution which is responsible for climate forcing. Globally, emissions of CO2, CH4, and N2O from agricultural sectors are increasing as around 1% annually. Moreover, deforestation also contributes 12-17% of total global GHGs. Perhaps, the average temperature is likely to increase globally, at least 2 °C by 2100-by mid-century. These circumstances are responsible for climate forcing, which is the source of various human health diseases and environmental risks. From agricultural soils, rhizospheric microbial communities have a significant role in the emissions of greenhouse gases. Every year, microbial communities release approximately 1.5-3 billion tons of carbon into the atmospheric environment. Microbial nitrification, denitrification, and respiration are the essential processes that affect the nitrogen cycle in the terrestrial environment. In the twenty-first century, climate change is the major threat faced by human beings. Climate change adversely influences human health to cause numerous diseases due to their direct association with climate change. This review highlights the different anthropogenic GHG emission sources, the response of microbial communities to climate change, climate forcing potential, and mitigation strategies through different agricultural management approaches and microbial communities.
Collapse
Affiliation(s)
- Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Avinguda Alcalde Rovira Roure 191, 25198, Lleida, Spain.
| | - Fatima Ashraf
- Department of Chemistry, Lahore College for Women University, Lahore, Pakistan
| | - Saba Shakoor
- Department of Zoology, The Women University Multan, Multan, Pakistan
| | - Adnan Mustafa
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Abdul Rehman
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Muhammad Mohsin Altaf
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Ecology and Environment, Hainan University, Haikou, 570228, People's Republic of China
| |
Collapse
|
9
|
Wu Z, Song Y, Shen H, Jiang X, Li B, Xiong Z. Biochar can mitigate methane emissions by improving methanotrophs for prolonged period in fertilized paddy soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:1038-1046. [PMID: 31434181 DOI: 10.1016/j.envpol.2019.07.073] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/29/2019] [Accepted: 07/14/2019] [Indexed: 05/18/2023]
Abstract
Biochar application to fertilized paddy soils has been recommended as an effective countermeasure to mitigate methane (CH4) emissions, but its mechanism and effective duration has not yet been adequately elucidated. A laboratory incubation experiment was performed to gain insight into the combined effects of fresh and six-year aged biochar on potential methane oxidation (PMO) in paddy soils with ammonium or nitrate-amendment. Results showed that both ammonium and nitrate were essential for CH4 oxidation though high ammonium (4 mM) inhibited PMO as compared to low ammonium (1 mM and 2 mM), and that nitrate was better in promoting PMO than ammonium. Moreover, ammonium-amendment promoted type I pmoA, and nitrate-amendment enhanced type II pmoA abundance. Both fresh and aged biochar increased PMO as well as nitrification by enhancing the total, type I and type II methanotrophs as compared to the control. Increased soil PMO with mineral N input in both six-year aged biochar and fresh biochar amendment, indicating that biochar mitigated CH4 by promoting PMO for prolonged period in fertilized paddy soils.
Collapse
Affiliation(s)
- Zhen Wu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanfeng Song
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Haojie Shen
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xueyang Jiang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Li
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhengqin Xiong
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Zhang X, Xia J, Pu J, Cai C, Tyson GW, Yuan Z, Hu S. Biochar-Mediated Anaerobic Oxidation of Methane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6660-6668. [PMID: 31099557 DOI: 10.1021/acs.est.9b01345] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biochar was recently identified as an effective soil amendment for CH4 capture. Corresponding mechanisms are currently recognized to be from physical properties of biochar, providing a favorable growth environment for aerobic methanotrophs which perform aerobic methane (CH4) oxidation. However, our study shows that the chemical reactivity of biochar can also stimulate anaerobic oxidation of CH4 (AOM) by anaerobic methanotrophic archaea (ANME) of ANME-2d, which proposes another plausible mechanism for CH4 mitigation by biochar amendment in anaerobic environments. It was found that, by adding biochar as the sole electron acceptor in an anaerobic environment, CH4 was biologically oxidized, with CO2 production of 106.3 ± 5.1 μmol g-1 biochar. In contrast, limited CO2 production was observed with chemically reduced biochar amendment. This biological nature of the process was confirmed by mcr gene transcript abundance as well as sustained dominance of ANME-2d in the microbial community during microbial incubations with active biochar amendment. Combined FTIR and XPS analyses demonstrated that the redox activity of biochar is related to its oxygen-based functional groups. On the basis of microbial community evolution as well as intermediate production during incubation, different pathways in terms of direct or indirect interactions between ANME-2d and biochar were proposed for biochar-mediated AOM.
Collapse
Affiliation(s)
- Xueqin Zhang
- Advanced Water Management Centre, Faculty of Engineering, Architecture and Information Technology , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| | - Jun Xia
- Advanced Water Management Centre, Faculty of Engineering, Architecture and Information Technology , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| | - Jiaoyang Pu
- Advanced Water Management Centre, Faculty of Engineering, Architecture and Information Technology , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| | - Chen Cai
- Advanced Water Management Centre, Faculty of Engineering, Architecture and Information Technology , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| | - Gene W Tyson
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences , The University of Queensland , Brisbane , Queensland , Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, Faculty of Engineering, Architecture and Information Technology , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| | - Shihu Hu
- Advanced Water Management Centre, Faculty of Engineering, Architecture and Information Technology , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| |
Collapse
|
11
|
Oduor CO, Karanja N, Onwong’a R, Mureithi S, Pelster D, Nyberg G. Pasture enclosures increase soil carbon dioxide flux rate in Semiarid Rangeland, Kenya. CARBON BALANCE AND MANAGEMENT 2018; 13:24. [PMID: 30535874 PMCID: PMC6286293 DOI: 10.1186/s13021-018-0114-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Pasture enclosures play an important role in rehabilitating the degraded soils and vegetation, and may also influence the emission of key greenhouse gasses (GHGs) from the soil. However, no study in East Africa and in Kenya has conducted direct measurements of GHG fluxes following the restoration of degraded communal grazing lands through the establishment of pasture enclosures. A field experiment was conducted in northwestern Kenya to measure the emission of CO2, CH4 and N2O from soil under two pasture restoration systems; grazing dominated enclosure (GDE) and contractual grazing enclosure (CGE), and in the adjacent open grazing rangeland (OGR) as control. Herbaceous vegetation cover, biomass production, and surface (0-10 cm) soil organic carbon (SOC) were also assessed to determine their relationship with the GHG flux rate. RESULTS Vegetation cover was higher enclosure systems and ranged from 20.7% in OGR to 40.2% in GDE while aboveground biomass increased from 72.0 kg DM ha-1 in OGR to 483.1 and 560.4 kg DM ha-1 in CGE and GDE respectively. The SOC concentration in GDE and CGE increased by an average of 27% relative to OGR and ranged between 4.4 g kg-1 and 6.6 g kg-1. The mean emission rates across the grazing systems were 18.6 μg N m-2 h-1, 50.1 μg C m-2 h-1 and 199.7 mg C m-2 h-1 for N2O, CH4, and CO2, respectively. Soil CO2 emission was considerably higher in GDE and CGE systems than in OGR (P < 0.001). However, non-significantly higher CH4 and N2O emissions were observed in GDE and CGE compared to OGR (P = 0.33 and 0.53 for CH4 and N2O, respectively). Soil moisture exhibited a significant positive relationship with CO2, CH4, and N2O, implying that it is the key factor influencing the flux rate of GHGs in the area. CONCLUSIONS The results demonstrated that the establishment of enclosures in tropical rangelands is a valuable intervention for improving pasture production and restoration of surface soil properties. However, a long-term study is required to evaluate the patterns in annual CO2, N2O, CH4 fluxes from soils and determine the ecosystem carbon balance across the pastoral landscape.
Collapse
Affiliation(s)
- Collins O. Oduor
- Department of Land Resource Management and Agricultural Technology (LARMAT), University of Nairobi, P. O. Box 29053-00625, Nairobi, Kenya
| | - Nancy Karanja
- Department of Land Resource Management and Agricultural Technology (LARMAT), University of Nairobi, P. O. Box 29053-00625, Nairobi, Kenya
| | - Richard Onwong’a
- Department of Land Resource Management and Agricultural Technology (LARMAT), University of Nairobi, P. O. Box 29053-00625, Nairobi, Kenya
| | - Stephen Mureithi
- Department of Land Resource Management and Agricultural Technology (LARMAT), University of Nairobi, P. O. Box 29053-00625, Nairobi, Kenya
| | - David Pelster
- Mazingira Centre, International Livestock Research Institute, P. O. Box 30709-00100, Nairobi, Kenya
- Agriculture and Agri-Food Canada, Science and Technology Branch, Quebec City, Canada
| | - Gert Nyberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), 90183 Umea, Sweden
| |
Collapse
|
12
|
Duan P, Zhang X, Zhang Q, Wu Z, Xiong Z. Field-aged biochar stimulated N 2O production from greenhouse vegetable production soils by nitrification and denitrification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:1303-1310. [PMID: 30045510 DOI: 10.1016/j.scitotenv.2018.06.166] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Evidence suggests that biochar is among ideal strategies for climate change mitigation and sustainable agriculture. However, the effects of soil aging on the physicochemical characteristics of biochar and nitrous oxide (N2O) production remain elusive. We set up a microcosm experiment with two greenhouse vegetable production (GVP) (alkaline and acid) soils by using the 15N tracing technique and quantitative polymerase chain reaction (qPCR) to investigate the mechanisms of N2O production as affected by fresh (FB) and aged biochar (AB) amendment. The results showed that AB increased the specific surface area, organic C, ammonium sorption capacity and cation exchange capacity, whereas decreased the pore size and pH relative to the FB. Results also demonstrated that FB effectively decreased N2O emissions from both soils while it enhanced the abundance of nirK and nosZI genes in alkaline soil and reduced the abundance of ammonia-oxidizing bacteria (AOB) amoA and increased nirK and nosZII genes in acid soil. In contrast, AB significantly stimulated nitrification and denitrification in both soils and thus significantly increased the N2O emissions by 43-78%. Furthermore, AB induced increases in ammonia-oxidizing archaeal (AOA) amoA and nirK gene abundances in alkaline soil and fungal nirK gene abundances in acid soil. These results suggest that AB may not be suitable for the mitigation of soil N2O emissions in GVP soils thus improving our understanding of the potential mechanism of biochar in N2O emissions.
Collapse
Affiliation(s)
- Pengpeng Duan
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Zhang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qianqian Zhang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Wu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengqin Xiong
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
13
|
Wu Z, Zhang X, Dong Y, Xu X, Xiong Z. Microbial explanations for field-aged biochar mitigating greenhouse gas emissions during a rice-growing season. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31307-31317. [PMID: 30194577 DOI: 10.1007/s11356-018-3112-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
Knowledge about the impacts of fresh and field-aged biochar amendments on greenhouse gas (CH4, N2O) emissions is limited. A field experiment was initiated in 2012 to study the effects of fresh and field-aged biochar additions on CH4 and N2O emissions and the associated microbial activity during the entire rice-growing season in typical rice-wheat rotation system in Southeast China. CH4 and N2O fluxes were monitored, and the abundance of methanogen (mcrA), methanotrophy (pmoA), ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), nitrite reductase (nirS, nirK), N2O reductase (nosZ), and potential soil enzyme activities related to CH4 and N2O were simultaneously measured throughout different rice developmental stages. There were three treatments: control (urea without biochar), fresh BC (urea with fresh biochar added in 2015), and aged BC (urea with 3-year field-aged biochar added in 2012). Results showed that field-aged biochar significantly decreased seasonal CH4 emissions by 16.8% in relation to the fresh biochar, though no significant differences were detected between biochars and control treatment. The structural equation model indicated that soil pH, microbial biomass carbon (MBC), pmoA, and mcrA were the main factors directly influenced by fresh and aged biochar amendments; aged biochar showed a negative effect while fresh biochar showed positive effects on CH4 fluxes. Both fresh and field-aged biochar obviously increased AOA and AOB abundances and reduced the (nirS+nirK)/nosZ ratio during the entire rice-growing season, although no significant effects were observed on seasonal N2O emissions. Therefore, biochar amendment produced long-term effects on total CH4 and N2O emissions through observed influences of soil pH and functional gene abundance. The figure shows how fresh and field-aged biochar differentially affected CH4 production and oxidation and N2O production and reduction through related functional gene abundances. Blue arrows indicate suppressing while pink arrows indicate promoting effect.
Collapse
Affiliation(s)
- Zhen Wu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Zhang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yubing Dong
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Xu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhengqin Xiong
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
14
|
Effect of Biochar Amendment on Methane Emissions from Paddy Field under Water-Saving Irrigation. SUSTAINABILITY 2018. [DOI: 10.3390/su10051371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Walsh OS, Shafian S, Christiaens RJ. Nitrogen Fertilizer Management in Dryland Wheat Cropping Systems. PLANTS (BASEL, SWITZERLAND) 2018; 7:E9. [PMID: 29382118 PMCID: PMC5874598 DOI: 10.3390/plants7010009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/29/2017] [Accepted: 01/25/2018] [Indexed: 11/25/2022]
Abstract
Wheat is the most widely cultivated food crop in the world, which provides nutrition to most of the world population and is well adapted to a wide range of environmental conditions. Timely and efficient rates of nitrogen (N) application are vital for increasing wheat grain yield and protein content, and maintaining environmental sustainability. The goal of this study was to investigate the effect of using different rates and split application of N on the performance of spring wheat in dryland cropping systems. The experiment was conducted in three different locations in Montana and Idaho during two consecutive growing seasons. A split-plot experimental design was used with three at planting N fertilization application (0, 90 and 135 kg N ha-1) and two topdressing N fertilization strategies as treatments. A number of variables such as grain yield (GY), protein content (GP) in the grains and N uptake (NUP) were assessed. There was a significant effect of climate, N rate, and time application on the wheat performance. The results showed that at-planting N fertilizer application of 90 kg N ha-1 has significantly increased GY, GP and NUP. On the other hand, for these site-years, increasing at-planting N fertilizer rate to 135 kg N ha-1 did not further enhance wheat GY, GP and NUP values. For all six site-years, topdress N fertilizer applied at flowering did not improve wheat GY, GP and NUP compared to at-planting fertilizer alone. As the risk of yield loss is minimal with split N application, from these results we concluded the best treatment for study is treatments that had received 90 kg N ha-1 split as 45 kg N ha-1 at planting and 45 kg N ha-1 at flowering.
Collapse
Affiliation(s)
- Olga S Walsh
- Department of Plant Sciences, Southwest Research and Extension Center, University of Idaho, Parma, ID 83660, USA.
| | - Sanaz Shafian
- Department of Plant Sciences, Southwest Research and Extension Center, University of Idaho, Parma, ID 83660, USA.
| | | |
Collapse
|
16
|
Sha Z, Chu Q, Zhao Z, Yue Y, Lu L, Yuan J, Cao L. Variations in nutrient and trace element composition of rice in an organic rice-frog coculture system. Sci Rep 2017; 7:15706. [PMID: 29146988 PMCID: PMC5691045 DOI: 10.1038/s41598-017-15658-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 10/31/2017] [Indexed: 11/20/2022] Open
Abstract
Introducing frogs into paddy fields can control pests and diseases, and organic farming can improve soil fertility and rice growth. The aim of this 2-year field study was compare the yield and elemental composition of rice between an organic farming system including frogs (ORF) and a conventional rice culture system (CR). The grain yields were almost the same in the ORF system and the CR system. The ORF significantly increased the contents of phosphorus (P), ion (Fe), zinc (Zn), molybdenum (Mo) and selenium (Se) in rice grain at one or both years. However, the ORF system decreased the calcium (Ca) content in grice grains, and increased the concentration of cadmium, which is potentially toxic. A principal components analysis showed the main impacts of ORF agro-ecosystem on the rice grain ionome was to increase the concentration of P and trace metal(loid)s. The results showed that the ORF system is an ecologically, friendly strategy to avoid excessive use of chemical fertilizers, herbicides and pesticides without decreasing yields, and to improve the nutritional status of rice by increasing the micronutrient contents. The potential risks of increasing Cd contents in rice grain should be addressed if this cultivation pattern is used in the long term.
Collapse
Affiliation(s)
- Zhimin Sha
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qingnan Chu
- Institue of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China
| | - Zheng Zhao
- Eco-environmental Protection Institute of Shanghai Academy of Agriculture Science, Shanghai, 201403, China
| | - Yubo Yue
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linfang Lu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Yuan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linkui Cao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|