1
|
Nagao K, Paniagua EV, Lei K, Beckham JL, Worthington P, Manthey M, Ye M, Koehler F, Kim YJ, Malkin E, Onoda M, Kent N, Michida S, Guerra EC, Macfarlane RJ, Anikeeva P. Adeno-associated viruses escort nanomaterials to specific cells and tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647267. [PMID: 40291644 PMCID: PMC12026743 DOI: 10.1101/2025.04.04.647267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The delivery of nanotherapeutics to specific tissues relies on bespoke targeting strategies or invasive surgeries. Conversely, adeno-associated viruses (AAVs) can target specific tissues following intravenous injections. Here we show that cell-targeting properties of AAVs could be broadly conferred to nanomaterials. We develop a strategy to couple AAV capsids to nanoparticles that is invariant of viral serotype or nanomaterial chemistry and permits control over stoichiometry of the AAV-nanoparticle chimeras. The chimeras selectively escort nanoparticles into cell classes governed by AAV serotypes. When applied to magnetic nanoparticles, the AAV-nanoparticle chimeras enable magnetically localized gene delivery. In vivo, we show that leveraging the brain-targeting AAV serotype CAP-B10 achieves nanoparticle delivery to the parenchyma with ∼10% efficiency (% injected dose/g [brain] ) while avoiding accumulation in the liver. The enhanced delivery efficiency and tissue specificity highlight the potential of AAV-chimeras as a versatile strategy to escort broad classes of nanotherapeutics to the brain and beyond.
Collapse
|
2
|
Bansal A, Sharma S, Kethamreddy M, Pandey MK. PET imaging of AAV9 and AAVBR1 trafficking in normal mice. Sci Rep 2025; 15:4257. [PMID: 39905154 PMCID: PMC11794717 DOI: 10.1038/s41598-025-86815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Adeno-associated virus (AAV) mediated gene therapy is advancing and needs a noninvasive imaging tool to evaluate its effective targeting, biodistribution and clearance for precise use in humans. In this study, two serotypes of AAVs, AAV9-CMV-fLuc, and a brain targeting variant, AAVBR1-CMV-fLuc, are directly radiolabeled with the positron emission tomography (PET) radioisotope, 89Zr. A radiolabeling synthon, [89Zr]Zr-DFO-Bn-NCS or [89Zr]Zr-DBN, was employed for the direct radiolabeling of AAVs, which enables tracking of AAVs by PET imaging for up to 18 days post-injection. The 89Zr radiolabeled AAVs were administered to BALB/c mice via tail vein and assessed for their biodistribution at various time points up to day 18 post-injection. Imaging of AAVs was followed by ex-vivo biodistribution at day 18, or luciferase imaging at 3rd week or > 30 days post-injection. The two serotypes showed differences in their biodistribution and trafficking in mice as early as 10 min post-injection. The brain targeting serotype, [89Zr]Zr-AAVBR1-CMV-fLuc, showed significantly higher uptake in the brain as compared to [89Zr]Zr-AAV9-CMV-fLuc. The luciferase expression-based infection profile correlated with both PET imaging and ex-vivo biodistribution data. The developed methodology provides a noninvasive approach to image the pharmacokinetics of AAVs in a longitudinal manner and renders a selection of specific AAV serotypes for tissue/organ specific targeting.
Collapse
Affiliation(s)
- Aditya Bansal
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Shalini Sharma
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Manasa Kethamreddy
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mukesh K Pandey
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA.
- Mayo Clinic Comprehensive Cancer Center, Rochester, MN, 55905, USA.
- Department of Pharmacology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
3
|
Day IL, Tamboline M, Lipshutz GS, Xu S. Recent developments in translational imaging of in vivo gene therapy outcomes. Mol Ther 2024:S1525-0016(24)00849-9. [PMID: 39741403 DOI: 10.1016/j.ymthe.2024.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/18/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Gene therapy achieves therapeutic benefits by delivering genetic materials, packaged within a delivery vehicle, to target cells with defective genes. This approach has shown promise in treating various conditions, including cancer, metabolic disorders, and tissue-degenerative diseases. Over the past 5 years, molecular imaging has increasingly supported gene therapy development in both preclinical and clinical studies. High-quality images from positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), and computed tomography (CT) enable quantitative and reliable monitoring of gene therapy. Most reported studies have applied imaging biomarkers to non-invasively evaluate the outcomes of gene therapy. This review aims to inform researchers in molecular imaging and gene therapy about the integration of these two disciplines. We highlight recent developments in using imaging biomarkers to monitor the outcome of in vivo gene therapy, where the therapeutic delivery vehicle is administered systemically. In addition, we discuss prospects for further incorporating imaging biomarkers to support the development and application of gene therapy.
Collapse
Affiliation(s)
- Isabel L Day
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mikayla Tamboline
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gerald S Lipshutz
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shili Xu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
4
|
Chandler RJ. Determining recombinant AAV capsid extracellular and intracellular biodistribution by dual radioisotope labeling. Mol Ther Methods Clin Dev 2024; 32:101373. [PMID: 39649706 PMCID: PMC11621943 DOI: 10.1016/j.omtm.2024.101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Affiliation(s)
- Randy J. Chandler
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Chen R, Rey JA, Tuna IS, Tran DD, Sarntinoranont M. A Spatial Interpolation Approach to Assign Magnetic Resonance Imaging-Derived Material Properties for Finite Element Models of Adeno-Associated Virus Infusion Into a Recurrent Brain Tumor. J Biomech Eng 2024; 146:101001. [PMID: 38581376 PMCID: PMC11110824 DOI: 10.1115/1.4064966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 04/08/2024]
Abstract
Adeno-associated virus (AAV) is a clinically useful gene delivery vehicle for treating neurological diseases. To deliver AAV to focal targets, direct infusion into brain tissue by convection-enhanced delivery (CED) is often needed due to AAV's limited penetration across the blood-brain-barrier and its low diffusivity in tissue. In this study, computational models that predict the spatial distribution of AAV in brain tissue during CED were developed to guide future placement of infusion catheters in recurrent brain tumors following primary tumor resection. The brain was modeled as a porous medium, and material property fields that account for magnetic resonance imaging (MRI)-derived anatomical regions were interpolated and directly assigned to an unstructured finite element mesh. By eliminating the need to mesh complex surfaces between fluid regions and tissue, mesh preparation was expedited, increasing the model's clinical feasibility. The infusion model predicted preferential fluid diversion into open fluid regions such as the ventricles and subarachnoid space (SAS). Additionally, a sensitivity analysis of AAV delivery demonstrated that improved AAV distribution in the tumor was achieved at higher tumor hydraulic conductivity or lower tumor porosity. Depending on the tumor infusion site, the AAV distribution covered 3.67-70.25% of the tumor volume (using a 10% AAV concentration threshold), demonstrating the model's potential to inform the selection of infusion sites for maximal tumor coverage.
Collapse
Affiliation(s)
- Reed Chen
- Department of Biomedical Engineering, Duke University, 407 Towerview Rd, Box 97756, Durham, NC 27708
| | - Julian A. Rey
- Department of Mechanical & Aerospace Engineering, University of Florida, 142 New Engineering Building, P.O. Box 116250, Gainesville, FL 32611
- University of Florida
| | - Ibrahim S. Tuna
- Department of Radiology, University of Florida College of Medicine, P.O. Box 100374, Gainesville, FL 32610-0374
- University of Florida
| | - David D. Tran
- Division of Neuro-Oncology, Department of Neurological Surgery and Neurology USC Brain Tumor Center, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
- University of Southern California
| | - Malisa Sarntinoranont
- Department of Mechanical & Aerospace Engineering, University of Florida, 497 Wertheim, P.O. Box 116250, Gainesville, FL 32611
| |
Collapse
|
6
|
Wang H, Li R, Sadekar S, Kamath AV, Shen BQ. A novel approach to quantitate biodistribution and transduction of adeno-associated virus gene therapy using radiolabeled AAV vectors in mice. Mol Ther Methods Clin Dev 2024; 32:101326. [PMID: 39286334 PMCID: PMC11404148 DOI: 10.1016/j.omtm.2024.101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
An understanding of recombinant adeno-associated virus (AAV) biodistribution profiles is an important element of a preclinical development program. Here, we have developed a radiolabeling strategy utilizing the co-delivery of 125I (non-residualizing) and 111In (residualizing) radionuclide-conjugated AAVs to provide a detailed distribution quantification at tissue level delineating between the cellular internalized AAV (degraded, 111In-125I) and AAV remaining in the extracellular matrix (intact, 125I). This labeling method has been successfully applied to AAV9 and AAV-PHP.eB as tool molecules without altering the physical properties and biological activities of the AAVs. Upon labeling with either of the radioactive probes, these molecules were systemically injected into C57BL/6 mice. The biodistribution results indicate that AAVs, with a fast distribution profile, were mainly located in the extracellular matrix of highly perfused organs such as liver and spleen at early time points, leading to a difference between capsid quantification and vector genome quantification. The results suggest that the 125I-AAV/111In-AAV co-delivery approach offers a robust and efficient analytical strategy to investigate the detailed tissue distribution of AAV vectors, including both vector genome and protein capsids. This novel method has the potential to be applied to capsid optimization, selection, and lead candidate development.
Collapse
Affiliation(s)
- Hongzhi Wang
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ran Li
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Shraddha Sadekar
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Amrita V Kamath
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ben-Quan Shen
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
7
|
Pham Q, Glicksman J, Chatterjee A. Chemical approaches to probe and engineer AAV vectors. NANOSCALE 2024; 16:13820-13833. [PMID: 38978480 PMCID: PMC11271820 DOI: 10.1039/d4nr01300j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024]
Abstract
Adeno-associated virus (AAV) has emerged as the most promising vector for in vivo human gene therapy, with several therapeutic approvals in the last few years and countless more under development. Underlying this remarkable success are several attractive features that AAV offers, including lack of pathogenicity, low immunogenicity, long-term gene expression without genomic integration, the ability to infect both dividing and non-dividing cells, etc. However, the commonly used wild-type AAV capsids in therapeutic development present significant challenges, including inadequate tissue specificity and the need for large doses to attain therapeutic effectiveness, raising safety concerns. Additionally, significant preexisting adaptive immunity against most natural capsids, and the development of such anti-capsid immunity after the first treatment, represent major challenges. Strategies to engineer the AAV capsid are critically needed to address these challenges and unlock the full promise of AAV gene therapy. Chemical modification of the AAV capsid has recently emerged as a powerful new approach to engineer its properties. Unlike genetic strategies, which can be more disruptive to the delicate capsid assembly and packaging processes, "late-stage" chemical modification of the assembled capsid-whether at natural amino acid residues or site-specifically installed noncanonical amino acid residues-often enables a versatile approach to introducing new properties to the capsid. This review summarizes the significant recent progress in AAV capsid engineering strategies, with a particular focus on chemical modifications in advancing the next generation of AAV-based gene therapies.
Collapse
Affiliation(s)
- Quan Pham
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| | - Jake Glicksman
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
8
|
Küppers J, Kürpig S, Bundschuh RA, Essler M, Lütje S. Radiolabeling Strategies of Nanobodies for Imaging Applications. Diagnostics (Basel) 2021; 11:1530. [PMID: 34573872 PMCID: PMC8471529 DOI: 10.3390/diagnostics11091530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Nanobodies are small recombinant antigen-binding fragments derived from camelid heavy-chain only antibodies. Due to their compact structure, pharmacokinetics of nanobodies are favorable compared to full-size antibodies, allowing rapid accumulation to their targets after intravenous administration, while unbound molecules are quickly cleared from the circulation. In consequence, high signal-to-background ratios can be achieved, rendering radiolabeled nanobodies high-potential candidates for imaging applications in oncology, immunology and specific diseases, for instance in the cardiovascular system. In this review, a comprehensive overview of central aspects of nanobody functionalization and radiolabeling strategies is provided.
Collapse
Affiliation(s)
- Jim Küppers
- Department of Nuclear Medicine, University Hospital Bonn, 53127 Bonn, Germany; (S.K.); (R.A.B.); (M.E.); (S.L.)
| | | | | | | | | |
Collapse
|
9
|
Pellico J, Gawne PJ, T M de Rosales R. Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev 2021; 50:3355-3423. [PMID: 33491714 DOI: 10.1039/d0cs00384k] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanomaterials offer unique physical, chemical and biological properties of interest for medical imaging and therapy. Over the last two decades, there has been an increasing effort to translate nanomaterial-based medicinal products (so-called nanomedicines) into clinical practice and, although multiple nanoparticle-based formulations are clinically available, there is still a disparity between the number of pre-clinical products and those that reach clinical approval. To facilitate the efficient clinical translation of nanomedicinal-drugs, it is important to study their whole-body biodistribution and pharmacokinetics from the early stages of their development. Integrating this knowledge with that of their therapeutic profile and/or toxicity should provide a powerful combination to efficiently inform nanomedicine trials and allow early selection of the most promising candidates. In this context, radiolabelling nanomaterials allows whole-body and non-invasive in vivo tracking by the sensitive clinical imaging techniques positron emission tomography (PET), and single photon emission computed tomography (SPECT). Furthermore, certain radionuclides with specific nuclear emissions can elicit therapeutic effects by themselves, leading to radionuclide-based therapy. To ensure robust information during the development of nanomaterials for PET/SPECT imaging and/or radionuclide therapy, selection of the most appropriate radiolabelling method and knowledge of its limitations are critical. Different radiolabelling strategies are available depending on the type of material, the radionuclide and/or the final application. In this review we describe the different radiolabelling strategies currently available, with a critical vision over their advantages and disadvantages. The final aim is to review the most relevant and up-to-date knowledge available in this field, and support the efficient clinical translation of future nanomedicinal products for in vivo imaging and/or therapy.
Collapse
Affiliation(s)
- Juan Pellico
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK.
| | | | | |
Collapse
|
10
|
Tarantal AF. In Vivo Imaging and Gene Therapy: Monitoring Safety, Biodistribution, and Long-Term Expression with Positron Emission Tomography. Hum Gene Ther 2020; 31:1224-1225. [PMID: 33337271 DOI: 10.1089/hum.2020.29145.ata] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Ballon DJ, Rosenberg JB, Fung EK, Nikolopoulou A, Kothari P, De BP, He B, Chen A, Heier LA, Sondhi D, Kaminsky SM, Mozley PD, Babich JW, Crystal RG. Quantitative Whole-Body Imaging of I-124-Labeled Adeno-Associated Viral Vector Biodistribution in Nonhuman Primates. Hum Gene Ther 2020; 31:1237-1259. [PMID: 33233962 PMCID: PMC7769048 DOI: 10.1089/hum.2020.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022] Open
Abstract
A method is presented for quantitative analysis of the biodistribution of adeno-associated virus (AAV) gene transfer vectors following in vivo administration. We used iodine-124 (I-124) radiolabeling of the AAV capsid and positron emission tomography combined with compartmental modeling to quantify whole-body and organ-specific biodistribution of AAV capsids from 1 to 72 h following administration. Using intravenous (IV) and intracisternal (IC) routes of administration of AAVrh.10 and AAV9 vectors to nonhuman primates in the absence or presence of anticapsid immunity, we have identified novel insights into initial capsid biodistribution and organ-specific capsid half-life. Neither I-124-labeled AAVrh.10 nor AAV9 administered intravenously was detected at significant levels in the brain relative to the administered vector dose. Approximately 50% of the intravenously administered labeled capsids were dispersed throughout the body, independent of the liver, heart, and spleen. When administered by the IC route, the labeled capsid had a half-life of ∼10 h in the cerebral spinal fluid (CSF), suggesting that by this route, the CSF serves as a source with slow diffusion into the brain. For both IV and IC administration, there was significant influence of pre-existing anticapsid immunity on I-124-capsid biodistribution. The methodology facilitates quantitative in vivo viral vector dosimetry, which can serve as a technique for evaluation of both on- and off-target organ biodistribution, and potentially accelerate gene therapy development through rapid prototyping of novel vector designs.
Collapse
Affiliation(s)
- Douglas J. Ballon
- Department of Radiology, Citigroup Biomedical Imaging Center
- Department of Genetic Medicine
| | | | - Edward K. Fung
- Department of Radiology, Citigroup Biomedical Imaging Center
| | | | - Paresh Kothari
- Department of Radiology, Citigroup Biomedical Imaging Center
| | | | - Bin He
- Department of Radiology, Citigroup Biomedical Imaging Center
| | | | - Linda A. Heier
- Department of Radiology; Weill Cornell Medical College, New York, New York, USA
| | | | | | | | - John W. Babich
- Department of Radiology, Citigroup Biomedical Imaging Center
| | | |
Collapse
|
12
|
Wang SK, Lapan SW, Hong CM, Krause TB, Cepko CL. In Situ Detection of Adeno-associated Viral Vector Genomes with SABER-FISH. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:376-386. [PMID: 33209963 PMCID: PMC7658570 DOI: 10.1016/j.omtm.2020.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/07/2020] [Indexed: 12/31/2022]
Abstract
Gene therapy with recombinant adeno-associated viral (AAV) vectors is a promising modality for the treatment of a variety of human diseases. Nonetheless, there remain significant gaps in our understanding of AAV vector biology, due in part to the lack of robust methods to track AAV capsids and genomes. In this study, we describe a novel application of signal amplification by exchange reaction fluorescence in situ hybridization (SABER-FISH) that enabled the visualization and quantification of individual AAV genomes after vector administration in mice. These genomes could be seen in retinal cells within 3 h of subretinal AAV delivery, were roughly full length, and correlated with vector expression in both photoreceptors and the retinal pigment epithelium. SABER-FISH readily detected AAV genomes in the liver and muscle following retro-orbital and intramuscular AAV injections, respectively, demonstrating its utility in different tissues. Using SABER-FISH, we also found that retinal microglia, a cell type deemed refractory to AAV transduction, are in fact efficiently infected by multiple AAV serotypes, but appear to degrade AAV genomes prior to nuclear localization. Our findings show that SABER-FISH can be used to visualize AAV genomes in situ, allowing for studies of AAV vector biology and the tracking of transduced cells following vector administration.
Collapse
Affiliation(s)
- Sean K Wang
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sylvain W Lapan
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Christin M Hong
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tyler B Krause
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Constance L Cepko
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
13
|
Lee JY, Mushtaq S, Park JE, Shin HS, Lee SY, Jeon J. Radioanalytical Techniques to Quantitatively Assess the Biological Uptake and In Vivo Behavior of Hazardous Substances. Molecules 2020; 25:molecules25173985. [PMID: 32882977 PMCID: PMC7504758 DOI: 10.3390/molecules25173985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/25/2022] Open
Abstract
Concern about environmental exposure to hazardous substances has grown over the past several decades, because these substances have adverse effects on human health. Methods used to monitor the biological uptake of hazardous substances and their spatiotemporal behavior in vivo must be accurate and reliable. Recent advances in radiolabeling chemistry and radioanalytical methodologies have facilitated the quantitative analysis of toxic substances, and whole-body imaging can be achieved using nuclear imaging instruments. Herein, we review recent literature on the radioanalytical methods used to study the biological distribution, changes in the uptake and accumulation of hazardous substances, including industrial chemicals, nanomaterials, and microorganisms. We begin with an overview of the radioisotopes used to prepare radiotracers for in vivo experiments. We then summarize the results of molecular imaging studies involving radiolabeled toxins and their quantitative assessment. We conclude the review with perspectives on the use of radioanalytical methods for future environmental research.
Collapse
Affiliation(s)
- Jae Young Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, Korea;
| | - Sajid Mushtaq
- Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad 45650, Pakistan;
| | - Jung Eun Park
- Department of Applied Chemistry, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Korea;
| | - Hee Soon Shin
- Division of Functional Food Research, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea; (H.S.S.); (S.-Y.L.)
- Food Biotechnology Program, University of Science and Technology, Daejeon 34113, Korea
| | - So-Young Lee
- Division of Functional Food Research, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea; (H.S.S.); (S.-Y.L.)
- Food Biotechnology Program, University of Science and Technology, Daejeon 34113, Korea
| | - Jongho Jeon
- Department of Applied Chemistry, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Korea;
- Correspondence: ; Tel.: +82-53-950-5584
| |
Collapse
|
14
|
Seo JW, Ingham ES, Mahakian L, Tumbale S, Wu B, Aghevlian S, Shams S, Baikoghli M, Jain P, Ding X, Goeden N, Dobreva T, Flytzanis NC, Chavez M, Singhal K, Leib R, James ML, Segal DJ, Cheng RH, Silva EA, Gradinaru V, Ferrara KW. Positron emission tomography imaging of novel AAV capsids maps rapid brain accumulation. Nat Commun 2020; 11:2102. [PMID: 32355221 PMCID: PMC7193641 DOI: 10.1038/s41467-020-15818-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 03/31/2020] [Indexed: 01/07/2023] Open
Abstract
Adeno-associated viruses (AAVs) are typically single-stranded deoxyribonucleic acid (ssDNA) encapsulated within 25-nm protein capsids. Recently, tissue-specific AAV capsids (e.g. PHP.eB) have been shown to enhance brain delivery in rodents via the LY6A receptor on brain endothelial cells. Here, we create a non-invasive positron emission tomography (PET) methodology to track viruses. To provide the sensitivity required to track AAVs injected at picomolar levels, a unique multichelator construct labeled with a positron emitter (Cu-64, t1/2 = 12.7 h) is coupled to the viral capsid. We find that brain accumulation of the PHP.eB capsid 1) exceeds that reported in any previous PET study of brain uptake of targeted therapies and 2) is correlated with optical reporter gene transduction of the brain. The PHP.eB capsid brain endothelial receptor affinity is nearly 20-fold greater than that of AAV9. The results suggest that novel PET imaging techniques can be applied to inform and optimize capsid design. Adeno-associated viruses (AAVs) can be targeted in a tissue-specific manner, but their tissue accumulation cannot be assessed in a non-invasive manner. Here the authors conjugate a multivalent chelator labelled with Cu-64 to the surface of AAVs and image the brain accumulation of the PHB.eB capsid by PET.
Collapse
Affiliation(s)
- Jai Woong Seo
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA.,Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Elizabeth S Ingham
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Lisa Mahakian
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Spencer Tumbale
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Bo Wu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Sadaf Aghevlian
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Shahin Shams
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Mo Baikoghli
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Poorva Jain
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Xiaozhe Ding
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Nick Goeden
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tatyana Dobreva
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Nicholas C Flytzanis
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Michael Chavez
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Ryan Leib
- Stanford University Mass Spectrometry, Stanford, CA, USA
| | - Michelle L James
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - David J Segal
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
| | - R Holland Cheng
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Eduardo A Silva
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Katherine W Ferrara
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
15
|
Mushtaq S, Park SH. Efficient 125I-radiolabeling of biomolecules using a strain-promoted oxidation-controlled cyclooctyne-1,2-quinone cycloaddition reaction. Chem Commun (Camb) 2020; 56:415-418. [PMID: 31821393 DOI: 10.1039/c9cc08982a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a novel 1,2-catechol based radioiodinated precursor for radioiodination of bicyclo[6.1.0]nonyne (BCN) installed biologically active molecules using a strain-promoted oxidation-controlled cyclooctyne-1,2-quinone cycloaddition reaction (SPOCQ) under ambient conditions. Compared to the reported methodologies, the new strategy demonstrates some clear advantages, including high in vitro and in vivo stability, high radiochemical yield, and exceptionally fast reaction kinetics at micro-molar concentration.
Collapse
Affiliation(s)
- Sajid Mushtaq
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk 56212, Republic of Korea.
| | | |
Collapse
|
16
|
Boutagy NE, Feher A, Alkhalil I, Umoh N, Sinusas AJ. Molecular Imaging of the Heart. Compr Physiol 2019; 9:477-533. [PMID: 30873600 DOI: 10.1002/cphy.c180007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multimodality cardiovascular imaging is routinely used to assess cardiac function, structure, and physiological parameters to facilitate the diagnosis, characterization, and phenotyping of numerous cardiovascular diseases (CVD), as well as allows for risk stratification and guidance in medical therapy decision-making. Although useful, these imaging strategies are unable to assess the underlying cellular and molecular processes that modulate pathophysiological changes. Over the last decade, there have been great advancements in imaging instrumentation and technology that have been paralleled by breakthroughs in probe development and image analysis. These advancements have been merged with discoveries in cellular/molecular cardiovascular biology to burgeon the field of cardiovascular molecular imaging. Cardiovascular molecular imaging aims to noninvasively detect and characterize underlying disease processes to facilitate early diagnosis, improve prognostication, and guide targeted therapy across the continuum of CVD. The most-widely used approaches for preclinical and clinical molecular imaging include radiotracers that allow for high-sensitivity in vivo detection and quantification of molecular processes with single photon emission computed tomography and positron emission tomography. This review will describe multimodality molecular imaging instrumentation along with established and novel molecular imaging targets and probes. We will highlight how molecular imaging has provided valuable insights in determining the underlying fundamental biology of a wide variety of CVDs, including: myocardial infarction, cardiac arrhythmias, and nonischemic and ischemic heart failure with reduced and preserved ejection fraction. In addition, the potential of molecular imaging to assist in the characterization and risk stratification of systemic diseases, such as amyloidosis and sarcoidosis will be discussed. © 2019 American Physiological Society. Compr Physiol 9:477-533, 2019.
Collapse
Affiliation(s)
- Nabil E Boutagy
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Attila Feher
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Imran Alkhalil
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Nsini Umoh
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Albert J Sinusas
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA.,Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, USA
| |
Collapse
|