1
|
Chen J, Zeng Z, Chen J, Li Y, Zhang Y, Maqsood A, Chen J, Shen W. Silicon application enhances resistance against sorghum mosaic virus infection in sugarcane. PHYSIOLOGIA PLANTARUM 2025; 177:e70127. [PMID: 39956986 DOI: 10.1111/ppl.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 02/18/2025]
Abstract
Mosaic disease is one of the predominant viral diseases affecting sugarcane plants worldwide. In China, it is mainly caused by the sorghum mosaic virus (SrMV). Exogenous silicon (ESi) has emerged as a promising inducer of plant disease resistance. This study aims to elucidate the mechanistic effects of exogenous silicon on enhancing the resistance to SrMV in sugarcane. ESi was applied to the soil at different rates (15 g per barrel-1, 30 g per barrel-1, and 45 g per barrel-1), leading to a significant reduction in disease incidence (26.66-82.22%) compared to non-silicon-treated plants. Silicon application (15 g ESi barrel-1, 30 g ESi barrel-1) mitigated SrMV inhibition of sugarcane growth, including plant height, stem diameter, and leaf area, while improving photosynthesis, including stomatal conductance, intercellular CO2 concentration, net photosynthetic rate, and transpiration rate. Additionally, silicon mitigates SrMV-induced degradation of chlorophyll a and b and carotenoid content, alongside heightened activities of superoxide dismutase, peroxidase, and catalase, and decreased content of malondialdehyde and hydrogen peroxide in sugarcane leaves. The ultrastructural analysis revealed silicon's capacity to reduce SrMV accumulation within sugarcane mesophyll cells while preserving chloroplast integrity. Additionally, silicon application increases SA content in sugarcane leaves and upregulates the expression of key SA pathway genes (PAL, PR1, NPR1). These findings suggest that silicon may contribute to sugarcane resistance to SrMV by potentially influencing antioxidant enzyme activity, ROS production, and SA pathway genes.
Collapse
Affiliation(s)
- Jiaoyun Chen
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, China
| | - Zhen Zeng
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, China
| | - Junyan Chen
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, China
| | - Yongjia Li
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, China
| | - Yi Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, China
| | - Ambreen Maqsood
- Department of Plant Pathology, Faculty of Agriculture, The Islamia University of Bahawalpur, Pakistan
| | - Jianwen Chen
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, China
| | - Wankuan Shen
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Wu J, Zhang Y, Li F, Zhang X, Ye J, Wei T, Li Z, Tao X, Cui F, Wang X, Zhang L, Yan F, Li S, Liu Y, Li D, Zhou X, Li Y. Plant virology in the 21st century in China: Recent advances and future directions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:579-622. [PMID: 37924266 DOI: 10.1111/jipb.13580] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.
Collapse
Affiliation(s)
- Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Ye
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Taiyun Wei
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lili Zhang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yi Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
3
|
Zhang C, Guo M, Dong J, Liu L, Zhou X, Wu J. Visual and Super-Sensitive Detection of Maize Chlorotic Mottle Virus by Dot-ELISA and Au Nanoparticle-Based Immunochromatographic Test Strip. Viruses 2023; 15:1607. [PMID: 37515293 PMCID: PMC10383747 DOI: 10.3390/v15071607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Maize chlorotic mottle virus (MCMV) is the only species in the Mahromovirus genus and is often co-infected with one or several viruses of the Potyvirus genus, posing a great threat to the global maize industry. Effective viral integrated management measures are dependent on the timely and proper detection of the causal agent of the disease. In this work, six super-sensitive and specific monoclonal antibodies (mAbs) against MCMV were first prepared using purified MCMV virions as the immunogen. Then, the Dot enzyme-linked immunosorbent assay (Dot-ELISA) was established based on the obtained mAbs, and it can detect MCMV in infected maize leaf crude extracts diluted up to 1:10,240-fold (w/v, g/mL). Furthermore, a rapid and user-friendly Au nanoparticle-based immunochromatographic test strip (AuNP-ICTS) based on paired mAbs 7B12 and 17C4 was created for monitoring MCMV in point-of-care tests, and it can detect the virus in a 25,600-fold dilution (w/v, g/mL) of MCMV-infected maize leaf crude extracts. The whole test process for ICTS was completed in 10 min. Compared with conventional reverse transcription-polymerase chain reaction (RT-PCR), the detection endpoint of both serological methods is higher than that of RT-PCR, especially the Dot-ELISA, which is 12.1 times more sensitive than that of RT-PCR. In addition, the detection results of 20 blinded maize samples by the two serological assays were consistent with those of RT-PCR. Therefore, the newly created Dot-ELISA and AuNP-ICTS exhibit favorable application potential for the detection of MCMV in plant samples.
Collapse
Affiliation(s)
- Cui Zhang
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mengmeng Guo
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jinxi Dong
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Li Liu
- The Department of Applied Engineering, Zhejiang Economic and Trade Polytechnic, Hangzhou 310018, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| |
Collapse
|
4
|
Duan X, Ma W, Jiao Z, Tian Y, Ismail RG, Zhou T, Fan Z. Reverse transcription-recombinase-aided amplification and CRISPR/Cas12a-based visual detection of maize chlorotic mottle virus. PHYTOPATHOLOGY RESEARCH 2022; 4:23. [PMID: 35757182 PMCID: PMC9207886 DOI: 10.1186/s42483-022-00128-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Maize chlorotic mottle virus (MCMV) is one of the important quarantine pathogens in China. It often co-infects with one or two viruses in the family Potyviridae and causes maize lethal necrosis disease. Therefore, an accurate and sensitive method for the detection of MCMV is urgently needed. Combined with reverse transcription and recombinase-aided amplification, we developed a CRISPR/Cas12a-based visual nucleic acid detection system targeting the MCMV coat protein gene. The whole process can be completed within 45 min with high sensitivity. This system could detect cDNAs diluted up to 10-5 when 2000 ng of total RNA was used for reverse transcription. The Cas12a/crRNA complex designed for MCMV detection could recognize and cleave the targeted double-stranded DNA, and ultimately cleave the single-stranded DNA probes and produce fluorescent signals. The green fluorescence produced under blue light (440-460 nm) in this procedure could be observed by the naked eye. Since this novel method is specific, rapid, sensitive and does not require special instruments and technical expertise, it should be suitable for on-site visual detection of MCMV in seeds, plants of maize and potentially in its insect vectors.
Collapse
Affiliation(s)
- Xueyan Duan
- State Key Laboratory of Agrobiotechnology, MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
- Sanya Institute of China Agricultural University, Building 8, Yongyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025 Hainan China
| | - Wendi Ma
- State Key Laboratory of Agrobiotechnology, MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
| | - Zhiyuan Jiao
- State Key Laboratory of Agrobiotechnology, MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
- Sanya Institute of China Agricultural University, Building 8, Yongyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025 Hainan China
| | - Yiying Tian
- State Key Laboratory of Agrobiotechnology, MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
- Sanya Institute of China Agricultural University, Building 8, Yongyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025 Hainan China
| | - Ragab Gomaa Ismail
- State Key Laboratory of Agrobiotechnology, MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
- Department of Plant Pathology, College of Agriculture, Alexandria University, El-Shatby, Alexandria, 21545 Egypt
| | - Tao Zhou
- State Key Laboratory of Agrobiotechnology, MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
- Sanya Institute of China Agricultural University, Building 8, Yongyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025 Hainan China
| | - Zaifeng Fan
- State Key Laboratory of Agrobiotechnology, MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
- Sanya Institute of China Agricultural University, Building 8, Yongyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025 Hainan China
| |
Collapse
|
5
|
Xu XJ, Geng C, Jiang SY, Zhu Q, Yan ZY, Tian YP, Li XD. A maize triacylglycerol lipase inhibits sugarcane mosaic virus infection. PLANT PHYSIOLOGY 2022; 189:754-771. [PMID: 35294544 PMCID: PMC9157127 DOI: 10.1093/plphys/kiac126] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 05/13/2023]
Abstract
Triacylglycerol lipase (TGL) plays critical roles in providing energy for seed germination and plant development. However, the role of TGL in regulating plant virus infection is largely unknown. In this study, we adopted affinity purification coupled with mass spectrometry and identified that a maize (Zea mays) pathogenesis-related lipase protein Z. mays TGL (ZmTGL) interacted with helper component-proteinase (HC-Pro) of sugarcane mosaic virus (SCMV). Yeast two-hybrid, luciferase complementation imaging, and bimolecular fluorescence complementation assays confirmed that ZmTGL directly interacted with SCMV HC-Pro in vitro and in vivo. The 101-460 residues of SCMV HC-Pro were important for its interaction with ZmTGL. ZmTGL and SCMV HC-Pro co-localized at the mitochondria. Silencing of ZmTGL facilitated SCMV infection, and over-expression of ZmTGL reduced the RNA silencing suppression activity, most likely through reducing HC-Pro accumulation. Our results provided evidence that the lipase hydrolase activity of ZmTGL was associated with reducing HC-Pro accumulation, activation of salicylic acid (SA)-mediated defense response, and inhibition of SCMV infection. We show that ZmTGL inhibits SCMV infection by reducing HC-Pro accumulation and activating the SA pathway.
Collapse
Affiliation(s)
- Xiao-Jie Xu
- Department of Plant Pathology, College of Plant Protection, Laboratory of Plant Virology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Chao Geng
- Department of Plant Pathology, College of Plant Protection, Laboratory of Plant Virology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Shao-Yan Jiang
- Department of Plant Pathology, College of Plant Protection, Laboratory of Plant Virology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Qing Zhu
- Department of Plant Pathology, College of Plant Protection, Laboratory of Plant Virology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Zhi-Yong Yan
- Department of Plant Pathology, College of Plant Protection, Laboratory of Plant Virology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yan-Ping Tian
- Department of Plant Pathology, College of Plant Protection, Laboratory of Plant Virology, Shandong Agricultural University, Tai’an, Shandong 271018, China
- Author for correspondence:
| | - Xiang-Dong Li
- Department of Plant Pathology, College of Plant Protection, Laboratory of Plant Virology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| |
Collapse
|
6
|
Akbar S, Yao W, Yu K, Qin L, Ruan M, Powell CA, Chen B, Zhang M. Photosynthetic characterization and expression profiles of sugarcane infected by Sugarcane mosaic virus (SCMV). PHOTOSYNTHESIS RESEARCH 2021; 150:279-294. [PMID: 31900791 DOI: 10.1007/s11120-019-00706-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Sugarcane mosaic virus (SCMV), belonging to genus Potyvirus, family Potyviridae, is a severe pathogen of several agricultural important crops, mainly sugarcane. Due to complex nature of sugarcane, the effect of SCMV pathogenicity on sugarcane photosynthetic systems remains to be explored. In this study, we investigated the alterations occurring in the photosynthetic system in the sugarcane genotypes at the cytopathological, physiological and biological, transcriptome and proteome level. We generated the transcriptome assembly of two genotypes (susceptible Badila and resistant B-48) using Saccharum spontaneum L. as a reference genome. RNA-sequencing data revealed the significant upregulation of NAD(P)H, RubisCO, oxygen-evolving complex, chlorophyll a and b binding protein, Psb protein family, PSI reaction center subunit II, and IVgenes in B-48, as compared to its counterparts. Upregulated genes in B-48 are associated with various processes such as stability and assembly of photosystem, protection against photoinhibition and antiviral defense. The expression pattern of differentially abundant genes were further verified at the proteomics level. Overall, differentially expressed genes/proteins (DEGs/DEPs) showed the consistency of expression at both transcriptome and proteome level in B-48 genotype. Comprehensively, these data supported the efficiency of B-48 genotype under virus infection conditions and provided a better understanding of the expression pattern of photosynthesis-related genes in sugarcane.
Collapse
Affiliation(s)
- Sehrish Akbar
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning, 530005, China
| | - Wei Yao
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, China
| | - Kai Yu
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning, 530005, China
| | - Lifang Qin
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning, 530005, China
| | - Miaohong Ruan
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning, 530005, China
| | | | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning, 530005, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning, 530005, China.
- IRREC-IFAS, University of Florida, Fort Pierce, FL, 34945, USA.
| |
Collapse
|
7
|
Coinfection of Cotton Plants with Watermelon Mosaic Virus and a Novel Polerovirus in China. Viruses 2021; 13:v13112210. [PMID: 34835016 PMCID: PMC8618073 DOI: 10.3390/v13112210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 11/24/2022] Open
Abstract
Cotton is the most important fiber crop worldwide. To determine the presence of viruses in cotton plants showing leaf roll and vein yellowing symptoms in Henan Province of China, a small RNA-based deep sequencing approach was performed. Analysis of the de novo-assembled contigs followed by reverse transcription PCR allowed the reconstruction of watermelon mosaic virus and an unknown virus. The genome of the unknown virus was determined to be 5870 nucleotides in length, and has a genomic organization with characteristic features of previously reported poleroviruses. Sequence analysis revealed that the virus was closely related to, but significantly different from, cotton leafroll dwarf virus, a polerovirus of the family Solemoviridae. This virus had less than 90% amino acid sequence identity in the products of both ORF0 and ORF1. According to the polerovirus species demarcation criteria set by the International Committee on Taxonomy of Viruses, this virus should be assigned to a new polerovirus species, for which we propose the name “cotton leaf roll virus”.
Collapse
|
8
|
Zechmann B, Müller M, Möstl S, Zellnig G. Three-dimensional quantitative imaging of Tobacco mosaic virus and Zucchini yellow mosaic virus induced ultrastructural changes. PROTOPLASMA 2021; 258:1201-1211. [PMID: 33619654 DOI: 10.1007/s00709-021-01626-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Two-dimensional ultrastructural changes of Tobacco mosaic virus (TMV) and Zucchini yellow mosaic virus (ZYMV) in tobacco and pumpkin plants, respectively, are well studied. To provide 3D data, representative control and infected cells were reconstructed using serial sectioning and transmission electron microscopy. Quantitative data of 3D ultrastructural changes were then extracted from the cytosol and organelles by image analysis. While TMV induced the accumulation of an average of 40 virus inclusion bodies in the cytosol, which covered about 13% of the cell volume, ZYMV caused the accumulation of an average of 1752 cylindrical inclusions in the cytosol, which covered about 2.7% of the total volume of the cell. TMV infection significantly decreased the number and size of mitochondria (- 49 and - 20%) and peroxisomes (- 62 and - 28%) of the reconstructed cell. The reconstructed ZYMV-infected cell contained more (105%) and larger (109%) mitochondria when compared to the control cell. While the reconstructed TMV-infected cell contained larger (20%) and the ZYMV-infected smaller (19%) chloroplasts, both contained less chloroplasts (- 40% for TMV and - 23% for ZYMV). In chloroplasts, the volume of starch and plastoglobules increased (664% and 150% for TMV and 1324% and 1300% for ZYMV) when compared to the control. The latter was correlated with a decrease in the volume of thylakoids in the reconstructed ZYMV-infected cell (- 31%) indicating that degradation products from thylakoids are transported and stored in plastoglobules. Summing up, the data collected in this study give a comprehensive overview of 3D changes induced by TMV and ZYMV in plants.
Collapse
Affiliation(s)
- Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, One Bear Place #97046, Waco, TX, 76798, USA.
| | - Maria Müller
- Institute of Biology, Plant Sciences, University of Graz, NAWI Graz, Schubertstrasse 51, 8010, Graz, Austria
| | - Stefan Möstl
- Institute of Biology, Plant Sciences, University of Graz, NAWI Graz, Schubertstrasse 51, 8010, Graz, Austria
| | - Günther Zellnig
- Institute of Biology, Plant Sciences, University of Graz, NAWI Graz, Schubertstrasse 51, 8010, Graz, Austria
| |
Collapse
|
9
|
Li X, Li Y, Hu W, Li Y, Li Y, Chen S, Wang J. Simultaneous multiplex RT-PCR detection of four viruses associated with maize lethal necrosis disease. J Virol Methods 2021; 298:114286. [PMID: 34520808 DOI: 10.1016/j.jviromet.2021.114286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/28/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022]
Abstract
Maize lethal necrosis disease (MLND) is a serious disease of worldwide importance. It is caused by the co-infection of maize with maize chlorotic mottle virus (MCMV) and a potyvirus, such as sugarcane mosaic virus (SCMV), that acts synergistically to produce more severe symptoms and production losses. More recently, maize yellow mosaic virus (MaYMV) and maize-associated totivirus (MATV) were found to co-infect with MCMV and SCMV in maize plants. To facilitate the detection of these viruses in co-infected maize, a multiplex RT-PCR assay was developed in this study. The assay used five specific primer pairs and simultaneously amplified these four viruses as well as the elongation factor 1α (EF 1α) gene use as internal control in one tube. The concentration of the primers, annealing temperature, annealing time, extension time and amplification cycles were optimized for the multiplex RT-PCR. The detection limit of the assay was up to 100 pg of total cDNA template. This multiplex RT-PCR assay was shown to be a sensitive and effective tool for the screening of field samples for the presence of these viruses in co-infected maize.
Collapse
Affiliation(s)
- Xiaoqin Li
- School of Life Science, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan Province, Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming 650091, China
| | - Yu Li
- School of Life Science, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan Province, Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming 650091, China
| | - Wenli Hu
- School of Life Science, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan Province, Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming 650091, China
| | - Yingjuan Li
- School of Life Science, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan Province, Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming 650091, China
| | - Yan Li
- Yunnan Plant Protection and Quarantine Station, Kunming 650034, China
| | - Suiyun Chen
- School of Life Science, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan Province, Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming 650091, China.
| | - Jianguang Wang
- School of Life Science, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan Province, Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming 650091, China.
| |
Collapse
|
10
|
Nithya K, VishnuVardhan J, Balasaravanan S, Vishalakshi D, Kaverinathan K, Viswanathan R. First report of Maize yellow mosaic virus (MaYMV) infecting sugarcane in India and its molecular characterization. AUSTRALASIAN PLANT PATHOLOGY 2021; 50:633-638. [DOI: 10.1007/s13313-021-00809-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/28/2021] [Indexed: 02/05/2023]
|
11
|
Yang X, Li Y, Wang A. Research Advances in Potyviruses: From the Laboratory Bench to the Field. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:1-29. [PMID: 33891829 DOI: 10.1146/annurev-phyto-020620-114550] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Potyviruses (viruses in the genus Potyvirus, family Potyviridae) constitute the largest group of known plant-infecting RNA viruses and include many agriculturally important viruses that cause devastating epidemics and significant yield losses in many crops worldwide. Several potyviruses are recognized as the most economically important viral pathogens. Therefore, potyviruses are more studied than other groups of plant viruses. In the past decade, a large amount of knowledge has been generated to better understand potyviruses and their infection process. In this review, we list the top 10 economically important potyviruses and present a brief profile of each. We highlight recent exciting findings on the novel genome expression strategy and the biological functions of potyviral proteins and discuss recent advances in molecular plant-potyvirus interactions, particularly regarding the coevolutionary arms race. Finally, we summarize current disease control strategies, with a focus on biotechnology-based genetic resistance, and point out future research directions.
Collapse
Affiliation(s)
- Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| |
Collapse
|
12
|
Wang Q, Lu L, Zeng M, Wang D, Zhang TZ, Xie Y, Gao SB, Fu S, Zhou XP, Wu JX. Rice black-streaked dwarf virus P10 promotes phosphorylation of GAPDH (glyceraldehyde-3-phosphate dehydrogenase) to induce autophagy in Laodelphax striatellus. Autophagy 2021; 18:745-764. [PMID: 34313529 DOI: 10.1080/15548627.2021.1954773] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Macroautophagy/autophagy is an important innate and adaptive immune response that can clear microbial pathogens through guiding their degradation. Virus infection in animals and plants is also known to induce autophagy. However, how virus infection induces autophagy is largely unknown. Here, we provide evidence that the early phase of rice black-streaked dwarf virus (RBSDV) infection in Laodelphax striatellus can also induce autophagy, leading to suppression of RBSDV invasion and accumulation. We have determined that the main capsid protein of RBSDV (P10) is the inducer of autophagy. RBSDV P10 can specifically interact with GAPDH (glyceraldehyde-3-phosphate dehydrogenase), both in vitro and in vivo. Silencing of GAPDH in L. striatellus could significantly reduce the activity of autophagy induced by RBSDV infection. Furthermore, our results also showed that both RBSDV infection and RBSDV P10 alone can promote phosphorylation of AMP-activated protein kinase (AMPK), resulting in GAPDH phosphorylation and relocation of GAPDH from the cytoplasm into the nucleus in midgut cells of L. striatellus or Sf9 insect cells. Once inside the nucleus, phosphorylated GAPDH can activate autophagy to suppress virus infection. Together, these data illuminate the mechanism by which RBSDV induces autophagy in L. striatellus, and indicate that the autophagy pathway in an insect vector participates in the anti-RBSDV innate immune response.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Lina Lu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Ming Zeng
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Dan Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Tian-Ze Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Yi Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Shi-Bo Gao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Shuai Fu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Xue-Ping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, P.R.China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Jian-Xiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| |
Collapse
|
13
|
Jiao Z, Tian Y, Cao Y, Wang J, Zhan B, Zhao Z, Sun B, Guo C, Ma W, Liao Z, Zhang H, Zhou T, Xia Y, Fan Z. A novel pathogenicity determinant hijacks maize catalase 1 to enhance viral multiplication and infection. THE NEW PHYTOLOGIST 2021; 230:1126-1141. [PMID: 33458828 DOI: 10.1111/nph.17206] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/07/2021] [Indexed: 05/10/2023]
Abstract
Pathogens have evolved various strategies to overcome host immunity for successful infection. Maize chlorotic mottle virus (MCMV) can cause lethal necrosis in maize (Zea mays) when it coinfects with a virus in the Potyviridae family. However, the MCMV pathogenicity determinant remains largely unknown. Here we show that the P31 protein of MCMV is important for viral accumulation and essential for symptom development. Ectopic expression of P31 using foxtail mosaic virus or potato virus X induced necrosis in systemically infected maize or Nicotiana benthamiana leaves. Maize catalases (CATs) were shown to interact with P31 in yeast and in planta. P31 accumulation was elevated through its interaction with ZmCAT1. P31 attenuated the expression of salicylic acid (SA)-responsive pathogenesis-related (PR) genes by inhibiting catalase activity during MCMV infection. In addition, silencing of ZmCATs using a brome mosaic virus-based gene silencing vector facilitated MCMV RNA and coat protein accumulation. This study reveals an important role for MCMV P31 in counteracting host defence and inducing systemic chlorosis and necrosis. Our results have implications for understanding the mechanisms in defence and counter-defence during infection of plants by various pathogens.
Collapse
Affiliation(s)
- Zhiyuan Jiao
- State Kay Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Yiying Tian
- State Kay Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Yanyong Cao
- Cereal Crops Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Juan Wang
- State Kay Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Binhui Zhan
- State Kay Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Zhenxing Zhao
- State Kay Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Biao Sun
- State Kay Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Chang Guo
- State Kay Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Wendi Ma
- State Kay Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Zhenfeng Liao
- State Key Laboratory for Sustainable Control of Pest and Disease, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hengmu Zhang
- State Key Laboratory for Sustainable Control of Pest and Disease, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Tao Zhou
- State Kay Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zaifeng Fan
- State Kay Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
14
|
Carino EJ, Scheets K, Miller WA. The RNA of Maize Chlorotic Mottle Virus, an Obligatory Component of Maize Lethal Necrosis Disease, Is Translated via a Variant Panicum Mosaic Virus-Like Cap-Independent Translation Element. J Virol 2020; 94:e01005-20. [PMID: 32847851 PMCID: PMC7592216 DOI: 10.1128/jvi.01005-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/30/2020] [Indexed: 11/29/2022] Open
Abstract
Maize chlorotic mottle virus (MCMV) combines with a potyvirus in maize lethal necrosis disease (MLND), a serious emerging disease worldwide. To inform resistance strategies, we characterized the translation initiation mechanism of MCMV. We report that MCMV RNA contains a cap-independent translation element (CITE) in its 3' untranslated region (UTR). The MCMV 3' CITE (MTE) was mapped to nucleotides 4164 to 4333 in the genomic RNA. 2'-Hydroxyl acylation analyzed by primer extension (SHAPE) probing revealed that the MTE is a distinct variant of the panicum mosaic virus-like 3' CITE (PTE). Like the PTE, electrophoretic mobility shift assays (EMSAs) indicated that eukaryotic translation initiation factor 4E (eIF4E) binds the MTE despite the absence of an m7GpppN cap structure, which is normally required for eIF4E to bind RNA. Using a luciferase reporter system, mutagenesis to disrupt and restore base pairing revealed that the MTE interacts with the 5' UTRs of both genomic RNA and subgenomic RNA1 via long-distance kissing stem-loop interaction to facilitate translation. The MTE stimulates a relatively low level of translation and has a weak, if any, pseudoknot, which is present in the most active PTEs, mainly because the MTE lacks the pyrimidine-rich tract that base pairs to a G-rich bulge to form the pseudoknot. However, most mutations designed to form a pseudoknot decreased translation activity. Mutations in the viral genome that reduced or restored translation prevented and restored virus replication, respectively, in maize protoplasts and in plants. In summary, the MTE differs from the canonical PTE but falls into a structurally related class of 3' CITEs.IMPORTANCE In the past decade, maize lethal necrosis disease has caused massive crop losses in East Africa. It has also emerged in China and parts of South America. Maize chlorotic mottle virus (MCMV) infection is required for this disease. While some tolerant maize lines have been identified, there are no known resistance genes that confer immunity to MCMV. In order to improve resistance strategies against MCMV, we focused on how the MCMV genome is translated, the first step of gene expression by all positive-strand RNA viruses. We identified a structure (cap-independent translation element) in the 3' untranslated region of the viral RNA genome that allows the virus to usurp a host translation initiation factor, eIF4E, in a way that differs from host mRNA interactions with the translational machinery. This difference indicates eIF4E may be a soft target for engineering of-or breeding for-resistance to MCMV.
Collapse
Affiliation(s)
- Elizabeth J Carino
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA
- Interdepartmental Genetics and Genomics Program, Iowa State University, Ames, Iowa, USA
| | - Kay Scheets
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, Oklahoma, USA
| | - W Allen Miller
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA
- Interdepartmental Genetics and Genomics Program, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
15
|
Mwatuni FM, Nyende AB, Njuguna J, Xiong Z, Machuka E, Stomeo F. Occurrence, genetic diversity, and recombination of maize lethal necrosis disease-causing viruses in Kenya. Virus Res 2020; 286:198081. [PMID: 32663481 PMCID: PMC7450272 DOI: 10.1016/j.virusres.2020.198081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 06/20/2020] [Accepted: 06/27/2020] [Indexed: 11/22/2022]
Abstract
Maize is the most important food crop in Kenya accounting for more than 51 % of all staples grown in the country. Out of Kenya's 5.3 million ha total crops area, more than 2.1 million ha is occupied by maize which translates to 40 % of all crops area. However, with the emergence of maize lethal necrosis (MLN) disease in 2011, the average yields plummeted to all-time lows with severely affected counties recording 90-100% yield loss in 2013 and 2014. The disease is mainly caused by Maize chlorotic mottle virus (MCMV) in combination with Sugarcane mosaic virus (SCMV) or other potyviruses. In this study, a country-wide survey was carried out to assess the MLN causing viruses in Kenya, their distribution, genetic diversity, and recombination. The causative viruses of MLN were determined by RT-PCR using virus-specific primers and DAS-ELISA. Next-generation sequencing (NGS) data was generated, viral sequences identified, genetic diversity of MLN viruses was determined, and recombination was evaluated. MCMV and SCMV were detected in all the maize growing regions at varying levels of incidence, and severity while MaYMV, a polerovirus was detected in some samples through NGS. However, there were some samples in this study where only MCMV was detected with severe MLN symptoms. SCMV Sequences were highly diverse while MCMV sequences exhibited low variability. Potential recombination events were detected only in SCMV explaining the elevated level of diversity and associated risk of this virus in Kenya and the eastern Africa region.
Collapse
Affiliation(s)
- Francis M Mwatuni
- International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 1041 - 00621, Nairobi, Kenya; Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00100, Nairobi, Kenya; Kenya Plant Health Inspectorate Service(KEPHIS), P.O. Box 49592-00100, Nairobi, Kenya.
| | - Aggrey Bernard Nyende
- Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00100, Nairobi, Kenya
| | - Joyce Njuguna
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA - ILRI) Hub, P.O. Box 30709-00100, Nairobi, Kenya
| | | | - Eunice Machuka
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA - ILRI) Hub, P.O. Box 30709-00100, Nairobi, Kenya
| | - Francesca Stomeo
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA - ILRI) Hub, P.O. Box 30709-00100, Nairobi, Kenya
| |
Collapse
|
16
|
Proteomic Changes during MCMV Infection Revealed by iTRAQ Quantitative Proteomic Analysis in Maize. Int J Mol Sci 2019; 21:ijms21010035. [PMID: 31861651 PMCID: PMC6981863 DOI: 10.3390/ijms21010035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Maize chlorotic mottle virus (MCMV) has been occurring frequently worldwide and causes severe yield losses in maize (Zea mays). To better investigate the destructive effects of MCMV infection on maize plants, isobaric tagging for relative and absolute quantitation (iTRAQ)-based comparative proteomic analysis was performed on MCMV infected maize cv. B73. A total of 972 differentially abundant proteins (DAPs), including 661 proteins with increased abundance and 311 proteins with reduced abundance, were identified in response to MCMV infection. Functional annotations of DAPs and measurement of photosynthetic activity revealed that photosynthesis was decreased, while the abundance of ribosomal proteins, proteins related to stress responses, oxidation-reduction and redox homeostasis was altered significantly during MCMV infection. Two DAPs, disulfide isomerases like protein ZmPDIL-1 and peroxiredoxin family protein ZmPrx5, were further analyzed for their roles during MCMV infection through cucumber mosaic virus-based virus-induced gene silencing (CMV-VIGS). The accumulation of MCMV was suppressed in ZmPDIL-1-silenced or ZmPrx5-silenced B73 maize, suggesting ZmPDIL-1 and ZmPrx5 might enhance host susceptibility to MCMV infection.
Collapse
|
17
|
Sitonik C, Suresh LM, Beyene Y, Olsen MS, Makumbi D, Oliver K, Das B, Bright JM, Mugo S, Crossa J, Tarekegne A, Prasanna BM, Gowda M. Genetic architecture of maize chlorotic mottle virus and maize lethal necrosis through GWAS, linkage analysis and genomic prediction in tropical maize germplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2381-2399. [PMID: 31098757 PMCID: PMC6647133 DOI: 10.1007/s00122-019-03360-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/08/2019] [Indexed: 05/21/2023]
Abstract
KEY MESSAGE Analysis of the genetic architecture of MCMV and MLN resistance in maize doubled-haploid populations revealed QTLs with major effects on chromosomes 3 and 6 that were consistent across genetic backgrounds and environments. Two major-effect QTLs, qMCMV3-108/qMLN3-108 and qMCMV6-17/qMLN6-17, were identified as conferring resistance to both MCMV and MLN. Maize lethal necrosis (MLN) is a serious threat to the food security of maize-growing smallholders in sub-Saharan Africa. The ability of the maize chlorotic mottle virus (MCMV) to interact with other members of the Potyviridae causes severe yield losses in the form of MLN. The objective of the present study was to gain insights and validate the genetic architecture of resistance to MCMV and MLN in maize. We applied linkage mapping to three doubled-haploid populations and a genome-wide association study (GWAS) on 380 diverse maize lines. For all the populations, phenotypic variation for MCMV and MLN was significant, and heritability was moderate to high. Linkage mapping revealed 13 quantitative trait loci (QTLs) for MCMV resistance and 12 QTLs conferring MLN resistance. One major-effect QTL, qMCMV3-108/qMLN3-108, was consistent across populations for both MCMV and MLN resistance. Joint linkage association mapping (JLAM) revealed 18 and 21 main-effect QTLs for MCMV and MLN resistance, respectively. Another major-effect QTL, qMCMV6-17/qMLN6-17, was detected for both MCMV and MLN resistance. The GWAS revealed a total of 54 SNPs (MCMV-13 and MLN-41) significantly associated (P ≤ 5.60 × 10-05) with MCMV and MLN resistance. Most of the GWAS-identified SNPs were within or adjacent to the QTLs detected through linkage mapping. The prediction accuracy for within populations as well as the combined populations is promising; however, the accuracy was low across populations. Overall, MCMV resistance is controlled by a few major and many minor-effect loci and seems more complex than the genetic architecture for MLN resistance.
Collapse
Affiliation(s)
- Chelang'at Sitonik
- International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 1041-00621, Village Market, Nairobi, 00621, Kenya
- Department of Plant Breeding and Biotechnology, University of Eldoret (UoE), P.O. Box 1125, Eldoret, 30100, Kenya
| | - L M Suresh
- International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 1041-00621, Village Market, Nairobi, 00621, Kenya
| | - Yoseph Beyene
- International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 1041-00621, Village Market, Nairobi, 00621, Kenya
| | - Michael S Olsen
- International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 1041-00621, Village Market, Nairobi, 00621, Kenya
| | - Dan Makumbi
- International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 1041-00621, Village Market, Nairobi, 00621, Kenya
| | - Kiplagat Oliver
- Department of Plant Breeding and Biotechnology, University of Eldoret (UoE), P.O. Box 1125, Eldoret, 30100, Kenya
| | - Biswanath Das
- International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 1041-00621, Village Market, Nairobi, 00621, Kenya
| | - Jumbo M Bright
- International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 1041-00621, Village Market, Nairobi, 00621, Kenya
| | - Stephen Mugo
- International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 1041-00621, Village Market, Nairobi, 00621, Kenya
| | - Jose Crossa
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, DF, Mexico
| | - Amsal Tarekegne
- International Maize and Wheat Improvement Center (CIMMYT), 12.5 km Peg Mazowe Road, Mount Pleasant, P.O. Box MP163, Harare, Zimbabwe
| | - Boddupalli M Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 1041-00621, Village Market, Nairobi, 00621, Kenya.
| | - Manje Gowda
- International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 1041-00621, Village Market, Nairobi, 00621, Kenya.
| |
Collapse
|
18
|
Awata LAO, Ifie BE, Tongoona P, Danquah E, Jumbo MB, Gowda M, Marchelo-D’ragga PW, Sitonik C, Suresh LM. Maize lethal necrosis and the molecular basis of variability in concentrations of the causal viruses in co-infected maize plant. JOURNAL OF GENERAL AND MOLECULAR VIROLOGY 2019; 9:JGMV-09-01-0073. [PMID: 33381355 PMCID: PMC7753892 DOI: 10.5897/jgmv2019.0073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022]
Abstract
Maize lethal necrosis (MLN) disease is new to Africa. First report was in Kenya in 2012, since then the disease has rapidly spread to most parts of eastern and central Africa region including Tanzania, Burundi, DRC Congo, Rwanda, Uganda, Ethiopia and similar symptoms were observed in South Sudan. Elsewhere, the disease was caused by infection of Maize Chlorotic Mottle Virus (MCMV) in combination with any of the potyviruses namely; maize dwarf mosaic virus (MDMV), sugarcane mosaic virus (SCMV) and tritimovirus wheat streak mosaic virus (WSMV). In Africa, the disease occurs due to combined infections of maize by MCMV and SCMV, leading to severe yield losses. Efforts to address the disease spread have been ongoing. Serological techniques including enzyme-linked immuno-sorbent assay (ELISA), polymerase chain reaction (PCR), genome-wide association (GWAS) mapping and next generation sequencing have been effectively used to detect and characterize MLN causative pathogens. Various management strategies have been adapted to control MLN including use of resistant varieties, phytosanitary measures and better cultural practices. This review looks at the current knowledge on MLN causative viruses, genetic architecture and molecular basis underlying their synergistic interactions. Lastly, some research gaps towards MLN management will be identified. The information gathered may be useful for developing strategies towards future MLN management and maize improvement in Africa.
Collapse
Affiliation(s)
- L. A. O. Awata
- Directorate of Research, Ministry of Agriculture and Food Security, Ministries Complex, Parliament Road, P. O. Box 33, Juba, South Sudan
| | - B. E. Ifie
- West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, PMB 30, Legon, Ghana
| | - P. Tongoona
- West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, PMB 30, Legon, Ghana
| | - E. Danquah
- West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, PMB 30, Legon, Ghana
| | - M. B. Jumbo
- International Maize and Wheat Improvement Center (CIMMYT), World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri. P. O. Box 1041-00621, Nairobi, Kenya
| | - M. Gowda
- International Maize and Wheat Improvement Center (CIMMYT), World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri. P. O. Box 1041-00621, Nairobi, Kenya
| | - P. W. Marchelo-D’ragga
- Department of Agricultural Sciences, College of Natural Resources and Environmental Studies, University of Juba, P. O. Box 82 Juba, South Sudan
| | - Chelang’at Sitonik
- International Maize and Wheat Improvement Center (CIMMYT), World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri. P. O. Box 1041-00621, Nairobi, Kenya
- Department of Plant Breeding and Biotechnology, School of Agriculture and Biotechnology, University of Eldoret, P. O. Box 1125-30100, Eldoret, Kenya
| | - L. M. Suresh
- International Maize and Wheat Improvement Center (CIMMYT), World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri. P. O. Box 1041-00621, Nairobi, Kenya
| |
Collapse
|
19
|
Xia Z, Zhao Z, Gao X, Jiao Z, Wu Y, Zhou T, Fan Z. Characterization of Maize miRNAs in Response to Synergistic Infection of Maize Chlorotic Mottle Virus and Sugarcane Mosaic Virus. Int J Mol Sci 2019; 20:ijms20133146. [PMID: 31252649 PMCID: PMC6650953 DOI: 10.3390/ijms20133146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 01/09/2023] Open
Abstract
The synergistic infection of maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV) causes maize lethal necrosis, with considerable losses to global maize production. microRNAs (miRNAs) are conserved non-coding small RNAs that play essential regulatory roles in plant development and environmental stress responses, including virus infection. However, the characterization of maize miRNAs in response to synergistic infection of MCMV and SCMV remains largely unknown. In this study, the profiles of small RNAs from MCMV and SCMV single- and co-infected (S + M) maize plants were obtained by high-throughput sequencing. A total of 173 known miRNAs, belonging to 26 miRNA families, and 49 novel miRNAs were profiled. The expression patterns of most miRNAs in S + M-infected maize plants were similar to that in SCMV-infected maize plants, probably due to the existence of RNA silencing suppressor HC-Pro. Northern blotting and quantitative real-time PCR were performed to validate the accumulation of miRNAs and their targets in different experimental treatments, respectively. The down-regulation of miR159, miR393, and miR394 might be involved in antiviral defense to synergistic infection. These results provide novel insights into the regulatory networks of miRNAs in maize plants in response to the synergistic infection of MCMV and SCMV.
Collapse
Affiliation(s)
- Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Zhenxing Zhao
- State Key Laboratory of Agro-Biotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| | - Xinran Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhiyuan Jiao
- State Key Laboratory of Agro-Biotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Tao Zhou
- State Key Laboratory of Agro-Biotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| | - Zaifeng Fan
- State Key Laboratory of Agro-Biotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
20
|
Abstract
Maize lethal necrosis (MLN) is a disease of maize caused by coinfection of maize with maize chlorotic mottle virus (MCMV) and one of several viruses from the Potyviridae, such as sugarcane mosaic virus, maize dwarf mosaic virus, Johnsongrass mosaic virus or wheat streak mosaic virus. The coinfecting viruses act synergistically to result in frequent plant death or severely reduce or negligible yield. Over the past eight years, MLN has emerged in sub-Saharan East Africa, Southeast Asia, and South America, with large impacts on smallholder farmers. Factors associated with MLN emergence include multiple maize crops per year, the presence of maize thrips ( Frankliniella williamsi), and highly susceptible maize crops. Soil and seed transmission of MCMV may also play significant roles in development and perpetuation of MLN epidemics. Containment and control of MLN will likely require a multipronged approach, and more research is needed to identify and develop the best measures.
Collapse
Affiliation(s)
- Margaret G Redinbaugh
- Department of Plant Pathology, Ohio State University, Wooster, Ohio 44691, USA; .,United States Department of Agriculture, Agricultural Research Service, Wooster, Ohio 44691, USA;
| | - Lucy R Stewart
- Department of Plant Pathology, Ohio State University, Wooster, Ohio 44691, USA; .,United States Department of Agriculture, Agricultural Research Service, Wooster, Ohio 44691, USA;
| |
Collapse
|
21
|
Maize Chlorotic Mottle Virus Induces Changes in Host Plant Volatiles that Attract Vector Thrips Species. J Chem Ecol 2018; 44:681-689. [DOI: 10.1007/s10886-018-0973-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 11/25/2022]
|
22
|
Braidwood L, Quito-Avila DF, Cabanas D, Bressan A, Wangai A, Baulcombe DC. Maize chlorotic mottle virus exhibits low divergence between differentiated regional sub-populations. Sci Rep 2018; 8:1173. [PMID: 29352173 PMCID: PMC5775324 DOI: 10.1038/s41598-018-19607-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/29/2017] [Indexed: 12/01/2022] Open
Abstract
Maize chlorotic mottle virus has been rapidly spreading around the globe over the past decade. The interactions of maize chlorotic mottle virus with Potyviridae viruses causes an aggressive synergistic viral condition - maize lethal necrosis, which can cause total yield loss. Maize production in sub-Saharan Africa, where it is the most important cereal, is threatened by the arrival of maize lethal necrosis. We obtained maize chlorotic mottle virus genome sequences from across East Africa and for the first time from Ecuador and Hawaii, and constructed a phylogeny which highlights the similarity of Chinese to African isolates, and Ecuadorian to Hawaiian isolates. We used a measure of clustering, the adjusted Rand index, to extract region-specific SNPs and coding variation that can be used for diagnostics. The population genetics analysis we performed shows that the majority of sequence diversity is partitioned between populations, with diversity extremely low within China and East Africa.
Collapse
Affiliation(s)
- Luke Braidwood
- University of Cambridge, Plant Sciences, Cambridge, CB2 3EA, United Kingdom.
| | - Diego F Quito-Avila
- Centro de Investigaciones Biotecnologicas del Ecuador, Facultad de Ciencias de la Vida, Escuela Superior Politecnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Darlene Cabanas
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, 3050 Maile Way, Gilmore Hall 310, Honolulu, Hawaii, USA
| | - Alberto Bressan
- Department of Plant and Environmental Protection Sciences, University of Hawaii, 3050 Maile Way, Gilmore Hall 310, Honolulu, Hawaii, USA
- Bayer CropScience LP, R&D Trait Research, 3500 Paramount Parkway, Morrisville, USA
| | - Anne Wangai
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | - David C Baulcombe
- University of Cambridge, Plant Sciences, Cambridge, CB2 3EA, United Kingdom
| |
Collapse
|