1
|
Kumar R, Kumar V, Rich C, Lemmerhirt D, Balendra, Fowlkes JB, Sahani AK. Machine learning models based on FEM simulation of hoop mode vibrations to enable ultrasonic cuffless measurement of blood pressure. Med Biol Eng Comput 2025; 63:1413-1426. [PMID: 39760966 DOI: 10.1007/s11517-024-03268-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025]
Abstract
Blood pressure (BP) is one of the vital physiological parameters, and its measurement is done routinely for almost all patients who visit hospitals. Cuffless BP measurement has been of great research interest over the last few years. In this paper, we aim to establish a method for cuffless measurement of BP using ultrasound. In this method, the arterial wall is pushed with an acoustic radiation force impulse (ARFI). After the completion of the ARFI pulse, the artery undergoes impulsive unloading which stimulates a hoop mode vibration. We designed two machine learning (ML) models which make it possible to estimate the internal pressure of the artery using ultrasonically measurable parameters. To generate the training data for the ML models, we did extensive finite element method (FEM) eigen frequency simulations for different tubes under pressure by sweeping through a range of values for inner lumen diameter (ILD), tube density (TD), elastic modulus, internal pressure (IP), tube length, and Poisson's ratio. Through image processing applied on images of different eigen modes supported for each simulated case, we identified its hoop mode frequency (HMF). Two different ML models were designed based on the simulated data. One is a four-parameter model (FPM) that takes tube thickness (TT), TD, ILD, and HMF as the inputs and gives out IP as output. Second is a three-parameter model (TPM) that takes TT, ILD, and HMF as inputs and IP as output. The accuracy of these models was assessed using simulated data, and their performance was confirmed through experimental verification on two arterial phantoms across a range of pressure values. The first prediction model (FPM) exhibited a mean absolute percentage error (MAPE) of 5.63% for the simulated data and 3.68% for the experimental data. The second prediction model (TPM) demonstrated a MAPE of 6.5% for simulated data and 8.73% for experimental data. We were able to create machine learning models that can measure pressure within an elastic tube through ultrasonically measurable parameters and verified their performance to be adequate for BP measurement applications. This work establishes a pathway for cuffless, continuous, real-time, and non-invasive measurement of BP using ultrasound.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Bioengineering, University of Pittsburgh, Swanson School of Engineering, 302 Benedum Hall 3700 O'Hara Street, Pittsburgh, PA, 15260, USA.
| | - Vishal Kumar
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab, India
| | | | | | - Balendra
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab, India
| | - J Brian Fowlkes
- Basic Radiological Science Division, University of Michigan, Ann Arbor, MI, USA
| | - Ashish Kumar Sahani
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab, India
| |
Collapse
|
2
|
Zienkiewicz A, Korhonen V, Kiviniemi V, Myllylä T. Continuous Estimation of Blood Pressure by Utilizing Seismocardiogram Signal Features in Relation to Electrocardiogram. BIOSENSORS 2024; 14:621. [PMID: 39727886 DOI: 10.3390/bios14120621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
There is an ongoing search for a reliable and continuous method of noninvasive blood pressure (BP) tracking. In this study, we investigate the feasibility of utilizing seismocardiogram (SCG) signals, i.e., chest motion caused by cardiac activity, for this purpose. This research is novel in examining the temporal relationship between the SCG-measured isovolumic moment and the electrocardiogram (PEPIM). Additionally, we compare these results with the traditionally measured pre-ejection period with the aortic opening marked as an endpoint (PEPAO). The accuracy of the BP estimation was evaluated beat to beat against invasively measured arterial BP. Data were collected on separate days as eighteen sets from nine subjects undergoing a medical procedure with anesthesia. Results for PEPIM showed a correlation of 0.67 ± 0.18 (p < 0.001), 0.66 ± 0.17 (p < 0.001), and 0.67 ± 0.17 (p < 0.001) when compared to systolic BP, diastolic BP, and mean arterial pressure (MAP), respectively. Corresponding results for PEPAO were equal to 0.61 ± 0.22 (p < 0.001), 0.61 ± 0.21 (p < 0.001), and 0.62 ± 0.22 (p < 0.001). Values of PEPIM were used to estimate MAP using two first-degree models, the linear regression model (achieved RMSE of 11.7 ± 4.0 mmHg) and extended model with HR (RMSE of 10.8 ± 4.2 mmHg), and two corresponding second-degree models (RMSE of 10.8 ± 3.7 mmHg and RMSE of 8.5 ± 3.4 mmHg for second-degree polynomial and second-degree extended, respectively). In the intrasubject testing of the second-degree model extended with HR based on PEPIM values, the mean error of MAP estimation in three follow-up measurements was in the range of 7.5 to 10.5 mmHg, without recalibration. This study demonstrates the method's potential for further research, particularly given that both proximal and distal pulses are measured in close proximity to the heart and cardiac output. This positioning may enhance the method's capacity to more accurately reflect central blood pressure compared to peripheral measurements.
Collapse
Affiliation(s)
- Aleksandra Zienkiewicz
- Optoelectronics and Measurement Techniques Research Unit, University of Oulu, 90570 Oulu, Finland
| | - Vesa Korhonen
- Oulu Functional Neuroimaging, Department of Diagnostic Radiology, Oulu University Hospital, 90220 Oulu, Finland
- Research Unit of Health Sciences and Technology, University of Oulu, 90220 Oulu, Finland
| | - Vesa Kiviniemi
- Oulu Functional Neuroimaging, Department of Diagnostic Radiology, Oulu University Hospital, 90220 Oulu, Finland
- Research Unit of Health Sciences and Technology, University of Oulu, 90220 Oulu, Finland
| | - Teemu Myllylä
- Optoelectronics and Measurement Techniques Research Unit, University of Oulu, 90570 Oulu, Finland
- Research Unit of Health Sciences and Technology, University of Oulu, 90220 Oulu, Finland
| |
Collapse
|
3
|
Liu SH, Wu BY, Zhu X, Chin CL. Using a Bodily Weight-Fat Scale for Cuffless Blood Pressure Measurement Based on the Edge Computing System. SENSORS (BASEL, SWITZERLAND) 2024; 24:7830. [PMID: 39686366 DOI: 10.3390/s24237830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Blood pressure (BP) measurement is a major physiological information for people with cardiovascular diseases, such as hypertension, heart failure, and atherosclerosis. Moreover, elders and patients with kidney disease and diabetes mellitus also are suggested to measure their BP every day. The cuffless BP measurement has been developed in the past 10 years, which is comfortable to users. Now, ballistocardiogram (BCG) and impedance plethysmogram (IPG) could be used to perform the cuffless BP measurement. Thus, the aim of this study is to realize edge computing for the BP measurement in real time, which includes measurements of BCG and IPG signals, digital signal process, feature extraction, and BP estimation by machine learning algorithm. This system measured BCG and IPG signals from a bodily weight-fat scale with the self-made circuits. The signals were filtered to reduce the noise and segmented by 2 s. Then, we proposed a flowchart to extract the parameter, pulse transit time (PTT), within each segment. The feature included two calibration-based parameters and one calibration-free parameter was used to estimate BP with XGBoost. In order to realize the system in STM32F756ZG NUCLEO development board, we limited the hyperparameters of XGBoost model, including maximum depth (max_depth) and tree number (n_estimators). Results show that the error of systolic blood pressure (SBP) and diastolic blood pressure (DBP) in server-based computing are 2.64 ± 9.71 mmHg and 1.52 ± 6.32 mmHg, and in edge computing are 2.2 ± 10.9 mmHg and 1.87 ± 6.79 mmHg. This proposed method significantly enhances the feasibility of bodily weight-fat scale in the BP measurement for effective utilization in mobile health applications.
Collapse
Affiliation(s)
- Shing-Hong Liu
- Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung 41349, Taiwan
| | - Bo-Yan Wu
- Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung 41349, Taiwan
| | - Xin Zhu
- Department of AI Technology Development, M&D Data Science Center, Institute of Integrated Research, Institute of Science Tokyo, Tokyo 101-0062, Japan
| | - Chiun-Li Chin
- Department of Automatic Control Engineering, Feng Chia University, Taichung 40724, Taiwan
| |
Collapse
|
4
|
Henry B, Merz M, Hoang H, Abdulkarim G, Wosik J, Schoettker P. Cuffless Blood Pressure in clinical practice: challenges, opportunities and current limits. Blood Press 2024; 33:2304190. [PMID: 38245864 DOI: 10.1080/08037051.2024.2304190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/07/2024] [Indexed: 01/22/2024]
Abstract
Background: Cuffless blood pressure measurement technologies have attracted significant attention for their potential to transform cardiovascular monitoring.Methods: This updated narrative review thoroughly examines the challenges, opportunities, and limitations associated with the implementation of cuffless blood pressure monitoring systems.Results: Diverse technologies, including photoplethysmography, tonometry, and ECG analysis, enable cuffless blood pressure measurement and are integrated into devices like smartphones and smartwatches. Signal processing emerges as a critical aspect, dictating the accuracy and reliability of readings. Despite its potential, the integration of cuffless technologies into clinical practice faces obstacles, including the need to address concerns related to accuracy, calibration, and standardization across diverse devices and patient populations. The development of robust algorithms to mitigate artifacts and environmental disturbances is essential for extracting clear physiological signals. Based on extensive research, this review emphasizes the necessity for standardized protocols, validation studies, and regulatory frameworks to ensure the reliability and safety of cuffless blood pressure monitoring devices and their implementation in mainstream medical practice. Interdisciplinary collaborations between engineers, clinicians, and regulatory bodies are crucial to address technical, clinical, and regulatory complexities during implementation. In conclusion, while cuffless blood pressure monitoring holds immense potential to transform cardiovascular care. The resolution of existing challenges and the establishment of rigorous standards are imperative for its seamless incorporation into routine clinical practice.Conclusion: The emergence of these new technologies shifts the paradigm of cardiovascular health management, presenting a new possibility for non-invasive continuous and dynamic monitoring. The concept of cuffless blood pressure measurement is viable and more finely tuned devices are expected to enter the market, which could redefine our understanding of blood pressure and hypertension.
Collapse
Affiliation(s)
- Benoit Henry
- Service of Anesthesiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Maxime Merz
- Service of Anesthesiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Harry Hoang
- Service of Anesthesiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ghaith Abdulkarim
- Neuro-Informatics Laboratory, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Jedrek Wosik
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Patrick Schoettker
- Service of Anesthesiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Wong KFM, Huang W, Ee DYH, Ng EYK. Design and validation of dual-point time-differentiated photoplethysmogram (2PPG) wearable for cuffless blood pressure estimation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 253:108251. [PMID: 38824806 DOI: 10.1016/j.cmpb.2024.108251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/02/2024] [Accepted: 05/24/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND & OBJECTIVES Measurement of blood pressure (BP) in ambulatory patients is crucial for at high-risk cardiovascular patients. A non-obtrusive, non-occluding device that continuously measures BP via photoplethysmography will enable long-term ambulatory assessment of BP. The aim of this study is to validate the metasense 2PPG cuffless wearable design for continuous BP estimation without ECG. METHODS A customized high-speed electronic optical sensor architecture with laterally spaced reflectance pulse oximetry was designed into a simple unobtrusive low-power wearable in the form of a watch. 78 volunteers with a mean age of 32.72 ± 7.4 years (21 to 64), 51% male, 49% female were recruited with ECG-2PPG signals acquired. The fiducial features of the 2PPG morphologies were then attributed to the estimator. A 9-1 K-fold cross-validation was applied in the ML. RESULTS The correlation for PTT-SBP was 0.971 and for PTT-DBP was 0.954. The mean absolute error was 3.167±1.636 mmHg for SBP and 6.4 ± 3.9 mm Hg for DBP. The ambulatory estimate for SBP and DBP for an individual over 3 days with 8-hour recordings was 0.70-0.81 for SBP and 0.42-0.51 for DBP with a ± 2.65 mmHg for SBP and ±2.02 mmHg for DBP. For SBP, 98% of metasense measurements were within 15 mm Hg and for DBP, 91% of metasense measurements were within 10 mmHg CONCLUSIONS: The metasense device provides continuous, non-invasive BP estimations that are comparable to ambulatory BP meters. The portability and unobtrusiveness of this device, as well as the ability to continuously measure BP could one day enable long-term ambulatory BP measurement for precision cardiovascular therapeutic regimens.
Collapse
Affiliation(s)
- Kei Fong Mark Wong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), Singapore
| | | | | | - Eddie Yin Kwee Ng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), Singapore.
| |
Collapse
|
6
|
Guo CY, Perng JW, Chen LC, Hsieh TL. A Hemodynamic Pulse Wave Simulator Designed for Calibration of Local Pulse Wave Velocities Measurement for Cuffless Techniques. MICROMACHINES 2023; 14:1218. [PMID: 37374803 PMCID: PMC10305378 DOI: 10.3390/mi14061218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/18/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVE Devices for cuffless blood pressure (BP) measurement have become increasingly widespread in recent years. Non-invasive continuous BP monitor (BPM) devices can diagnose potential hypertensive patients at an early stage; however, these cuffless BPMs require more reliable pulse wave simulation equipment and verification methods. Therefore, we propose a device to simulate human pulse wave signals that can test the accuracy of cuffless BPM devices using pulse wave velocity (PWV). METHODS We design and develop a simulator capable of simulating human pulse waves comprising an electromechanical system to simulate the circulatory system and an arm model-embedded arterial phantom. These parts form a pulse wave simulator with hemodynamic characteristics. We use a cuffless device for measuring local PWV as the device under test to measure the PWV of the pulse wave simulator. We then use a hemodynamic model to fit the cuffless BPM and pulse wave simulator results; this model can rapidly calibrate the cuffless BPM's hemodynamic measurement performance. RESULTS We first used multiple linear regression (MLR) to generate a cuffless BPM calibration model and then investigated differences between the measured PWV with and without MLR model calibration. The mean absolute error of the studied cuffless BPM without the MLR model is 0.77 m/s, which improves to 0.06 m/s when using the model for calibration. The measurement error of the cuffless BPM at BPs of 100-180 mmHg is 1.7-5.99 mmHg before calibration, which decreases to 0.14-0.48 mmHg after calibration. CONCLUSION This study proposes a design of a pulse wave simulator based on hemodynamic characteristics and provides a standard performance verification method for cuffless BPMs that requires only MLR modeling on the cuffless BPM and pulse wave simulator. The pulse wave simulator proposed in this study can be used to quantitively assess the performance of cuffless BPMs. The proposed pulse wave simulator is suitable for mass production for the verification of cuffless BPMs. As cuffless BPMs become increasingly widespread, this study can provide performance testing standards for cuffless devices.
Collapse
Affiliation(s)
- Cheng-Yan Guo
- Accurate Meditech Inc., New Taipei City 241406, Taiwan;
| | - Jau-Woei Perng
- Department of Mechanical and Electromechanical Engineering, National Sun Yat-sen University, 70 Lienhai Road, Kaohsiung 80424, Taiwan;
| | - Li-Ching Chen
- LAICA International Corp, New Taipei City 231, Taiwan;
| | - Tung-Li Hsieh
- Department of Electronics Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| |
Collapse
|
7
|
Liu SH, Wu YR, Chen W, Su CH, Chin CL. Using Ballistocardiogram and Impedance Plethysmogram for Minimal Contact Measurement of Blood Pressure Based on a Body Weight-Fat Scale. SENSORS (BASEL, SWITZERLAND) 2023; 23:2318. [PMID: 36850917 PMCID: PMC9966183 DOI: 10.3390/s23042318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Electronic health (eHealth) is a strategy to improve the physical and mental condition of a human, collecting daily physiological data and information from digital apparatuses. Body weight and blood pressure (BP) are the most popular and important physiological data. The goal of this study is to develop a minimal contact BP measurement method based on a commercial body weight-fat scale, capturing biometrics when users stand on it. The pulse transit time (PTT) is extracted from the ballistocardiogram (BCG) and impedance plethysmogram (IPG), measured by four strain gauges and four footpads of a commercial body weight-fat scale. Cuffless BP measurement using the electrocardiogram (ECG) and photoplethysmogram (PPG) serves as the reference method. The BP measured by a commercial BP monitor is considered the ground truth. Twenty subjects participated in this study. By the proposed model, the root-mean-square errors and correlation coefficients (r2s) of estimated systolic blood pressure and diastolic blood pressure are 7.3 ± 2.1 mmHg and 4.5 ± 1.8 mmHg, and 0.570 ± 0.205 and 0.284 ± 0.166, respectively. This accuracy level achieves the C grade of the corresponding IEEE standard. Thus, the proposed method has the potential benefit for eHealth monitoring in daily application.
Collapse
Affiliation(s)
- Shing-Hong Liu
- Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung City 41349, Taiwan
| | - Yan-Rong Wu
- Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung City 41349, Taiwan
| | - Wenxi Chen
- Biomedical Information Engineering Laboratory, The University of Aizu, Aizu-Wakamatsu City 965-8580, Japan
| | - Chun-Hung Su
- Institute of Medicine, School of Medicine, Chung-Shan Medical University, Taichung City 40201, Taiwan
- Department of Internal Medicine, Chung-Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Chiun-Li Chin
- Department of Medical Informatics, Chung-Shan Medical University, Taichung City 40201, Taiwan
| |
Collapse
|
8
|
Roy D, Mazumder O, Jaiswal D, Ghose A, Khandelwal S, Mandana K, Sinha A. In-silico cardiovascular hemodynamic model to simulate the effect of physical exercise. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Yavarimanesh M, Cheng HM, Chen CH, Sung SH, Mahajan A, Chaer RA, Shroff SG, Hahn JO, Mukkamala R. Abdominal aortic aneurysm monitoring via arterial waveform analysis: towards a convenient point-of-care device. NPJ Digit Med 2022; 5:168. [PMID: 36329099 PMCID: PMC9633589 DOI: 10.1038/s41746-022-00717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Abdominal aortic aneurysms (AAAs) are lethal but treatable yet substantially under-diagnosed and under-monitored. Hence, new AAA monitoring devices that are convenient in use and cost are needed. Our hypothesis is that analysis of arterial waveforms, which could be obtained with such a device, can provide information about AAA size. We aim to initially test this hypothesis via tonometric waveforms. We study noninvasive carotid and femoral blood pressure (BP) waveforms and reference image-based maximal aortic diameter measurements from 50 AAA patients as well as the two noninvasive BP waveforms from these patients after endovascular repair (EVAR) and from 50 comparable control patients. We develop linear regression models for predicting the maximal aortic diameter from waveform or non-waveform features. We evaluate the models in out-of-training data in terms of predicting the maximal aortic diameter value and changes induced by EVAR. The best model includes the carotid area ratio (diastolic area divided by systolic area) and normalized carotid-femoral pulse transit time ((age·diastolic BP)/(height/PTT)) as input features with positive model coefficients. This model is explainable based on the early, negative wave reflection in AAA and the Moens-Korteweg equation for relating PTT to vessel diameter. The predicted maximal aortic diameters yield receiver operating characteristic area under the curves of 0.83 ± 0.04 in classifying AAA versus control patients and 0.72 ± 0.04 in classifying AAA patients before versus after EVAR. These results are significantly better than a baseline model excluding waveform features as input. Our findings could potentially translate to convenient devices that serve as an adjunct to imaging.
Collapse
Affiliation(s)
| | - Hao-Min Cheng
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chen-Huan Chen
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Hsien Sung
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Aman Mahajan
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rabih A Chaer
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sanjeev G Shroff
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jin-Oh Hahn
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Ramakrishna Mukkamala
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Man PK, Cheung KL, Sangsiri N, Shek WJ, Wong KL, Chin JW, Chan TT, So RHY. Blood Pressure Measurement: From Cuff-Based to Contactless Monitoring. Healthcare (Basel) 2022; 10:2113. [PMID: 36292560 PMCID: PMC9601911 DOI: 10.3390/healthcare10102113] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 11/04/2022] Open
Abstract
Blood pressure (BP) determines whether a person has hypertension and offers implications as to whether he or she could be affected by cardiovascular disease. Cuff-based sphygmomanometers have traditionally provided both accuracy and reliability, but they require bulky equipment and relevant skills to obtain precise measurements. BP measurement from photoplethysmography (PPG) signals has become a promising alternative for convenient and unobtrusive BP monitoring. Moreover, the recent developments in remote photoplethysmography (rPPG) algorithms have enabled new innovations for contactless BP measurement. This paper illustrates the evolution of BP measurement techniques from the biophysical theory, through the development of contact-based BP measurement from PPG signals, and to the modern innovations of contactless BP measurement from rPPG signals. We consolidate knowledge from a diverse background of academic research to highlight the importance of multi-feature analysis for improving measurement accuracy. We conclude with the ongoing challenges, opportunities, and possible future directions in this emerging field of research.
Collapse
Affiliation(s)
- Ping-Kwan Man
- PanopticAI, Hong Kong Science and Technology Parks, New Territories, Hong Kong, China
| | - Kit-Leong Cheung
- PanopticAI, Hong Kong Science and Technology Parks, New Territories, Hong Kong, China
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Nawapon Sangsiri
- PanopticAI, Hong Kong Science and Technology Parks, New Territories, Hong Kong, China
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wilfred Jin Shek
- PanopticAI, Hong Kong Science and Technology Parks, New Territories, Hong Kong, China
- Department of Biomedical Sciences, King’s College London, London WC2R 2LS, UK
| | - Kwan-Long Wong
- PanopticAI, Hong Kong Science and Technology Parks, New Territories, Hong Kong, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jing-Wei Chin
- PanopticAI, Hong Kong Science and Technology Parks, New Territories, Hong Kong, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tsz-Tai Chan
- PanopticAI, Hong Kong Science and Technology Parks, New Territories, Hong Kong, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Richard Hau-Yue So
- PanopticAI, Hong Kong Science and Technology Parks, New Territories, Hong Kong, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
11
|
Gonzalez-Landaeta R, Ramirez B, Mejia J. Estimation of systolic blood pressure by Random Forest using heart sounds and a ballistocardiogram. Sci Rep 2022; 12:17196. [PMID: 36229644 PMCID: PMC9562413 DOI: 10.1038/s41598-022-22205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/11/2022] [Indexed: 01/06/2023] Open
Abstract
Cuffless blood pressure measurement enables unobtrusive and continuous monitoring that can be integrated with wearable devices to extend healthcare to non-hospital settings. Most of the current research has focused on the estimation of blood pressure based on pulse transit time or pulse arrival time using ECG or peripheral cardiac pulse signals as proximal time references. This study proposed the use of a phonocardiogram (PCG) and ballistocardiogram (BCG), two signals detected noninvasively, to estimate systolic blood pressure (SBP). For this, the PCG and the BCG were simultaneously measured in 21 volunteers in the rest, activity, and post-activity conditions. Different features were considered based on the relationships between these signals. The intervals between S1 and S2 of the PCG and the I, J, and K waves of the BCG were statistically analyzed. The IJ and JK slopes were also estimated as additional features to train the machine-learning algorithm. The intervals S1-J, S1-K, S1-I, J-S2, and I-S2 were negatively correlated with changes in SBP (p-val < 0.01). The features were used as explanatory variables for a regressor based on the Random Forest. It was possible to estimate the systolic blood pressure with a mean error of 3.3 mmHg with a standard deviation of ± 5 mmHg. Therefore, we foresee that this proposal has potential applications for wearable devices that use low-cost embedded systems.
Collapse
Affiliation(s)
- Rafael Gonzalez-Landaeta
- Department of Electrical and Computer Engineering, Autonomous University of Ciudad Juarez, 32310, Ciudad Juárez, Mexico
| | - Brenda Ramirez
- Department of Electrical and Computer Engineering, Autonomous University of Ciudad Juarez, 32310, Ciudad Juárez, Mexico
| | - Jose Mejia
- Department of Electrical and Computer Engineering, Autonomous University of Ciudad Juarez, 32310, Ciudad Juárez, Mexico.
| |
Collapse
|
12
|
Guo CY, Chang CC, Wang KJ, Hsieh TL. Assessment of a Calibration-Free Method of Cuffless Blood Pressure Measurement: A Pilot Study. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2022; 11:318-329. [PMID: 38163041 PMCID: PMC10756135 DOI: 10.1109/jtehm.2022.3209754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/30/2022] [Accepted: 09/19/2022] [Indexed: 01/03/2024]
Abstract
This study proposes a low-cost, high-sensitivity sensor of beat-to-beat local pulse wave velocity (PWV), to be used in a cuffless blood pressure monitor (BPM). OBJECTIVE We design an adaptive algorithm to detect the feature of the pulse wave, making it possible for two sensors to measure the local PWV in the radial artery at a short distance. Unlike the cuffless BPM that needs to use a regression model for calibration. METHOD We encapsulate the piezoelectric sensor material in a cavity and design an analog front-end circuit. This study used color ultrasound imaging equipment to measure radial arterial parameters, including the diameter and wall thickness, to aid the estimation of blood pressure (BP) using the Moens-Korteweg (MK) equation of hemodynamics. RESULTS We compared the blood pressure estimated by the MK equation with the reference BP measured using an aneroid sphygmomanometer in a test group of 32 people, resulting in a mean difference of systolic BP of -0.63 mmHg, and a standard deviation of ±5.14 mmHg, a mean difference of mean arterial pressure (MAP) of 0.97 mmHg, with a standard deviation of ±3.54 mmHg, and a mean difference of diastolic BP of -1.14 mmHg, with a standard deviation of ±4.08 mmHg. This study has verified its compliance with ISO 81060-2. CONCLUSIONS A new type of wearable continuous calibration-free BPM can replace the situation that requires the use of traditional ambulatory BPM and reduce patient discomfort. CLINICAL IMPACT In this study can provide long-term continuous blood pressure monitoring in the hospital.
Collapse
Affiliation(s)
| | | | | | - Tung-Li Hsieh
- Department of Electronic EngineeringNational Kaohsiung University of Science and Technology, SanminKaohsiung City807618Taiwan
| |
Collapse
|
13
|
Wang W, Marefat F, Mohseni P, Kilgore K, Najafizadeh L. The Effects of Filtering PPG Signal on Pulse Arrival Time-Systolic Blood Pressure Correlation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:674-677. [PMID: 36086297 DOI: 10.1109/embc48229.2022.9871941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pulse arrival time (PAT), evaluated from electro-cardiogram (ECG) and photoplethysmogram (PPG) signals, has been widely used for cuff-less blood pressure (BP) estimation due to its high correlation with BP. However, the question of whether filtering the PPG signal impacts the extracted PAT values and consequently, the correlation between PAT and BP, has not been investigated before. In this paper, using data from 18 subjects, changes in the PAT values, and in the subject-specific PAT-systolic BP (SBP) correlation caused by filtering the PPG signal with variable cutoff frequencies in the range of 2 to 15 Hz are studied. For PAT extraction, three PPG characteristic points (foot, maximum slope and systolic peak) are considered. Results show that differences in the cutoff frequency can shift the PAT values and introduce a worst-case error of over 8.2 mmHg for SBP estimation, indicating that PPG signal filter settings can impact PAT-based BP estimations. Our study suggests that extracting the PAT from the maximum slope point of PPG signal filtered at 10 Hz provides the most stable correlation with SBP.
Collapse
|
14
|
Liu SH, Zhang BH, Chen W, Su CH, Chin CL. Cuffless and Touchless Measurement of Blood Pressure from Ballistocardiogram Based on a Body Weight Scale. Nutrients 2022; 14:2552. [PMID: 35745282 PMCID: PMC9229996 DOI: 10.3390/nu14122552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
Currently, in terms of reducing the infection risk of the COVID-19 virus spreading all over the world, the development of touchless blood pressure (BP) measurement has potential benefits. The pulse transit time (PTT) has a high relation with BP, which can be measured by electrocardiogram (ECG) and photoplethysmogram (PPG). The ballistocardiogram (BCG) reflects the mechanical vibration (or displacement) caused by the heart contraction/relaxation (or heart beating), which can be measured from multiple degrees of the body. The goal of this study is to develop a cuffless and touchless BP-measurement method based on a commercial weight scale combined with a PPG sensor when measuring body weight. The proposed method was that the PTTBCG-PPGT was extracted from the BCG signal measured by a weight scale, and the PPG signal was measured from the PPG probe placed at the toe. Four PTT models were used to estimate BP. The reference method was the PTTECG-PPGF extracted from the ECG signal and PPG signal measured from the PPG probe placed at the finger. The standard BP was measured by an electronic blood pressure monitor. Twenty subjects were recruited in this study. By the proposed method, the root-mean-square error (ERMS) of estimated systolic blood pressure (SBP) and diastolic blood pressure (DBP) are 6.7 ± 1.60 mmHg and 4.8 ± 1.47 mmHg, respectively. The correlation coefficients, r2, of the proposed model for the SBP and DBP are 0.606 ± 0.142 and 0.284 ± 0.166, respectively. The results show that the proposed method can serve for cuffless and touchless BP measurement.
Collapse
Affiliation(s)
- Shing-Hong Liu
- Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung City 41349, Taiwan; (S.-H.L.); (B.-H.Z.)
| | - Bing-Hao Zhang
- Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung City 41349, Taiwan; (S.-H.L.); (B.-H.Z.)
| | - Wenxi Chen
- Biomedical Information Engineering Laboratory, The University of Aizu, Aizu-Wakamatsu City 965-8580, Fukushima, Japan;
| | - Chun-Hung Su
- Institute of Medicine, School of Medicine, Chung-Shan Medical University, Taichung City 40201, Taiwan;
- Department of Internal Medicine, Chung-Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Chiun-Li Chin
- Department of Medical Informatics, Chung-Shan Medical University, Taichung City 40201, Taiwan
| |
Collapse
|
15
|
Islam SMS, Chow CK, Daryabeygikhotbehsara R, Subedi N, Rawstorn J, Tegegne T, Karmakar C, Siddiqui MU, Lambert G, Maddison R. Wearable cuffless blood pressure monitoring devices: a systematic review and meta-analysis. EUROPEAN HEART JOURNAL. DIGITAL HEALTH 2022; 3:323-337. [PMID: 36713001 PMCID: PMC9708022 DOI: 10.1093/ehjdh/ztac021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/11/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023]
Abstract
Aims High blood pressure (BP) is the commonest modifiable cardiovascular risk factor, yet its monitoring remains problematic. Wearable cuffless BP devices offer potential solutions; however, little is known about their validity and utility. We aimed to systematically review the validity, features and clinical use of wearable cuffless BP devices. Methods and results We searched MEDLINE, Embase, IEEE Xplore and the Cochrane Database till December 2019 for studies that reported validating cuffless BP devices. We extracted information about study characteristics, device features, validation processes, and clinical applications. Devices were classified according to their functions and features. We defined devices with a mean systolic BP (SBP) and diastolic BP (DBP) biases of <5 mmHg as valid as a consensus. Our definition of validity did not include assessment of device measurement precision, which is assessed by standard deviation of the mean difference-a critical component of ISO protocol validation criteria. Study quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies version 2 tool. A random-effects model meta-analysis was performed to summarise the mean biases for SBP and DBP across studies. Of the 430 studies identified, 16 studies (15 devices, 974 participants) were selected. The majority of devices (81.3%) used photoplethysmography to estimate BP against a reference device; other technologies included tonometry, auscultation and electrocardiogram. In addition to BP and heart rate, some devices also measured night-time BP (n = 5), sleep monitoring (n = 3), oxygen saturation (n = 3), temperature (n = 2) and electrocardiogram (n = 3). Eight devices showed mean biases of <5 mmHg for SBP and DBP compared with a reference device and three devices were commercially available. The meta-analysis showed no statistically significant differences between the wearable and reference devices for SBP (pooled mean difference = 3.42 mmHg, 95% CI: -2.17, 9.01, I2 95.4%) and DBP (pooled mean = 1.16 mmHg, 95% CI: -1.26, 3.58, I2 87.1%). Conclusion Several cuffless BP devices are currently available using different technologies, offering the potential for continuous BP monitoring. The variation in standards and validation protocols limited the comparability of findings across studies and the identification of the most accurate device. Challenges such as validation using standard protocols and in real-life settings must be overcome before they can be recommended for uptake into clinical practice.
Collapse
Affiliation(s)
| | - Clara K Chow
- Westmead Applied Research Centre, University of Sydney, Sydney, Australia,The George Institute for Global Health, UNSW, Sydney, Australia,Department of Cardiology, Westmead Hospital, Sydney, Australia
| | | | - Narayan Subedi
- Institute for Physical Activity and Nutrition, Deakin University, Melbourne, Australia
| | - Jonathan Rawstorn
- Institute for Physical Activity and Nutrition, Deakin University, Melbourne, Australia
| | - Teketo Tegegne
- Institute for Physical Activity and Nutrition, Deakin University, Melbourne, Australia
| | | | - Muhammad U Siddiqui
- Marshfield Clinic Health System, Rice Lake, USA,George Washington University, Washington, DC, USA
| | - Gavin Lambert
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Vic, Australia
| | - Ralph Maddison
- Institute for Physical Activity and Nutrition, Deakin University, Melbourne, Australia
| |
Collapse
|
16
|
Almarshad MA, Islam MS, Al-Ahmadi S, BaHammam AS. Diagnostic Features and Potential Applications of PPG Signal in Healthcare: A Systematic Review. Healthcare (Basel) 2022; 10:547. [PMID: 35327025 PMCID: PMC8950880 DOI: 10.3390/healthcare10030547] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Recent research indicates that Photoplethysmography (PPG) signals carry more information than oxygen saturation level (SpO2) and can be utilized for affordable, fast, and noninvasive healthcare applications. All these encourage the researchers to estimate its feasibility as an alternative to many expansive, time-wasting, and invasive methods. This systematic review discusses the current literature on diagnostic features of PPG signal and their applications that might present a potential venue to be adapted into many health and fitness aspects of human life. The research methodology is based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines 2020. To this aim, papers from 1981 to date are reviewed and categorized in terms of the healthcare application domain. Along with consolidated research areas, recent topics that are growing in popularity are also discovered. We also highlight the potential impact of using PPG signals on an individual's quality of life and public health. The state-of-the-art studies suggest that in the years to come PPG wearables will become pervasive in many fields of medical practices, and the main domains include cardiology, respiratory, neurology, and fitness. Main operation challenges, including performance and robustness obstacles, are identified.
Collapse
Affiliation(s)
- Malak Abdullah Almarshad
- Computer Science Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia; (M.S.I.); (S.A.-A.)
- Computer Science Department, College of Computer and Information Sciences, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia
| | - Md Saiful Islam
- Computer Science Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia; (M.S.I.); (S.A.-A.)
| | - Saad Al-Ahmadi
- Computer Science Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia; (M.S.I.); (S.A.-A.)
| | - Ahmed S. BaHammam
- The University Sleep Disorders Center, Department of Medicine, College of Medicine, King Saud University, Riyadh 11324, Saudi Arabia;
| |
Collapse
|
17
|
Mieloszyk R, Twede H, Lester J, Wander J, Basu S, Cohn G, Smith G, Morris D, Gupta S, Tan D, Villar N, Wolf M, Malladi S, Mickelson M, Ryan L, Kim L, Kepple J, Kirchner S, Wampler E, Terada R, Robinson J, Paulsen R, Saponas TS. A Comparison of Wearable Tonometry, Photoplethysmography, and Electrocardiography for Cuffless Measurement of Blood Pressure in an Ambulatory Setting. IEEE J Biomed Health Inform 2022; 26:2864-2875. [PMID: 35201992 DOI: 10.1109/jbhi.2022.3153259] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE While non-invasive, cuffless blood pressure (BP) measurement has demonstrated relevancy in controlled environments, ambulatory measurement is important for hypertension diagnosis and control. We present both in-lab and ambulatory BP estimation results from a diverse cohort of participants. METHODS Participants (N=1125, aged 21-85, 49.2% female, multiple hypertensive categories) had BP measured in-lab over a 24-hour period with a subset also receiving ambulatory measurements. Radial tonometry, photoplethysmography (PPG), electrocardiography (ECG), and accelerometry signals were collected simultaneously with auscultatory or oscillometric references for systolic (SBP) and diastolic blood pressure (DBP). Predictive models to estimate BP using a variety of sensor-based feature groups were evaluated against challenging baselines. RESULTS Despite limited availability, tonometry-derived features showed superior performance compared to other feature groups and baselines, yielding prediction errors of 0.329.8 mmHg SBP and 0.547.7 mmHg DBP in-lab, and 0.868.7 mmHg SBP and 0.755.9 mmHg DBP for 24-hour averages. SBP error standard deviation (SD) was reduced in normotensive (in-lab: 8.1 mmHg, 24-hr: 7.2 mmHg) and younger (in-lab: 7.8 mmHg, 24-hr: 6.7 mmHg) subpopulations. SBP SD was further reduced 1520% when constrained to the calibration posture alone. CONCLUSION Performance for normotensive and younger participants was superior to the general population across all feature groups. Reference type, posture relative to calibration, and controlled vs. ambulatory setting all impacted BP errors. SIGNIFICANCE Results highlight the need for demographically diverse populations and challenging evaluation settings for BP estimation studies. We present the first public dataset of ambulatory tonometry and cuffless BP over a 24-hour period to aid in future cardiovascular research.
Collapse
|
18
|
Khan Mamun MMR. Cuff-less blood pressure measurement based on hybrid feature selection algorithm and multi-penalty regularized regression technique. Biomed Phys Eng Express 2021; 7. [PMID: 34633299 DOI: 10.1088/2057-1976/ac2ea8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/11/2021] [Indexed: 11/11/2022]
Abstract
One of the prominent reasons behind the deterioration of cardiovascular conditions is hypertension. Due to lack of specific symptoms, sometimes existing hypertension goes unnoticed until significant damage happens to the heart or any other body organ. Monitoring of BP at a higher frequency is necessary so that we can take early preventive measures to control and keep it within the normal range. The cuff-based method of measuring BP is inconvenient for frequent daily measurements. The cuffless BP measurement method proposed in this paper uses features extracted from the electrocardiogram (ECG) and photoplethysmography (PPG). ECG and PPG both have distinct characteristics, which change with the change of blood pressure levels. Feature extraction and hybrid feature selection algorithms are followed by a generalized penalty-based regression technique led to a new BP measurement process that uses the minimum number of features. The performance of the proposed technique to measure blood pressure was compared to an approach using an ordinary linear regression method with no feature selection and to other contemporary techniques. MIMIC-II database was used to train and test our proposed method. The root mean square error (RMSE) for systolic blood pressure (SBP) improved from 11.2 mmHg to 5.6 mmHg when the proposed technique was implemented and for diastolic blood pressure (DBP) improved from 12.7 mmHg to 6.69 mmHg. The mean absolute error (MAE) was found to be 4.91 mmHg for SBP and 5.77 mmHg for DBP, which have shown improvement over other existing cuffless techniques where the substantial number of patients, as well as feature selection algorithm, were implemented. In addition, according to the British Hypertension Society standard (BHS) standard for cuff-based BP measurement, the criteria for acceptable measurement are to achieve at least grade B; our proposed method also satisfies this criterion.
Collapse
|
19
|
The Latest Progress and Development Trend in the Research of Ballistocardiography (BCG) and Seismocardiogram (SCG) in the Field of Health Care. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11198896] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The current status of the research of Ballistocardiography (BCG) and Seismocardiogram (SCG) in the field of medical treatment, health care and nursing was analyzed systematically, and the important direction in the research was explored, to provide reference for the relevant researches. This study, based on two large databases, CNKI and PubMed, used the bibliometric analysis method to review the existing documents in the past 20 years, and made analyses on the literature of BCG and SCG for their annual changes, main countries/regions, types of research, frequently-used subject words, and important research subjects. The results show that the developed countries have taken a leading position in the researches in this field, and have made breakthroughs in some subjects, but their research results have been mainly gained in the area of research and development of the technologies, and very few have been actually industrialized into commodities. This means that in the future the researchers should focus on the transformation of BCG and SCG technologies into commercialized products, and set up quantitative health assessment models, so as to become the daily tools for people to monitor their health status and manage their own health, and as the main approaches of improving the quality of life and preventing diseases for individuals.
Collapse
|
20
|
Landry C, Hedge ET, Hughson RL, Peterson SD, Arami A. Accurate Blood Pressure Estimation During Activities of Daily Living: A Wearable Cuffless Solution. IEEE J Biomed Health Inform 2021; 25:2510-2520. [PMID: 33497346 DOI: 10.1109/jbhi.2021.3054597] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The objective is to develop a cuffless method that accurately estimates blood pressure (BP) during activities of daily living. User-specific nonlinear autoregressive models with exogenous inputs (NARX) are implemented using artificial neural networks to estimate the BP waveforms from electrocardiography and photoplethysmography signals. To broaden the range of BP in the training data, subjects followed a short procedure consisting of sitting, standing, walking, Valsalva maneuvers, and static handgrip exercises. The procedure was performed before and after a six-hour testing phase wherein five participants went about their normal daily living activities. Data were further collected at a four-month time point for two participants and again at six months for one of the two. The performance of three different NARX models was compared with three pulse arrival time (PAT) models. The NARX models demonstrate superior accuracy and correlation with "ground truth" systolic and diastolic BP measures compared to the PAT models and a clear advantage in estimating the large range of BP. Preliminary results show that the NARX models can accurately estimate BP even months apart from the training. Preliminary testing suggests that it is robust against variabilities due to sensor placement. This establishes a method for cuffless BP estimation during activities of daily living that can be used for continuous monitoring and acute hypotension and hypertension detection.
Collapse
|
21
|
Shin S, Mousavi A, Lyle S, Jang E, Yousefian P, Mukkamala R, Jang DG, Kwon UK, Kim YH, Hahn JO. Posture-Dependent Variability in Wrist Ballistocardiogram-Photoplethysmogram Pulse Transit Time: Implication to Cuff-Less Blood Pressure Tracking. IEEE Trans Biomed Eng 2021; 69:347-355. [PMID: 34197317 DOI: 10.1109/tbme.2021.3094200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Toward the ultimate goal of robust cuff-less blood pressure (BP) tracking with wrist wearables against postural changes, the goal of this work was to investigate posture-dependent variability in pulse transit time (PTT) measured with ballistocardiogram (BCG) and photoplethysmogram (PPG) signal pair at the wrist. METHODS BCG and PPG signals were acquired from 25 subjects under the combination of 3 body (standing, sitting, and supine) and 3 arm (vertical in head-to-foot direction, placed on the chest, and holding a shoulder) postures. PTT was computed as the time interval between the BCG J wave and the PPG foot, and the impact of the 9 postures on PTT was analyzed by invoking an array of possible physical mechanisms. RESULTS Our work suggests that (i) wrist BCG-PPG PTT is consistent under standing and sitting postures with vertically held arms; and (ii) changes in wrist orientation and height as well as restrictions in body and arm movement may alter wrist BCG-PPG PTT via distortions in the wrist BCG and PPG waveforms. The results indicate that wrist BCG-PPG PTT varies with respect to postures even when BP remains constant. CONCLUSION The potential of cuff-less BP tracking via wrist BCG-PPG PTT demonstrated under standing posture with arms vertically down in the head-to-foot direction may not generalize to other body and arm postures. SIGNIFICANCE Understanding the physical mechanisms responsible for posture-induced BCG-PPG PTT variability may increase the versatility of the wrist BCG for cuff-less BP tracking.
Collapse
|
22
|
A correlation study of beat-to-beat R-R intervals and pulse arrival time under natural state and cold stimulation. Sci Rep 2021; 11:11215. [PMID: 34045498 PMCID: PMC8159926 DOI: 10.1038/s41598-021-90056-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 05/06/2021] [Indexed: 11/08/2022] Open
Abstract
Beat-to-beat R-R intervals (RRI) and pulse arrival time (PAT) provide pivotal information to evaluate cardiac autonomic functions for predicting arrhythmias and cardiovascular morbidity. However, their relationship has not been clearly understood. In this study, we simultaneously recorded electrocardiograms and photoplethysmograms on 34 subjects in the natural state, and on 55 subjects under the cold stimulation. The RRI and the PAT were calculated and then analyzed using Pearson correlation coefficient. The results showed that the RRI and the PAT were strongly correlated (r = 0.562) and the RRI series were 2.18 ± 0.40 beats advanced to the PAT series. After smoothing, the RRI and the PAT were more correlated in the low frequency than in the high frequency. Furthermore, when involving RRI with the phase effect, the proposed PAT based model showed better performance for blood pressure estimation. We think these results are helpful to understand the underlying regulatory mechanisms of the two cardiovascular factors, and would provide useful suggestions for non-invasive cuffless blood pressure estimation.
Collapse
|
23
|
Booth GJ, Cole J, Geiger P, Adams J, Barnhill J, Hughey S. Pulse Arrival Time Is Associated With Hemorrhagic Volume in a Porcine Model: A Pilot Study. Mil Med 2021; 187:e630-e637. [PMID: 33620076 DOI: 10.1093/milmed/usab069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/20/2020] [Accepted: 02/09/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Hemorrhage is a major cause of preventable death worldwide, and early identification can be lifesaving. Pulse wave contour analysis has previously been used to infer hemodynamic variables in a variety of settings. We hypothesized that pulse arrival time (PAT), a form of pulse wave contour analysis which is assessed via electrocardiography (ECG) and photoplethysmography (PPG), is associated with hemorrhage volume. METHODS Yorkshire-Cross swine were randomized to hemorrhage (30 mL/kg over 20 minutes) vs. control. Continuous ECG and PPG waveforms were recorded with a novel monitoring device, and algorithms were developed to calculate PAT and PAT variability throughout the respiratory cycle, termed "PAT index" or "PAT_I." Mixed effects models were used to determine associations between blood loss and PAT and between blood loss and PAT_I to account for clustering within subjects and investigate inter-subject variability in these relationships. RESULTS PAT and PAT_I data were determined for ∼150 distinct intervals from five subjects. PAT and PAT_I were strongly associated with blood loss. Mixed effects modeling with PAT alone was substantially better than PAT_I alone (R2 0.93 vs. 0.57 and Akaike information criterion (AIC) 421.1 vs. 475.5, respectively). Modeling blood loss with PAT and PAT_I together resulted in slightly improved fit compared to PAT alone (R2 0.96, AIC 419.1). Mixed effects models demonstrated significant inter-subject variability in the relationships between blood loss and PAT. CONCLUSIONS Findings from this pilot study suggest that PAT and PAT_I may be used to detect blood loss. Because of the simple design of a single-lead ECG and PPG, the technology could be packaged into a very small form factor device for use in austere or resource-constrained environments. Significant inter-subject variability in the relationship between blood loss and PAT highlights the importance of individualized hemodynamic monitoring.
Collapse
Affiliation(s)
- Gregory J Booth
- Department of Anesthesiology and Pain Medicine, Naval Medical Center Portsmouth, Portsmouth, VA 23708, USA.,Naval Biotechnology Group, Naval Medical Center Portsmouth, Portsmouth, VA 23708, USA
| | - Jacob Cole
- Department of Anesthesiology and Pain Medicine, Naval Medical Center Portsmouth, Portsmouth, VA 23708, USA.,Naval Biotechnology Group, Naval Medical Center Portsmouth, Portsmouth, VA 23708, USA
| | - Phillip Geiger
- Department of Anesthesiology and Pain Medicine, Naval Medical Center Portsmouth, Portsmouth, VA 23708, USA.,Naval Biotechnology Group, Naval Medical Center Portsmouth, Portsmouth, VA 23708, USA
| | - Jacob Adams
- Department of Anesthesiology and Pain Medicine, Naval Medical Center Portsmouth, Portsmouth, VA 23708, USA
| | - Joshua Barnhill
- Department of Anesthesiology and Pain Medicine, Naval Medical Center Portsmouth, Portsmouth, VA 23708, USA
| | - Scott Hughey
- Department of Anesthesiology and Pain Medicine, Naval Medical Center Portsmouth, Portsmouth, VA 23708, USA.,Naval Biotechnology Group, Naval Medical Center Portsmouth, Portsmouth, VA 23708, USA
| |
Collapse
|
24
|
Ben Nasr MC, Ben Jebara S, Otis S, Abdulrazak B, Mezghani N. A Spectral-Based Approach for BCG Signal Content Classification. SENSORS (BASEL, SWITZERLAND) 2021; 21:1020. [PMID: 33540951 PMCID: PMC7867327 DOI: 10.3390/s21031020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/04/2022]
Abstract
This paper has two objectives: the first is to generate two binary flags to indicate useful frames permitting the measurement of cardiac and respiratory rates from Ballistocardiogram (BCG) signals-in fact, human body activities during measurements can disturb the BCG signal content, leading to difficulties in vital sign measurement; the second objective is to achieve refined BCG signal segmentation according to these activities. The proposed framework makes use of two approaches: an unsupervised classification based on the Gaussian Mixture Model (GMM) and a supervised classification based on K-Nearest Neighbors (KNN). Both of these approaches consider two spectral features, namely the Spectral Flatness Measure (SFM) and Spectral Centroid (SC), determined during the feature extraction step. Unsupervised classification is used to explore the content of the BCG signals, justifying the existence of different classes and permitting the definition of useful hyper-parameters for effective segmentation. In contrast, the considered supervised classification approach aims to determine if the BCG signal content allows the measurement of the heart rate (HR) and the respiratory rate (RR) or not. Furthermore, two levels of supervised classification are used to classify human-body activities into many realistic classes from the BCG signal (e.g., coughing, holding breath, air expiration, movement, et al.). The first one considers frame-by-frame classification, while the second one, aiming to boost the segmentation performance, transforms the frame-by-frame SFM and SC features into temporal series which track the temporal variation of the measures of the BCG signal. The proposed approach constitutes a novelty in this field and represents a powerful method to segment BCG signals according to human body activities, resulting in an accuracy of 94.6%.
Collapse
Affiliation(s)
- Mohamed Chiheb Ben Nasr
- Higher School of Communication of Tunis, Research Lab. COSIM, Carthage University, Tunis 2088, Tunisia;
| | - Sofia Ben Jebara
- Higher School of Communication of Tunis, Research Lab. COSIM, Carthage University, Tunis 2088, Tunisia;
| | - Samuel Otis
- Laboratoire de Recherche en Imagerie et en Orthopédie, CRCHUM, Montreal, QC H2X 0A9, Canada; (S.O.); (N.M.)
| | - Bessam Abdulrazak
- Department of Computer Science, Sherbrooke University, Sherbrooke, QC J1K 2R1, Canada;
| | - Neila Mezghani
- Laboratoire de Recherche en Imagerie et en Orthopédie, CRCHUM, Montreal, QC H2X 0A9, Canada; (S.O.); (N.M.)
- LICEF Institute, TELUQ University, Montreal, QC H2S 3L4, Canada
| |
Collapse
|
25
|
Beutel F, Van Hoof C, Rottenberg X, Reesink K, Hermeling E. Pulse Arrival Time Segmentation Into Cardiac and Vascular Intervals - Implications for Pulse Wave Velocity and Blood Pressure Estimation. IEEE Trans Biomed Eng 2021; 68:2810-2820. [PMID: 33513094 DOI: 10.1109/tbme.2021.3055154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE This study demonstrates a novel method for pulse arrival time (PAT) segmentation into cardiac isovolumic contraction (IVC) and vascular pulse transit time to approximate central pulse wave velocity (PWV). METHODS 10 subjects (38 ± 10 years, 121 ± 12 mmHg SBP) ranging from normotension to hypertension were repeatedly measured at rest and with induced changes in blood pressure (BP), and thus PWV. ECG was recorded simultaneously with ultrasound-based carotid distension waveforms, a photoplethysmography-based peripheral waveform, noninvasive continuous and intermittent cuff BP. Central PAT was segmented into cardiac and vascular time intervals using a fiducial point in the carotid distension waveform that reflects the IVC onset. Central and peripheral PWVs were computed from (segmented) intervals and estimated arterial path lengths. Correlations with Bramwell-Hill PWV, systolic and diastolic BP (SBP/DBP) were analyzed by linear regression. RESULTS Central PWV explained more than twice the variability (R2) in Bramwell-Hill PWV compared to peripheral PWV (0.56 vs. 0.27). SBP estimated from central PWV undercuts the IEEE mean absolute deviation threshold of 5 mmHg, significantly lower than peripheral PWV or PAT (4.2 vs. 7.1 vs. 10.1 mmHg). CONCLUSION Cardiac IVC onset signaled in carotid distension waveforms enables PAT segmentation to obtain unbiased vascular pulse transit time. Corresponding PWV estimates provide the basis for single-site assessment of central arterial stiffness, confirmed by significant correlations with Bramwell-Hill PWV and SBP. SIGNIFICANCE In a small-scale cohort, we present proof-of-concept for a novel method to estimate central PWV and BP, bearing potential to improve the practicality of cardiovascular risk assessment in clinical routines.
Collapse
|
26
|
Lin WH, Chen F, Geng Y, Ji N, Fang P, Li G. Towards accurate estimation of cuffless and continuous blood pressure using multi-order derivative and multivariate photoplethysmogram features. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2020.102198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Arai M, Takeuchi T, Ueno A. Cuffless Continuous Estimation of Relative Mean Arterial Pressure Using Unrestrained and Noncontact Ballistocardiogram and Electrocardiogram: Evaluation in Short Time In-bed Experiments. ADVANCED BIOMEDICAL ENGINEERING 2021. [DOI: 10.14326/abe.10.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Masaki Arai
- Department of Electrical and Electronic Engineering, Tokyo Denki University
| | - Tomokazu Takeuchi
- Department of Electrical and Electronic Engineering, Tokyo Denki University
| | - Akinori Ueno
- Department of Electrical and Electronic Engineering, Tokyo Denki University
| |
Collapse
|
28
|
Mijatovic G, Pernice R, Perinelli A, Antonacci Y, Busacca A, Javorka M, Ricci L, Faes L. Measuring the Rate of Information Exchange in Point-Process Data With Application to Cardiovascular Variability. FRONTIERS IN NETWORK PHYSIOLOGY 2021; 1:765332. [PMID: 36925567 PMCID: PMC10013020 DOI: 10.3389/fnetp.2021.765332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/26/2021] [Indexed: 02/01/2023]
Abstract
The amount of information exchanged per unit of time between two dynamic processes is an important concept for the analysis of complex systems. Theoretical formulations and data-efficient estimators have been recently introduced for this quantity, known as the mutual information rate (MIR), allowing its continuous-time computation for event-based data sets measured as realizations of coupled point processes. This work presents the implementation of MIR for point process applications in Network Physiology and cardiovascular variability, which typically feature short and noisy experimental time series. We assess the bias of MIR estimated for uncoupled point processes in the frame of surrogate data, and we compensate it by introducing a corrected MIR (cMIR) measure designed to return zero values when the two processes do not exchange information. The method is first tested extensively in synthetic point processes including a physiologically-based model of the heartbeat dynamics and the blood pressure propagation times, where we show the ability of cMIR to compensate the negative bias of MIR and return statistically significant values even for weakly coupled processes. The method is then assessed in real point-process data measured from healthy subjects during different physiological conditions, showing that cMIR between heartbeat and pressure propagation times increases significantly during postural stress, though not during mental stress. These results document that cMIR reflects physiological mechanisms of cardiovascular variability related to the joint neural autonomic modulation of heart rate and arterial compliance.
Collapse
Affiliation(s)
- Gorana Mijatovic
- Faculty of Technical Science, University of Novi Sad, Novi Sad, Serbia
| | - Riccardo Pernice
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Alessio Perinelli
- CIMeC, Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Yuri Antonacci
- Department of Physics and Chemistry "Emilio Segrè," University of Palermo, Palermo, Italy
| | | | - Michal Javorka
- Department of Physiology and Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Leonardo Ricci
- Department of Physics, University of Trento, Trento, Italy
| | - Luca Faes
- Department of Engineering, University of Palermo, Palermo, Italy
| |
Collapse
|
29
|
Chang IS, Mak S, Armanfard N, Boger J, Grace SL, Arcelus A, Chessex C, Mihailidis A. Quantification of Resting-State Ballistocardiogram Difference Between Clinical and Non-Clinical Populations for Ambient Monitoring of Heart Failure. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2020; 8:2700811. [PMID: 33094034 PMCID: PMC7571868 DOI: 10.1109/jtehm.2020.3029690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 11/12/2022]
Abstract
A ballistocardiogram (BCG) is a versatile bio-signal that enables ambient remote monitoring of heart failure (HF) patients in a home setting, achieved through embedded sensors in the surrounding environment. Numerous methods of analysis are available for extracting physiological information using the BCG; however, most have been developed based on non-clinical subjects. While the difference between clinical and non-clinical populations are expected, quantification of the difference may serve as a useful tool. In this work, the differences in resting-state BCGs of the two cohorts in a sitting posture were quantified. An instrumented chair was used to collect the BCG from 29 healthy adults and 26 NYHA HF class I and II patients while seated without any stress test for five minutes. Five 20-second epochs per subject were used to calculate the waveform fluctuation metric at rest (WFMR). The WFMR was obtained in two steps. The ensemble average of the segmented BCG heartbeats within an epoch were calculated first. Mean square errors (MSE) between different ensemble average pairs were then retrieved. The MSEs were averaged to produce the WFMR. The comparison showed that the clinical cohort had higher fluctuation than the non-clinical population and had at least 82.2% separation, suggesting that greater errors may result when existing algorithms were used. The WFMR acts as a bridge that may enable important features, including the addition of error margins in parameter estimation and ways to devise a calibration strategy when resting-state BCG is unstable.
Collapse
Affiliation(s)
- Isaac Sungjae Chang
- Institute of Biomaterials and Biomedical Engineering, University of TorontoONM5S 3G9Canada
| | - Susanna Mak
- Division of CardiologyDepartment of MedicineMount Sinai HospitalTorontoONM5G 1X5Canada
| | - Narges Armanfard
- Department of Electrical and Computer EngineeringMcGill UniversityMontrealQCH3A 0G4Canada
| | - Jennifer Boger
- Department of Systems Design EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada.,Research Institute for AgingWaterlooONN2J 0E2Canada
| | - Sherry L Grace
- Faculty of HealthYork UniversityTorontoONM3J IP3Canada.,Toronto Rehabilitation Institute, University Health NetworkTorontoONM5T 2S8Canada
| | - Amaya Arcelus
- Toronto Rehabilitation Institute, University Health NetworkTorontoONM5T 2S8Canada
| | - Caroline Chessex
- Toronto Rehabilitation Institute, University Health NetworkTorontoONM5T 2S8Canada
| | - Alex Mihailidis
- Toronto Rehabilitation Institute, University Health NetworkTorontoONM5T 2S8Canada
| |
Collapse
|
30
|
|
31
|
Pandit JA, Lores E, Batlle D. Cuffless Blood Pressure Monitoring: Promises and Challenges. Clin J Am Soc Nephrol 2020; 15:1531-1538. [PMID: 32680913 PMCID: PMC7536750 DOI: 10.2215/cjn.03680320] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Current BP measurements are on the basis of traditional BP cuff approaches. Ambulatory BP monitoring, at 15- to 30-minute intervals usually over 24 hours, provides sufficiently continuous readings that are superior to the office-based snapshot, but this system is not suitable for frequent repeated use. A true continuous BP measurement that could collect BP passively and frequently would require a cuffless method that could be worn by the patient, with the data stored electronically much the same way that heart rate and heart rhythm are already done routinely. Ideally, BP should be measured continuously and frequently during diverse activities during both daytime and nighttime in the same subject by means of novel devices. There is increasing excitement for newer methods to measure BP on the basis of sensors and algorithm development. As new devices are refined and their accuracy is improved, it will be possible to better assess masked hypertension, nocturnal hypertension, and the severity and variability of BP. In this review, we discuss the progression in the field, particularly in the last 5 years, ending with sensor-based approaches that incorporate machine learning algorithms to personalized medicine.
Collapse
Affiliation(s)
- Jay A Pandit
- Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Enrique Lores
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Daniel Batlle
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
32
|
Moharram MA, Wilson LC, Williams MJA, Coffey S. Beat-to-beat blood pressure measurement using a cuffless device does not accurately reflect invasive blood pressure. Int J Cardiol Hypertens 2020; 5:100030. [PMID: 33447759 PMCID: PMC7803068 DOI: 10.1016/j.ijchy.2020.100030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The availability of an accurate continuous cuffless blood pressure (BP) monitor would provide an alternative to both invasive continuous BP and 24-h intermittent cuff-based BP monitors. We investigated the accuracy of a cuffless beat to beat (BtB) device compared to both invasive BP (iBP) and brachial cuff BP (cBP) measurements. METHODS Patients undergoing clinically indicated coronary angiography (CA) and/or percutaneous coronary intervention (PCI) were recruited. After calibration to an initial cBP reading, BP was measured simultaneously using a BtB device (SOMNOtouch NIBP), brachial artery iBP, and cBP at two time points. RESULTS The study was terminated early due to a significant bias. Recordings from 14 participants (11 males, mean age 68.4 years) were analysed. Readings from BtB BP were higher than iBP. The bias between BtB BP and iBP was 34.3 mmHg (95%CI: 27.0, 41.5) and 23.6 mmHg (95%CI: 16.8, 30.4) for SBP and DBP respectively. A similar bias was seen between BtB BP and cBP, but cBP and iBP were largely in agreement. CONCLUSIONS In patients undergoing CA/PCI, significant differences were detected between BtB BP and both invasively measured and cuff BP. The non-invasive BtB BP measurement device tested is not suitable for clinical or research use.
Collapse
Affiliation(s)
- Mohammed A Moharram
- Department of Medicine - HeartOtago, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Luke C Wilson
- Department of Medicine - HeartOtago, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Michael JA Williams
- Department of Medicine - HeartOtago, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sean Coffey
- Department of Medicine - HeartOtago, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
33
|
Multimodal Photoplethysmography-Based Approaches for Improved Detection of Hypertension. J Clin Med 2020; 9:jcm9041203. [PMID: 32331360 PMCID: PMC7230564 DOI: 10.3390/jcm9041203] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 12/14/2022] Open
Abstract
Elevated blood pressure (BP) is a major cause of death, yet hypertension commonly goes undetected. Owing to its nature, it is typically asymptomatic until later in its progression when the vessel or organ structure has already been compromised. Therefore, noninvasive and continuous BP measurement methods are needed to ensure appropriate diagnosis and early management before hypertension leads to irreversible complications. Photoplethysmography (PPG) is a noninvasive technology with waveform morphologies similar to that of arterial BP waveforms, therefore attracting interest regarding its usability in BP estimation. In recent years, wearable devices incorporating PPG sensors have been proposed to improve the early diagnosis and management of hypertension. Additionally, the need for improved accuracy and convenience has led to the development of devices that incorporate multiple different biosignals with PPG. Through the addition of modalities such as an electrocardiogram, a final measure of the pulse wave velocity is derived, which has been proved to be inversely correlated to BP and to yield accurate estimations. This paper reviews and summarizes recent studies within the period 2010–2019 that combined PPG with other biosignals and offers perspectives on the strengths and weaknesses of current developments to guide future advancements in BP measurement. Our literature review reveals promising measurement accuracies and we comment on the effective combinations of modalities and success of this technology.
Collapse
|
34
|
Shao J, Shi P, Hu S, Yu H. A Revised Point-to-Point Calibration Approach with Adaptive Errors Correction to Weaken Initial Sensitivity of Cuff-Less Blood Pressure Estimation. SENSORS 2020; 20:s20082205. [PMID: 32295090 PMCID: PMC7218878 DOI: 10.3390/s20082205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/01/2020] [Accepted: 04/10/2020] [Indexed: 11/16/2022]
Abstract
Initial calibration is a great challenge for cuff-less blood pressure (BP) measurement. The traditional one point-to-point (oPTP) calibration procedure only uses one sample/point to obtain unknown parameters of a specific model in a calm state. In fact, parameters such as pulse transit time (PTT) and BP still have slight fluctuations at rest for each subject. The conventional oPTP method had a strong sensitivity in the selection of initial value. Yet, the initial sensitivity of calibration has not been reported and investigated in cuff-less BP motoring. In this study, a mean point-to-point (mPTP) paring calibration method through averaging and balancing calm or peaceful states was proposed for the first time. Thus, based on mPTP, a factor point-to-point (fPTP) paring calibration method through introducing the penalty factor was further proposed to improve and optimize the performance of BP estimation. Using the oPTP, mPTP, and fPTP methods, a total of more than 100,000 heartbeat samples from 21 healthy subjects were tested and validated in the PTT-based BP monitoring technologies. The results showed that the mPTP and fPTP methods significantly improved the performance of estimating BP compared to the conventional oPTP method. Moreover, the mPTP and fPTP methods could be widely popularized and applied, especially the fPTP method, on estimating cuff-less diastolic blood pressure (DBP). To this extent, the fPTP method weakens the initial calibration sensitivity of cuff-less BP estimation and fills in the ambiguity for individualized calibration procedure.
Collapse
Affiliation(s)
- Jiang Shao
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ping Shi
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence:
| | - Sijung Hu
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | - Hongliu Yu
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
35
|
Fierro G, Armentano R, Silveira F. Evaluation of transit time-based models in wearable central aortic blood pressure estimation. Biomed Phys Eng Express 2020; 6:035006. [PMID: 33438651 DOI: 10.1088/2057-1976/ab7a55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Evidence suggests that central aortic blood pressure (CABP) may provide a more accurate prognosis of cardiovascular events than peripheral pressure. The capability of monitoring CABP in a continuous, wearable, unobtrusive way might have a significant impact on hypertension management. The purpose of this study is to experimentally explore whether a wearable device equipped with an electrocardiogram (ECG) and ballistocardiogram (BCG) acquisition system could be used to predict CABP. This is based on state-of-the-art results on the relationship between transit time extracted from these signals and CABP. Ten young, healthy volunteers participated in the study where data-sets were acquired during three hemodynamic interventions, i.e., breath-holding, Valsalva maneuver, and cold pressor. Each data-set included ECG and BCG waveforms acquired by the wearable device and a CABP assessment from a cuff-based device. A total of nine PTT-based models (PBMs) derived from pulse transit time methodology were considered. Each PBM was tested with three alternative feature times extracted from the recorded waveforms PBMs were calibrated with data-sets acquired at baseline state, which were not considered for testing the PBM estimation performance. Four of the nine tested models presented a proper agreement in estimating CABP through the acquired signals, after the calibration procedure with baseline-state data. Results in one of these promising models are the following. Mean estimation error (95% confidence interval), systolic: 0 to 1.7 mmHg, diastolic: 0.4 to 2.3 mmHg, Pearson correlation: 0.82 systolic and 0.78 diastolic (p < 0.001). The proposed methodology may lead to continuous wearable BP monitoring.
Collapse
Affiliation(s)
- Germán Fierro
- Instituto de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | | | | |
Collapse
|
36
|
|
37
|
Blood Pressure Estimation Using On-body Continuous Wave Radar and Photoplethysmogram in Various Posture and Exercise Conditions. Sci Rep 2019; 9:16346. [PMID: 31705001 PMCID: PMC6841972 DOI: 10.1038/s41598-019-52710-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 10/21/2019] [Indexed: 11/12/2022] Open
Abstract
The pulse arrival time (PAT), pre-ejection period (PEP) and pulse transit time (PTT) are calculated using on-body continuous wave radar (CWR), Photoplethysmogram (PPG) and Electrocardiogram (ECG) sensors for wearable continuous systolic blood pressure (SBP) measurements. The CWR and PPG sensors are placed on the sternum and left earlobe respectively. This paper presents a signal processing method based on wavelet transform and adaptive filtering to remove noise from CWR signals. Experimental data are collected from 43 subjects in various static postures and 26 subjects doing 6 different exercise tasks. Two mathematical models are used to calculate SBPs from PTTs/PATs. For 38 subjects participating in posture tasks, the best cumulative error percentage (CEP) is 92.28% and for 21 subjects participating in exercise tasks, the best CEP is 82.61%. The results show the proposed method is promising in estimating SBP using PTT. Additionally, removing PEP from PAT leads to improving results by around 9%. The CWR sensors present a low-power, continuous and potentially wearable system with minimal body contact to monitor aortic valve mechanical activities directly. Results of this study, of wearable radar sensors, demonstrate the potential superiority of CWR-based PEP extraction for various medical monitoring applications, including BP measurement.
Collapse
|
38
|
Rajala S, Ahmaniemi T, Lindholm H, Muller K, Taipalus T. A chair based ballistocardiogram time interval measurement with cardiovascular provocations. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:5685-5688. [PMID: 30441626 DOI: 10.1109/embc.2018.8513455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The objective of this study was to measure ballistocardiogram (BCG) based time intervals and compare them with systolic blood pressure values. Electrocardiogram (ECG) and BCG signals of six subjects sitting in a chair were measured with a ferroelectret film sensor. Time intervals between ECG R peak and BCG I and J waves were calculated to obtain RJ, RI and IJ intervals. The time intervals were modified with two cardiovascular provocations, controlled breathing and Valsalva maneuver. The controlled breathing changed all the time intervals (RJ, RI and IJ) whereas the Valsalva maneuver mainly caused variations in the RJ and RI intervals. The calculated time intervals were compared with reference arterial blood pressure values. Correlation coefficients of r = -0.61 and r = -0.78 were found between the RJ and RI time intervals and systolic blood pressure during Valsalva maneuver, respectively.
Collapse
|
39
|
Chan G, Cooper R, Hosanee M, Welykholowa K, Kyriacou PA, Zheng D, Allen J, Abbott D, Lovell NH, Fletcher R, Elgendi M. Multi-Site Photoplethysmography Technology for Blood Pressure Assessment: Challenges and Recommendations. J Clin Med 2019; 8:jcm8111827. [PMID: 31683938 PMCID: PMC6912608 DOI: 10.3390/jcm8111827] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
Hypertension is one of the most prevalent diseases and is often called the “silent killer” because there are usually no early symptoms. Hypertension is also associated with multiple morbidities, including chronic kidney disease and cardiovascular disease. Early detection and intervention are therefore important. The current routine method for diagnosing hypertension is done using a sphygmomanometer, which can only provide intermittent blood pressure readings and can be confounded by various factors, such as white coat hypertension, time of day, exercise, or stress. Consequently, there is an increasing need for a non-invasive, cuff-less, and continuous blood pressure monitoring device. Multi-site photoplethysmography (PPG) is a promising new technology that can measure a range of features of the pulse, including the pulse transit time of the arterial pulse wave, which can be used to continuously estimate arterial blood pressure. This is achieved by detecting the pulse wave at one body site location and measuring the time it takes for it to reach a second, distal location. The purpose of this review is to analyze the current research in multi-site PPG for blood pressure assessment and provide recommendations to guide future research. In a systematic search of the literature from January 2010 to January 2019, we found 13 papers that proposed novel methods using various two-channel PPG systems and signal processing techniques to acquire blood pressure using multi-site PPG that offered promising results. However, we also found a general lack of validation in terms of sample size and diversity of populations.
Collapse
Affiliation(s)
- Gabriel Chan
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Rachel Cooper
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Manish Hosanee
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Kaylie Welykholowa
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Panayiotis A Kyriacou
- School of Mathematics, Computer Science and Engineering, University of London, London, EC1V 0HB, UK.
| | - Dingchang Zheng
- Research Center of Intelligent Healthcare, Faculty of Health and Life Science, Coventry University, Coventry CV1 5FB, UK.
| | - John Allen
- Microvascular Diagnostics, Northern Medical Physics and Clinical Engineering, Freeman Hospital, Newcastle Upon Tyne NE7 7DN, UK.
| | - Derek Abbott
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
- Centre for Biomedical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - Richard Fletcher
- D-Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - Mohamed Elgendi
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
- School of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
- BC Children's & Women's Hospital, Vancouver, BC V6H 3N1, Canada.
| |
Collapse
|
40
|
Jovanov E. Wearables Meet IoT: Synergistic Personal Area Networks (SPANs). SENSORS (BASEL, SWITZERLAND) 2019; 19:E4295. [PMID: 31623393 PMCID: PMC6806600 DOI: 10.3390/s19194295] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/19/2019] [Accepted: 10/01/2019] [Indexed: 02/05/2023]
Abstract
Wearable monitoring and mobile health (mHealth) revolutionized healthcare diagnostics and delivery, while the exponential increase of deployed "things" in the Internet of things (IoT) transforms our homes and industries. "Things" with embedded activity and vital sign sensors that we refer to as "smart stuff" can interact with wearable and ambient sensors. A dynamic, ad-hoc personal area network can span multiple domains and facilitate processing in synergistic personal area networks-SPANs. The synergy of information from multiple sensors can provide: (a) New information that cannot be generated from existing data alone, (b) user identification, (c) more robust assessment of physiological signals, and (d) automatic annotation of events/records. In this paper, we present possible new applications of SPANs and results of feasibility studies. Preliminary tests indicate that users interact with smart stuff-in our case, a smart water bottle-dozens of times a day and sufficiently long to collect vital signs of the users. Synergistic processing of sensors from the smartwatch and objects of everyday use may provide user identification and assessment of new parameters that individual sensors could not generate, such as pulse wave velocity (PWV) and blood pressure. As a result, SPANs facilitate seamless monitoring and annotation of vital signs dozens of times per day, every day, every time the smart object is used, without additional setup of sensors and initiation of measurements. SPANs creates a dynamic "opportunistic bubble" for ad-hoc integration with other sensors of interest around the user, wherever they go. Continuous long-term monitoring of user's activity and vital signs can provide better diagnostic procedures and personalized feedback to motivate a proactive approach to health and wellbeing.
Collapse
Affiliation(s)
- Emil Jovanov
- Electrical and Computer Engineering Department, The University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
41
|
Hersek S, Semiz B, Shandhi MMH, Orlandic L, Inan OT. A Globalized Model for Mapping Wearable Seismocardiogram Signals to Whole-Body Ballistocardiogram Signals Based on Deep Learning. IEEE J Biomed Health Inform 2019; 24:1296-1309. [PMID: 31369391 DOI: 10.1109/jbhi.2019.2931872] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The ballistocardiography (BCG) signal is a measurement of the vibrations of the center of mass of the body due to the cardiac cycle and can be used for noninvasive hemodynamic monitoring. The seismocardiography (SCG) signals measure the local vibrations of the chest wall due to the cardiac cycle. While BCG is a more well-known modality, it requires the use of a modified bathroom scale or a force plate and cannot be measured in a wearable setting, whereas SCG signals can be measured using wearable accelerometers placed on the sternum. In this paper, we explore the idea of finding a mapping between zero mean and unit l2-norm SCG and BCG signal segments such that, the BCG signal can be acquired using wearable accelerometers (without retaining amplitude information). We use neural networks to find such a mapping and make use of the recently introduced UNet architecture. We trained our models on 26 healthy subjects and tested them on ten subjects. Our results show that we can estimate the aforementioned segments of the BCG signal with a median Pearson correlation coefficient of 0.71 and a median absolute deviation (MAD) of 0.17. Furthermore, our model can estimate the R-I, R-J and R-K timing intervals with median absolute errors (and MAD) of 10.00 (8.90), 6.00 (5.93), and 8.00 (5.93), respectively. We show that using all three axis of the SCG accelerometer produces the best results, whereas the head-to-foot SCG signal produces the best results when a single SCG axis is used.
Collapse
|
42
|
Nabeel PM, Kiran VR, Joseph J, Abhidev VV, Sivaprakasam M. Local Pulse Wave Velocity: Theory, Methods, Advancements, and Clinical Applications. IEEE Rev Biomed Eng 2019; 13:74-112. [PMID: 31369386 DOI: 10.1109/rbme.2019.2931587] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Local pulse wave velocity (PWV) is evolving as one of the important determinants of arterial hemodynamics, localized vessel stiffening associated with several pathologies, and a host of other cardiovascular events. Although PWV was introduced over a century ago, only in recent decades, due to various technological advancements, has emphasis been directed toward its measurement from a single arterial section or from piecewise segments of a target arterial section. This emerging worldwide trend in the exploration of instrumental solutions for local PWV measurement has produced several invasive and noninvasive methods. As of yet, however, a univocal opinion on the ideal measurement method has not emerged. Neither have there been extensive comparative studies on the accuracy of the available methods. Recognizing this reality, makes apparent the need to establish guideline-recommended standards for the measurement methods and reference values, without which clinical application cannot be pursued. This paper enumerates all major local PWV measurement methods while pinpointing their salient methodological considerations and emphasizing the necessity of global standardization. Further, a summary of the advancements in measuring modalities and clinical applications is provided. Additionally, a detailed discussion on the minimally explored concept of incremental local PWV is presented along with suggestions of future research questions.
Collapse
|
43
|
The Potential of Wearable Limb Ballistocardiogram in Blood Pressure Monitoring via Pulse Transit Time. Sci Rep 2019; 9:10666. [PMID: 31337783 PMCID: PMC6650495 DOI: 10.1038/s41598-019-46936-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/03/2019] [Indexed: 11/08/2022] Open
Abstract
The goal of this study was to investigate the potential of wearable limb ballistocardiography (BCG) to enable cuff-less blood pressure (BP) monitoring, by investigating the association between wearable limb BCG-based pulse transit time (PTT) and BP. A wearable BCG-based PTT was calculated using the BCG and photoplethysmogram (PPG) signals acquired by a wristband as proximal and distal timing reference (called the wrist PTT). Its efficacy as surrogate of BP was examined in comparison with PTT calculated using the whole-body BCG acquired by a customized weighing scale (scale PTT) as well as pulse arrival time (PAT) using the experimental data collected from 22 young healthy participants under multiple BP-perturbing interventions. The wrist PTT exhibited close association with both diastolic (group average r = 0.79; mean absolute error (MAE) = 5.1 mmHg) and systolic (group average r = 0.81; MAE = 7.6 mmHg) BP. The efficacy of the wrist PTT was superior to scale PTT and PAT for both diastolic and systolic BP. The association was consistent and robust against diverse BP-perturbing interventions. The wrist PTT showed superior association with BP when calculated with green PPG rather than infrared PPG. In sum, wearable limb BCG has the potential to realize convenient cuff-less BP monitoring via PTT.
Collapse
|
44
|
Unobtrusive Estimation of Cardiovascular Parameters with Limb Ballistocardiography. SENSORS 2019; 19:s19132922. [PMID: 31266256 PMCID: PMC6651596 DOI: 10.3390/s19132922] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 01/13/2023]
Abstract
This study investigates the potential of the limb ballistocardiogram (BCG) for unobtrusive estimation of cardiovascular (CV) parameters. In conjunction with the reference CV parameters (including diastolic, pulse, and systolic pressures, stroke volume, cardiac output, and total peripheral resistance), an upper-limb BCG based on an accelerometer embedded in a wearable armband and a lower-limb BCG based on a strain gauge embedded in a weighing scale were instrumented simultaneously with a finger photoplethysmogram (PPG). To standardize the analysis, the more convenient yet unconventional armband BCG was transformed into the more conventional weighing scale BCG (called the synthetic weighing scale BCG) using a signal processing procedure. The characteristic features were extracted from these BCG and PPG waveforms in the form of wave-to-wave time intervals, wave amplitudes, and wave-to-wave amplitudes. Then, the relationship between the characteristic features associated with (i) the weighing scale BCG-PPG pair and (ii) the synthetic weighing scale BCG-PPG pair versus the CV parameters, was analyzed using the multivariate linear regression analysis. The results indicated that each of the CV parameters of interest may be accurately estimated by a combination of as few as two characteristic features in the upper-limb or lower-limb BCG, and also that the characteristic features recruited for the CV parameters were to a large extent relevant according to the physiological mechanism underlying the BCG.
Collapse
|
45
|
Current Status and Prospects of Health-Related Sensing Technology in Wearable Devices. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:3924508. [PMID: 31316740 PMCID: PMC6604299 DOI: 10.1155/2019/3924508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/03/2022]
Abstract
The healthcare-related functions of wearable devices are very useful for continuous monitoring of biological information. Wearable devices equipped with communication function can be used for additional healthcare services. Among the wearable devices, the wristband type is most suitable for acquiring biological signals, and the wear preference of the user is high, so it is highly likely to be used more in the future. In this paper, the health-related functions of wristband were investigated and the technical limitations and prospects were also reviewed. Most current wristband-type devices are equipped with the combination of accelerometer, optical sensor, and electrodes for their health functions, and continuously measured data are expanding the possibility of discovering new medical meanings. The blood pressure measurement function without using cuff is the most useful and expected function among the health-related functions expected to be mounted on the wrist wearable device, in spite of its technical limits and difficulties.
Collapse
|
46
|
Sharifi I, Goudarzi S, Khodabakhshi MB. A novel dynamical approach in continuous cuffless blood pressure estimation based on ECG and PPG signals. Artif Intell Med 2019; 97:143-151. [DOI: 10.1016/j.artmed.2018.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/01/2022]
|
47
|
Rachim VP, Chung WY. Multimodal Wrist Biosensor for Wearable Cuff-less Blood Pressure Monitoring System. Sci Rep 2019; 9:7947. [PMID: 31138845 PMCID: PMC6538603 DOI: 10.1038/s41598-019-44348-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 05/14/2019] [Indexed: 01/23/2023] Open
Abstract
We propose a multimodal biosensor for use in continuous blood pressure (BP) monitoring system. Our proposed novel configuration measures photo-plethysmography (PPG) and impedance plethysmography (IPG) signals simultaneously from the subject wrist. The proposed biosensor system enables a fully non-intrusive system that is cuff-less, also utilize a single measurement site for maximum wearability and convenience of the patients. The efficacy of the proposed technique was evaluated on 10 young healthy subjects. Experimental results indicate that the pulse transit time (PTT)-based features calculated from an IPG peak and PPG maximum second derivative (f14) had a relatively high correlation coefficient (r) to the reference BP, with -0.81 ± 0.08 and -0.78 ± 0.09 for systolic BP (SBP) and diastolic BP (DBP), respectively. Moreover, here we proposed two BP estimation models that utilize six- and one-point calibration models. The six-point model is based on the PTT, whereas the one-point model is based on the combined PTT and radial impedance (Z). Thus, in both models, we observed an adequate root-mean-square-error estimation performance, with 4.20 ± 1.66 and 2.90 ± 0.90 for SBP and DBP, respectively, with the PTT BP model; and 6.86 ± 1.65 and 6.67 ± 1.75 for SBP and DBP, respectively, with the PTT-Z BP model. This study suggests the possibility of estimating a subject's BP from only wrist bio-signals. Thus, the six- and one-point PTT-Z calibration models offer adequate performance for practical applications.
Collapse
Affiliation(s)
- Vega Pradana Rachim
- Department of Electronic Engineering, Pukyong National University, Busan, 48513, South Korea
| | - Wan-Young Chung
- Department of Electronic Engineering, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
48
|
Lázaro J, Gil E, Orini M, Laguna P, Bailón R. Baroreflex Sensitivity Measured by Pulse Photoplethysmography. Front Neurosci 2019; 13:339. [PMID: 31057351 PMCID: PMC6482265 DOI: 10.3389/fnins.2019.00339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/22/2019] [Indexed: 11/13/2022] Open
Abstract
Novel methods for assessing baroreflex sensitivity (BRS) using only pulse photoplethysmography (PPG) signals are presented. Proposed methods were evaluated with a data set containing electrocardiogram (ECG), blood pressure (BP), and PPG signals from 17 healthy subjects during a tilt table test. The methods are based on a surrogate of α index, which is defined as the power ratio of RR interval variability (RRV) and that of systolic arterial pressure series variability (SAPV). The proposed α index surrogates use pulse-to-pulse interval series variability (PPV) as a surrogate of RRV, and different morphological features of the PPG pulse which have been hypothesized to be related to BP, as series surrogates of SAPV. A time-frequency technique was used to assess BRS, taking into account the non-stationarity of the protocol. This technique identifies two time-varying frequency bands where RRV and SAPV (or their surrogates) are expected to be coupled: the low frequency (LF, inside 0.04-0.15 Hz range), and the high frequency (HF, inside 0.15-0.4 Hz range) bands. Furthermore, time-frequency coherence is used to identify the time intervals when the RRV and SAPV (or their surrogates) are coupled. Conventional α index based on RRV and SAPV was used as Gold Standard. Spearman correlation coefficients between conventional α index and its PPG-based surrogates were computed and the paired Wilcoxon statistical test was applied in order to assess whether the indices can find significant differences (p < 0.05) between different stages of the protocol. The highest correlations with the conventional α index were obtained by the α-index-surrogate based on PPV and pulse up-slope (PUS), with 0.74 for LF band, and 0.81 for HF band. Furthermore, this index found significant differences between rest stages and tilt stage in both LF and HF bands according to the paired Wilcoxon test, as the conventional α index also did. These results suggest that BRS changes induced by the tilt test can be assessed with high correlation by only a PPG signal using PPV as RRV surrogate, and PPG morphological features as SAPV surrogates, being PUS the most convenient SAPV surrogate among the studied ones.
Collapse
Affiliation(s)
- Jesús Lázaro
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States.,Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Eduardo Gil
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Michele Orini
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Pablo Laguna
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Raquel Bailón
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
49
|
Bard DM, Joseph JI, van Helmond N. Cuff-Less Methods for Blood Pressure Telemonitoring. Front Cardiovasc Med 2019; 6:40. [PMID: 31157236 PMCID: PMC6502966 DOI: 10.3389/fcvm.2019.00040] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/21/2019] [Indexed: 01/11/2023] Open
Abstract
Blood pressure telemonitoring (BPT) is a telemedicine strategy that uses a patient's self-measured blood pressure (BP) and transmits this information to healthcare providers, typically over the internet. BPT has been shown to improve BP control compared to usual care without remote monitoring. Traditionally, a cuff-based monitor with data communication capabilities has been used for BPT; however, cuff-based measurements are inconvenient and cause discomfort, which has prevented the widespread use of cuff-based monitors for BPT. The development of new technologies which allow for remote BP monitoring without the use of a cuff may aid in more extensive adoption of BPT. This would enhance patient autonomy while providing physicians with a more complete picture of their patient's BP profile, potentially leading to improved BP control and better long-term clinical outcomes. This mini-review article aims to: (1) describe the fundamentals of current techniques in cuff-less BP measurement; (2) present examples of commercially available cuff-less technologies for BPT; (3) outline challenges with current methodologies; and (4) describe potential future directions in cuff-less BPT development.
Collapse
Affiliation(s)
- Dylan M Bard
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Anesthesiology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jeffrey I Joseph
- Department of Anesthesiology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Noud van Helmond
- Department of Anesthesiology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Anesthesiology, Cooper Medical School of Rowan University, Cooper University Hospital, Camden, NJ, United States
| |
Collapse
|
50
|
Huynh TH, Jafari R, Chung WY. Noninvasive Cuffless Blood Pressure Estimation Using Pulse Transit Time and Impedance Plethysmography. IEEE Trans Biomed Eng 2019; 66:967-976. [DOI: 10.1109/tbme.2018.2865751] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|