1
|
Kes MMG, Berkers CR, Drost J. Bridging the gap: advancing cancer cell culture to reveal key metabolic targets. Front Oncol 2024; 14:1480613. [PMID: 39355125 PMCID: PMC11442172 DOI: 10.3389/fonc.2024.1480613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
Metabolic rewiring is a defining characteristic of cancer cells, driving their ability to proliferate. Leveraging these metabolic vulnerabilities for therapeutic purposes has a long and impactful history, with the advent of antimetabolites marking a significant breakthrough in cancer treatment. Despite this, only a few in vitro metabolic discoveries have been successfully translated into effective clinical therapies. This limited translatability is partially due to the use of simplistic in vitro models that do not accurately reflect the tumor microenvironment. This Review examines the effects of current cell culture practices on cancer cell metabolism and highlights recent advancements in establishing more physiologically relevant in vitro culture conditions and technologies, such as organoids. Applying these improvements may bridge the gap between in vitro and in vivo findings, facilitating the development of innovative metabolic therapies for cancer.
Collapse
Affiliation(s)
- Marjolein M G Kes
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, Utrecht, Netherlands
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Celia R Berkers
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
2
|
Bao H, Chen Y, Meng Z, Chu Z. The causal relationship between CSF metabolites and GBM: a two-sample mendelian randomization analysis. BMC Cancer 2024; 24:1119. [PMID: 39251963 PMCID: PMC11382389 DOI: 10.1186/s12885-024-12901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a highly aggressive primary malignant brain tumor characterized by rapid progression, poor prognosis, and high mortality rates. Understanding the relationship between cerebrospinal fluid (CSF) metabolites and GBM is crucial for identifying potential biomarkers and pathways involved in the pathogenesis of this devastating disease. METHODS In this study, Mendelian randomization (MR) analysis was employed to investigate the causal relationship between 338 CSF metabolites and GBM. The data for metabolites were obtained from a genome-wide association study summary dataset based on 291 individuals, and the GBM data was derived from FinnGen included 91 cases and 174,006 controls of European descent. The Inverse Variance Weighted method was utilized to estimate the causal effects. Supplementary comprehensive assessments of causal effects between CSF metabolites and GBM were conducted using MR-Egger regression, Weighted Median, Simple Mode, and Weighted Mode methods. Additionally, tests for heterogeneity and pleiotropy were performed. RESULTS Through MR analysis, a total of 12 identified metabolites and 2 with unknown chemical properties were found to have a causal relationship with GBM. 1-palmitoyl-2-stearoyl-gpc (16:0/18:0), 7-alpha-hydroxy-3-oxo-4-cholestenoate, Alpha-tocopherol, Behenoyl sphingomyelin (d18:1/22:0), Cysteinylglycine, Maleate, Uracil, Valine, X-12,101, X-12,104 and Butyrate (4:0) are associated with an increased risk of GBM. N1-methylinosine, Stachydrine and Succinylcarnitine (c4-dc) are associated with decreased GBM risk. CONCLUSION In conclusion, this study sheds light on the intricate interplay between CSF metabolites and GBM, offering novel perspectives on disease mechanisms and potential treatment avenues. By elucidating the role of CSF metabolites in GBM pathogenesis, this research contributes to the advancement of diagnostic capabilities and targeted therapeutic interventions for this aggressive brain tumor. Further exploration of these findings may lead to improved management strategies and better outcomes for patients with GBM.
Collapse
Affiliation(s)
- Haijun Bao
- Department of Forensic Medicine, First College for Clinical Medicine, Xuzhou Medical University, 84 West Huaihai Rd, Xuzhou, Jiangsu, 221000, China
- Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China
| | - Yiyang Chen
- Department of Forensic Medicine, First College for Clinical Medicine, Xuzhou Medical University, 84 West Huaihai Rd, Xuzhou, Jiangsu, 221000, China
| | - Zijun Meng
- Department of Forensic Medicine, First College for Clinical Medicine, Xuzhou Medical University, 84 West Huaihai Rd, Xuzhou, Jiangsu, 221000, China
| | - Zheng Chu
- Department of Forensic Medicine, First College for Clinical Medicine, Xuzhou Medical University, 84 West Huaihai Rd, Xuzhou, Jiangsu, 221000, China.
- Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China.
| |
Collapse
|
3
|
Tan ML, Jenkins-Johnston N, Huang S, Schutrum B, Vadhin S, Adhikari A, Williams RM, Zipfel WR, Lammerding J, Varner JD, Fischbach C. Endothelial cells metabolically regulate breast cancer invasion toward a microvessel. APL Bioeng 2023; 7:046116. [PMID: 38058993 PMCID: PMC10697723 DOI: 10.1063/5.0171109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023] Open
Abstract
Breast cancer metastasis is initiated by invasion of tumor cells into the collagen type I-rich stroma to reach adjacent blood vessels. Prior work has identified that metabolic plasticity is a key requirement of tumor cell invasion into collagen. However, it remains largely unclear how blood vessels affect this relationship. Here, we developed a microfluidic platform to analyze how tumor cells invade collagen in the presence and absence of a microvascular channel. We demonstrate that endothelial cells secrete pro-migratory factors that direct tumor cell invasion toward the microvessel. Analysis of tumor cell metabolism using metabolic imaging, metabolomics, and computational flux balance analysis revealed that these changes are accompanied by increased rates of glycolysis and oxygen consumption caused by broad alterations of glucose metabolism. Indeed, restricting glucose availability decreased endothelial cell-induced tumor cell invasion. Our results suggest that endothelial cells promote tumor invasion into the stroma due, in part, to reprogramming tumor cell metabolism.
Collapse
Affiliation(s)
- Matthew L. Tan
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Niaa Jenkins-Johnston
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Sarah Huang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Brittany Schutrum
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Sandra Vadhin
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Abhinav Adhikari
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Rebecca M. Williams
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Warren R. Zipfel
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Jan Lammerding
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Jeffrey D. Varner
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
4
|
Sun XB, Liu WW, Wang B, Yang ZP, Tang HZ, Lu S, Wang YY, Qu JX, Rao BQ. Correlations between serum lipid and Ki-67 levels in different breast cancer molecular subcategories. Oncol Lett 2022; 25:53. [PMID: 36644143 PMCID: PMC9827470 DOI: 10.3892/ol.2022.13639] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer has the highest incidence rate among all cancer types worldwide, seriously threatening women's health. The present retrospective study explored differences in serum lipid contents in different breast cancer (BC) subcategories and their correlation with Ki-67 expression levels in patients with invasive BC with the aim of identifying novel diagnostic and prognostic indicators for personalized BC treatment. The study included 170 patients diagnosed with BC who were diagnosed with invasive BC by postoperative pathological examination. Data on patient age, body mass index and menopausal status were collected, in addition to estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 (HER2) and antigen Ki-67 expression levels and pathological tumor type. Preoperative circulating lipid levels, specifically the levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG) and apolipoproteins A1 (ApoA1) and B (ApoB) were also obtained. Molecular subcategories of BC were grouped based on their immunohistochemistry. Differences in serum lipid levels between the groups were assessed, and correlations between serum lipid and Ki-67 expression levels were explored. While TC, LDL-C, HDL-C and ApoA1 levels differed significantly among molecular subcategories. TG and ApoB levels did not. Circulating TC and LDL-C levels were considerably higher in patients with triple-negative BC (TNBC) and HER2-positive [hormone receptor (HR)-negative] BC than in those with luminal A and B (HER2-negative) BC. Serum HDL-C levels were significantly diminished in the TNBC and HER2-positive (HR-negative) groups compared with the luminal A and B (HER2-negative) groups. ApoA1 levels were significantly reduced in cases of TNBC and HER2-positive (HR-negative) BC compared with luminal A and B BC. Ki-67 expression levels were positively correlated with circulating TC and LDL-C levels and inversely correlated with circulating HDL-C and ApoA1 levels but exhibited no correlation with serum ApoB and TG levels. The results indicate that elevated TC and LDL-C levels and diminished HDL-C and ApoA1 levels were high-risk factors in patients with TNBC and HER2-positive (HR-negative) BC, but not patients with luminal subcategories of BC. Abnormal serum lipid levels were correlated with Ki-67 expression levels, with elevated circulating TC and LDL-C levels and reduced circulating HDL-C and ApoA1 levels indicating a poor prognosis in patients with BC.
Collapse
Affiliation(s)
- Xi-Bo Sun
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong 271000, P.R. China
| | - Wen-Wen Liu
- The Second Department of General Surgery, Shanxian Central Hospital, He'ze, Shandong 274300, P.R. China
| | - Bing Wang
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Zhen-Peng Yang
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Hua-Zhen Tang
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Shuai Lu
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Yu-Ying Wang
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Jin-Xiu Qu
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Ben-Qiang Rao
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China,Correspondence to: Professor Ben-Qiang Rao, Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, 115 Yangfangdian, Haidian, Beijing 100038, P.R. China, E-mail:
| |
Collapse
|
5
|
Hoarau-Véchot J, Blot-Dupin M, Pauly L, Touboul C, Rafii S, Rafii A, Pasquier J. Akt-Activated Endothelium Increases Cancer Cell Proliferation and Resistance to Treatment in Ovarian Cancer Cell Organoids. Int J Mol Sci 2022; 23:ijms232214173. [PMID: 36430649 PMCID: PMC9694384 DOI: 10.3390/ijms232214173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
Ovarian cancer (OC) is a heterogeneous disease characterized by its late diagnosis (FIGO stages III and IV) and the importance of abdominal metastases often observed at diagnosis. Detached ovarian cancer cells (OCCs) float in ascites and form multicellular spheroids. Here, we developed endothelial cell (EC)-based 3D spheroids to better represent in vivo conditions. When co-cultured in 3D conditions, ECs and OCCs formed organized tumor angiospheres with a core of ECs surrounded by proliferating OCCs. We established that Akt and Notch3/Jagged1 pathways played a role in angiosphere formation and peritoneum invasion. In patients' ascites we found angiosphere-like structures and demonstrated in patients' specimens that tumoral EC displayed Akt activation, which supports the importance of Akt activation in ECs in OC. Additionally, we demonstrated the importance of FGF2, Pentraxin 3 (PTX3), PD-ECGF and TIMP-1 in angiosphere organization. Finally, we confirmed the role of Notch3/Jagged1 in OCC-EC crosstalk relating to OCC proliferation and during peritoneal invasion. Our results support the use of multicellular spheroids to better model tumoral and stromal interaction. Such models could help decipher the complex pathways playing critical roles in metastasis spread and predict tumor response to chemotherapy or anti-angiogenic treatment.
Collapse
Affiliation(s)
- Jessica Hoarau-Véchot
- Department of Genetic Medicine and Obstetrics and Gynecology, Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Morgane Blot-Dupin
- Faculté de Médecine de Créteil UPEC—Paris XII, Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Centre Hospitalier Intercommunal de Créteil, 40 Avenue de Verdun, 94000 Créteil, France
| | - Léa Pauly
- Faculté de Médecine de Créteil UPEC—Paris XII, Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Centre Hospitalier Intercommunal de Créteil, 40 Avenue de Verdun, 94000 Créteil, France
| | - Cyril Touboul
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), UMR_S 938, Centre de Recherche Saint-Antoine, Team Cancer Biology and Therapeutics, Institut Universitaire de Cancérologie, Sorbonne Université, 75012 Paris, France
- Department of Obstetrics and Gynecology, Hôpital Tenon, Assistance Publique Des Hôpitaux de Paris, GRC-6 UPMC, Université Pierre et Marie Curie, 75005 Paris, France
| | - Shahin Rafii
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Arash Rafii
- Department of Genetic Medicine and Obstetrics and Gynecology, Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jennifer Pasquier
- Department of Genetic Medicine and Obstetrics and Gynecology, Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
- Correspondence:
| |
Collapse
|
6
|
Abdul Kader S, Dib S, Achkar IW, Thareja G, Suhre K, Rafii A, Halama A. Defining the landscape of metabolic dysregulations in cancer metastasis. Clin Exp Metastasis 2021; 39:345-362. [PMID: 34921655 PMCID: PMC8971193 DOI: 10.1007/s10585-021-10140-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023]
Abstract
Metastasis is the primary cause of cancer related deaths due to the limited number of efficient druggable targets. Signatures of dysregulated cancer metabolism could serve as a roadmap for the determination of new treatment strategies. However, the metabolic signatures of metastatic cells remain vastly elusive. Our aim was to determine metabolic dysregulations associated with high metastatic potential in breast cancer cell lines. We have selected 5 triple negative breast cancer (TNBC) cell lines including three with high metastatic potential (HMP) (MDA-MB-231, MDA-MB-436, MDA-MB-468) and two with low metastatic potential (LMP) (BT549, HCC1143). The normal epithelial breast cell line (hTERT-HME1) was also investigated. The untargeted metabolic profiling of cells and growth media was conducted and total of 479 metabolites were quantified. First we characterized metabolic features differentiating TNBC cell lines from normal cells as well as identified cell line specific metabolic fingerprints. Next, we determined 92 metabolites in cells and 22 in growth medium that display significant differences between LMP and HMP. The HMP cell lines had elevated level of molecules involved in glycolysis, TCA cycle and lipid metabolism. We identified metabolic advantages of cell lines with HMP beyond enhanced glycolysis by pinpointing the role of branched chain amino acids (BCAA) catabolism as well as molecules supporting coagulation and platelet activation as important contributors to the metastatic cascade. The landscape of metabolic dysregulations, characterized in our study, could serve as a roadmap for the identification of treatment strategies targeting cancer cells with enhanced metastatic potential.
Collapse
Affiliation(s)
- Sara Abdul Kader
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, 24144, Doha, Qatar
- University of Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Shaima Dib
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, 24144, Doha, Qatar
| | - Iman W Achkar
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, 24144, Doha, Qatar
| | - Gaurav Thareja
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, 24144, Doha, Qatar
- University of Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, 24144, Doha, Qatar
- Department of Biophysics and Physiology, Weill Cornell Medicine, New York, USA
| | - Arash Rafii
- Department of Genetic Medicine, Weill Cornell Medicine, New York, USA
- Genetic Intelligence Laboratory, Weill Cornell Medicine in Qatar, Qatar Foundation, Doha, Qatar
| | - Anna Halama
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, 24144, Doha, Qatar.
- Department of Biophysics and Physiology, Weill Cornell Medicine, New York, USA.
| |
Collapse
|
7
|
Cai L, Ying M, Wu H. Microenvironmental Factors Modulating Tumor Lipid Metabolism: Paving the Way to Better Antitumoral Therapy. Front Oncol 2021; 11:777273. [PMID: 34888248 PMCID: PMC8649922 DOI: 10.3389/fonc.2021.777273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/04/2021] [Indexed: 12/28/2022] Open
Abstract
Metabolic reprogramming is one of the emerging hallmarks of cancer and is driven by both the oncogenic mutations and challenging microenvironment. To satisfy the demands of energy and biomass for rapid proliferation, the metabolism of various nutrients in tumor cells undergoes important changes, among which the aberrant lipid metabolism has gained increasing attention in facilitating tumor development and metastasis in the past few years. Obstacles emerged in the aspect of application of targeting lipid metabolism for tumor therapy, due to lacking of comprehensive understanding on its regulating mechanism. Tumor cells closely interact with stromal niche, which highly contributes to metabolic rewiring of critical nutrients in cancer cells. This fact makes the impact of microenvironment on tumor lipid metabolism a topic of renewed interest. Abundant evidence has shown that many factors existing in the tumor microenvironment can rewire multiple signaling pathways and proteins involved in lipid metabolic pathways of cancer cells. Hence in this review, we summarized the recent progress on the understanding of microenvironmental factors regulating tumor lipid metabolism, and discuss the potential of modulating lipid metabolism as an anticancer approach.
Collapse
Affiliation(s)
- Limeng Cai
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minfeng Ying
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Lusk H, Burdette JE, Sanchez LM. Models for measuring metabolic chemical changes in the metastasis of high grade serous ovarian cancer: fallopian tube, ovary, and omentum. Mol Omics 2021; 17:819-832. [PMID: 34338690 PMCID: PMC8649074 DOI: 10.1039/d1mo00074h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ovarian cancer (OC) is the most lethal gynecologic malignancy and high grade serous ovarian cancer (HGSOC) is the most common and deadly subtype, accounting for 70-80% of OC deaths. HGSOC has a distinct pattern of metastasis as many believe it originates in the fallopian tube and then it metastasizes first to the ovary, and later to the adipose-rich omentum. Metabolomics has been heavily utilized to investigate metabolite changes in HGSOC tumors and metastasis. Generally, metabolomics studies have traditionally been applied to biospecimens from patients or animal models; a number of recent studies have combined metabolomics with innovative cell-culture techniques to model the HGSOC metastatic microenvironment for the investigation of cell-to-cell communication. The purpose of this review is to serve as a tool for researchers aiming to model the metastasis of HGSOC for metabolomics analyses. It will provide a comprehensive overview of current knowledge on the origin and pattern of metastasis of HGSOC and discuss the advantages and limitations of different model systems to help investigators choose the best model for their research goals, with a special emphasis on compatibility with different metabolomics modalities. It will also examine what is presently known about the role of small molecules in the origin and metastasis of HGSOC.
Collapse
Affiliation(s)
- Hannah Lusk
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA.
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S Ashland Ave., Chicago, IL, 60607, USA
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
9
|
Iozzo M, Sgrignani G, Comito G, Chiarugi P, Giannoni E. Endocannabinoid System and Tumour Microenvironment: New Intertwined Connections for Anticancer Approaches. Cells 2021; 10:cells10123396. [PMID: 34943903 PMCID: PMC8699381 DOI: 10.3390/cells10123396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
The tumour microenvironment (TME) is now recognised as a hallmark of cancer, since tumour:stroma crosstalk supports the key steps of tumour growth and progression. The dynamic co-evolution of the tumour and stromal compartments may alter the surrounding microenvironment, including the composition in metabolites and signalling mediators. A growing number of evidence reports the involvement of the endocannabinoid system (ECS) in cancer. ECS is composed by a complex network of ligands, receptors, and enzymes, which act in synergy and contribute to several physiological but also pathological processes. Several in vitro and in vivo evidence show that ECS deregulation in cancer cells affects proliferation, migration, invasion, apoptosis, and metastatic potential. Although it is still an evolving research, recent experimental evidence also suggests that ECS can modulate the functional behaviour of several components of the TME, above all the immune cells, endothelial cells and stromal components. However, the role of ECS in the tumour:stroma interplay remains unclear and research in this area is particularly intriguing. This review aims to shed light on the latest relevant findings of the tumour response to ECS modulation, encouraging a more in-depth analysis in this field. Novel discoveries could be promising for novel anti-tumour approaches, targeting the microenvironmental components and the supportive tumour:stroma crosstalk, thereby hindering tumour development.
Collapse
|
10
|
Abstract
Integration of ecological and evolutionary features has begun to understand the interplay of tumor heterogeneity, microenvironment, and metastatic potential. Developing a theoretical framework is intrinsic to deciphering tumors' tremendous spatial and longitudinal genetic variation patterns in patients. Here, we propose that tumors can be considered evolutionary island-like ecosystems, that is, isolated systems that undergo evolutionary and spatiotemporal dynamic processes that shape tumor microenvironments and drive the migration of cancer cells. We examine attributes of insular systems and causes of insularity, such as physical distance and connectivity. These properties modulate migration rates of cancer cells through processes causing spatial and temporal isolation of the organs and tissues functioning as a supply of cancer cells for new colonizations. We discuss hypotheses, predictions, and limitations of tumors as islands analogy. We present emerging evidence of tumor insularity in different cancer types and discuss their relevance to the islands model. We suggest that the engagement of tumor insularity into conceptual and mathematical models holds promise to illuminate cancer evolution, tumor heterogeneity, and metastatic potential of cells.
Collapse
Affiliation(s)
- Antonia Chroni
- Institute for Genomics and Evolutionary Medicine, Temple University, USA
- Department of Biology, Temple University, USA
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, USA
- Department of Biology, Temple University, USA
- Center for Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Ahmed-Salim Y, Galazis N, Bracewell-Milnes T, Phelps DL, Jones BP, Chan M, Munoz-Gonzales MD, Matsuzono T, Smith JR, Yazbek J, Krell J, Ghaem-Maghami S, Saso S. The application of metabolomics in ovarian cancer management: a systematic review. Int J Gynecol Cancer 2021; 31:754-774. [PMID: 33106272 DOI: 10.1136/ijgc-2020-001862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Metabolomics, the global analysis of metabolites in a biological specimen, could potentially provide a fast method of biomarker identification for ovarian cancer. This systematic review aims to examine findings from studies that apply metabolomics to the diagnosis, prognosis, treatment, and recurrence of ovarian cancer. A systematic search of English language publications was conducted on PubMed, Science Direct, and SciFinder. It was augmented by a snowball strategy, whereby further relevant studies are identified from reference lists of included studies. Studies in humans with ovarian cancer which focus on metabolomics of biofluids and tumor tissue were included. No restriction was placed on the time of publication. A separate review of targeted metabolomic studies was conducted for completion. Qualitative data were summarized in a comprehensive table. The studies were assessed for quality and risk of bias using the ROBINS-I tool. 32 global studies were included in the main systematic review. Most studies applied metabolomics to diagnosing ovarian cancer, within which the most frequently reported metabolite changes were a down-regulation of phospholipids and amino acids: histidine, citrulline, alanine, and methionine. Dysregulated phospholipid metabolism was also reported in the separately reviewed 18 targeted studies. Generally, combinations of more than one significant metabolite as a panel, in different studies, achieved a higher sensitivity and specificity for diagnosis than a single metabolite; for example, combinations of different phospholipids. Widespread metabolite differences were observed in studies examining prognosis, treatment, and recurrence, and limited conclusions could be drawn. Cellular processes of proliferation and invasion may be reflected in metabolic changes present in poor prognosis and recurrence. For example, lower levels of lysine, with increased cell invasion as an underlying mechanism, or glutamine dependency of rapidly proliferating cancer cells. In conclusion, this review highlights potential metabolites and biochemical pathways which may aid the clinical care of ovarian cancer if further validated.
Collapse
Affiliation(s)
| | - Nicolas Galazis
- Department of Obstetrics and Gynaecology, Northwick Park Hospital, Harrow, UK
| | | | - David L Phelps
- Department of Gynaecological Oncology, Hammersmith Hospital Campus, Du Cane Road, Imperial College Healthcare NHS Trust, London, UK
| | - Benjamin P Jones
- Division of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, Imperial College London, London, UK
| | - Maxine Chan
- South Kensington Campus, Imperial College London Department of Materials, London, UK
| | | | - Tomoko Matsuzono
- Queen Elizabeth Hospital, Department of Obstetrics and Gynaecology, Hong Kong, Hong Kong
| | - James Richard Smith
- West London Gynaecological Cancer Centre, Queen Charlotte's Hospital, Hammersmith Hospital Campus, Du Cane Road, Imperial College Healthcare NHS Trust, London, UK
| | - Joseph Yazbek
- West London Gynaecological Cancer Centre, Queen Charlotte's Hospital, Hammersmith Hospital Campus, Du Cane Road, Imperial College Healthcare NHS Trust, London, UK
| | - Jonathan Krell
- West London Gynaecological Cancer Centre, Queen Charlotte's Hospital, Hammersmith Hospital Campus, Du Cane Road, Imperial College Healthcare NHS Trust, London, UK
| | - Sadaf Ghaem-Maghami
- Department of Gynaecological Oncology, West London Gynaecological Cancer Centre, Queen Charlotte's Hospital, Hammersmith Hospital Campus, Imperial College London and NHS Trust, Du Cane Road, Imperial College London, London, UK
| | - Srdjan Saso
- Division of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, Imperial College London, London, UK
| |
Collapse
|
12
|
Fu Y, Zou T, Shen X, Nelson PJ, Li J, Wu C, Yang J, Zheng Y, Bruns C, Zhao Y, Qin L, Dong Q. Lipid metabolism in cancer progression and therapeutic strategies. MedComm (Beijing) 2021; 2:27-59. [PMID: 34766135 PMCID: PMC8491217 DOI: 10.1002/mco2.27] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
Dysregulated lipid metabolism represents an important metabolic alteration in cancer. Fatty acids, cholesterol, and phospholipid are the three most prevalent lipids that act as energy producers, signaling molecules, and source material for the biogenesis of cell membranes. The enhanced synthesis, storage, and uptake of lipids contribute to cancer progression. The rewiring of lipid metabolism in cancer has been linked to the activation of oncogenic signaling pathways and cross talk with the tumor microenvironment. The resulting activity favors the survival and proliferation of tumor cells in the harsh conditions within the tumor. Lipid metabolism also plays a vital role in tumor immunogenicity via effects on the function of the noncancer cells within the tumor microenvironment, especially immune-associated cells. Targeting altered lipid metabolism pathways has shown potential as a promising anticancer therapy. Here, we review recent evidence implicating the contribution of lipid metabolic reprogramming in cancer to cancer progression, and discuss the molecular mechanisms underlying lipid metabolism rewiring in cancer, and potential therapeutic strategies directed toward lipid metabolism in cancer. This review sheds new light to fully understanding of the role of lipid metabolic reprogramming in the context of cancer and provides valuable clues on therapeutic strategies targeting lipid metabolism in cancer.
Collapse
Affiliation(s)
- Yan Fu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Tiantian Zou
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Xiaotian Shen
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Peter J. Nelson
- Medical Clinic and Policlinic IVLudwig‐Maximilian‐University (LMU)MunichGermany
| | - Jiahui Li
- General, Visceral and Cancer SurgeryUniversity Hospital of CologneCologneGermany
| | - Chao Wu
- Department of General Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jimeng Yang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Christiane Bruns
- General, Visceral and Cancer SurgeryUniversity Hospital of CologneCologneGermany
| | - Yue Zhao
- General, Visceral and Cancer SurgeryUniversity Hospital of CologneCologneGermany
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
13
|
Ose J, Gigic B, Brezina S, Lin T, Baierl A, Geijsen AJMR, van Roekel E, Robinot N, Gicquiau A, Achaintre D, Keski-Rahkonen P, van Duijnhoven FJB, Gumpenberger T, Holowatyj AN, Kok DE, Koole A, Schrotz-King P, Ulrich AB, Schneider M, Ulvik A, Ueland PM, Weijenberg MP, Habermann N, Scalbert A, Gsur A, Ulrich CM. Targeted Plasma Metabolic Profiles and Risk of Recurrence in Stage II and III Colorectal Cancer Patients: Results from an International Cohort Consortium. Metabolites 2021; 11:129. [PMID: 33668370 PMCID: PMC7996362 DOI: 10.3390/metabo11030129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022] Open
Abstract
The identification of patients at high-risk for colorectal cancer (CRC) recurrence remains an unmet clinical need. The aim of this study was to investigate associations of metabolites with risk of recurrence in stage II/III CRC patients. A targeted metabolomics assay (128 metabolites measured) was performed on pre-surgery collected EDTA plasma samples from n = 440 newly diagnosed stage II/III CRC patients. Patients have been recruited from four prospective cohort studies as part of an international consortium: Metabolomic profiles throughout the continuum of CRC (MetaboCCC). Cox proportional hazard models were computed to investigate associations of metabolites with recurrence, adjusted for age, sex, tumor stage, tumor site, body mass index, and cohort; false discovery rate (FDR) was used to account for multiple testing. Sixty-nine patients (15%) had a recurrence after a median follow-up time of 20 months. We identified 13 metabolites that were nominally associated with a reduced risk of recurrence. None of the associations were statistically significant after controlling for multiple testing. Pathway topology analyses did not reveal statistically significant associations between recurrence and alterations in metabolic pathways (e.g., sphingolipid metabolism p = 0.04; pFDR = 1.00). To conclude, we did not observe statistically significant associations between metabolites and CRC recurrence using a well-established metabolomics assay. The observed results require follow-up in larger studies.
Collapse
Affiliation(s)
- Jennifer Ose
- Huntsman Cancer Institute Salt Lake City, Salt Lake City, UT 84112, USA; (T.L.); (A.N.H.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Biljana Gigic
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 1, 69117 Heidelberg, Germany; (B.G.); (A.B.U.); (M.S.)
| | - Stefanie Brezina
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 23, 1090 Wien, Austria; (S.B.); (T.G.); (A.G.)
| | - Tengda Lin
- Huntsman Cancer Institute Salt Lake City, Salt Lake City, UT 84112, USA; (T.L.); (A.N.H.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Andreas Baierl
- Department of Statistics and Operations Research, University of Vienna, 1, 1010 Wien, Austria;
| | - Anne J. M. R. Geijsen
- Division of Human Nutrition and Health, Wageningen University & Research, 6708 Wageningen, The Netherlands; (A.J.M.R.G.); (F.J.B.v.D.); (D.E.K.)
| | - Eline van Roekel
- Department of Epidemiology, GROW-School of Oncology and Developmental Biology, Maastricht University, 30, 6229 Maastricht, The Netherlands; (E.v.R.); (A.K.); (M.P.W.)
| | - Nivonirina Robinot
- Biomarkers Group, International Agency for Research on Cancer, 69372 Lyon, France; (N.R.); (A.G.); (D.A.); (P.K.-R.); (A.S.)
| | - Audrey Gicquiau
- Biomarkers Group, International Agency for Research on Cancer, 69372 Lyon, France; (N.R.); (A.G.); (D.A.); (P.K.-R.); (A.S.)
| | - David Achaintre
- Biomarkers Group, International Agency for Research on Cancer, 69372 Lyon, France; (N.R.); (A.G.); (D.A.); (P.K.-R.); (A.S.)
| | - Pekka Keski-Rahkonen
- Biomarkers Group, International Agency for Research on Cancer, 69372 Lyon, France; (N.R.); (A.G.); (D.A.); (P.K.-R.); (A.S.)
| | - Fränzel J. B. van Duijnhoven
- Division of Human Nutrition and Health, Wageningen University & Research, 6708 Wageningen, The Netherlands; (A.J.M.R.G.); (F.J.B.v.D.); (D.E.K.)
| | - Tanja Gumpenberger
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 23, 1090 Wien, Austria; (S.B.); (T.G.); (A.G.)
| | - Andreana N. Holowatyj
- Huntsman Cancer Institute Salt Lake City, Salt Lake City, UT 84112, USA; (T.L.); (A.N.H.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| | - Dieuwertje E. Kok
- Division of Human Nutrition and Health, Wageningen University & Research, 6708 Wageningen, The Netherlands; (A.J.M.R.G.); (F.J.B.v.D.); (D.E.K.)
| | - Annaleen Koole
- Department of Epidemiology, GROW-School of Oncology and Developmental Biology, Maastricht University, 30, 6229 Maastricht, The Netherlands; (E.v.R.); (A.K.); (M.P.W.)
| | - Petra Schrotz-King
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 460, 69120 Heidelberg, Germany;
| | - Alexis B. Ulrich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 1, 69117 Heidelberg, Germany; (B.G.); (A.B.U.); (M.S.)
- Klinik für Allgemein-, Viszeral-, Thorax- und Gefäßchirurgie, Städtische Kliniken Neuss, 84, 41464 Neuss, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 1, 69117 Heidelberg, Germany; (B.G.); (A.B.U.); (M.S.)
| | - Arve Ulvik
- BEVITAL, 87, 5021 Bergen, Norway; (A.U.); (P.-M.U.)
| | | | - Matty P. Weijenberg
- Department of Epidemiology, GROW-School of Oncology and Developmental Biology, Maastricht University, 30, 6229 Maastricht, The Netherlands; (E.v.R.); (A.K.); (M.P.W.)
| | - Nina Habermann
- Genome Biology, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany;
| | - Augustin Scalbert
- Biomarkers Group, International Agency for Research on Cancer, 69372 Lyon, France; (N.R.); (A.G.); (D.A.); (P.K.-R.); (A.S.)
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 23, 1090 Wien, Austria; (S.B.); (T.G.); (A.G.)
| | - Cornelia M. Ulrich
- Huntsman Cancer Institute Salt Lake City, Salt Lake City, UT 84112, USA; (T.L.); (A.N.H.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
14
|
Ose J, Holowatyj AN, Nattenmüller J, Gigic B, Lin T, Himbert C, Habermann N, Achaintre D, Scalbert A, Keski-Rahkonen P, Böhm J, Schrotz-King P, Schneider M, Ulrich A, Kampman E, Weijenberg M, Gsur A, Ueland PM, Kauczor HU, Ulrich CM. Metabolomics profiling of visceral and abdominal subcutaneous adipose tissue in colorectal cancer patients: results from the ColoCare study. Cancer Causes Control 2020; 31:723-735. [PMID: 32430684 PMCID: PMC7425810 DOI: 10.1007/s10552-020-01312-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Underlying mechanisms of the relationship between body fatness and colorectal cancer remain unclear. This study investigated associations of circulating metabolites with visceral (VFA), abdominal subcutaneous (SFA), and total fat area (TFA) in colorectal cancer patients. METHODS Pre-surgery plasma samples from 212 patients (stage I-IV) from the ColoCare Study were used to perform targeted metabolomics. VFA, SFA, and TFA were quantified by computed tomography scans. Partial correlation and linear regression analyses of VFA, SFA, and TFA with metabolites were computed and corrected for multiple testing. Cox proportional hazards were used to assess 2-year survival. RESULTS In patients with metastatic tumors, SFA and TFA were statistically significantly inversely associated with 16 glycerophospholipids (SFA: pFDR range 0.017-0.049; TFA: pFDR range 0.029-0.048), while VFA was not. Doubling of ten of the aforementioned glycerophospholipids was associated with increased risk of death in patients with metastatic tumors, but not in patients with non-metastatic tumors (phet range: 0.00044-0.049). Doubling of PC ae C34:0 was associated with ninefold increased risk of death in metastatic tumors (Hazard Ratio [HR], 9.05; 95% confidence interval [CI] 2.17-37.80); an inverse association was observed in non-metastatic tumors (HR 0.17; 95% CI 0.04-0.87; phet = 0.00044). CONCLUSION These data provide initial evidence that glycerophospholipids in metastatic colorectal cancer are uniquely associated with subcutaneous adiposity, and may impact overall survival.
Collapse
Affiliation(s)
- Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, UT, USA.
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Andreana N Holowatyj
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Johanna Nattenmüller
- Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Biljana Gigic
- Department of General, Visceral and Transplantation Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Tengda Lin
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Caroline Himbert
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Nina Habermann
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - David Achaintre
- International Agency Research on Cancer (IARC), Lyon, France
| | | | | | - Jürgen Böhm
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Petra Schrotz-King
- Division of Preventive Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Ellen Kampman
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Matty Weijenberg
- Department of Epidemiology, GROW - School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Hans-Ulrich Kauczor
- Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, Salt Lake City, UT, USA.
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
15
|
Comito G, Ippolito L, Chiarugi P, Cirri P. Nutritional Exchanges Within Tumor Microenvironment: Impact for Cancer Aggressiveness. Front Oncol 2020; 10:396. [PMID: 32266157 PMCID: PMC7105815 DOI: 10.3389/fonc.2020.00396] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
Neoplastic tissues are composed not only by tumor cells but also by several non-transformed stromal cells, such as cancer-associated fibroblasts, endothelial and immune cells, that actively participate to tumor progression. Starting from the very beginning of carcinogenesis, tumor cells, through the release of paracrine soluble factors and vesicles, i.e., exosomes, modify the behavior of the neighboring cells, so that they can give efficient support for cancer cell proliferation and spreading. A mandatory role in tumor progression has been recently acknowledged to metabolic deregulation. Beside undergoing a metabolic reprogramming coherent to their high proliferation rate, tumor cells also rewire the metabolic assets of their stromal cells, educating them to serve as nutrient donors. Hence, an alteration in the composition and in the flow rate of many nutrients within tumor microenvironment has been associated with malignancy progression. This review is focused on metabolic remodeling of the different cell populations within tumor microenvironment, dealing with reciprocal re-education through the symbiotic sharing of metabolites, behaving both as nutrients and as transcriptional regulators, describing their impact on tumor growth and metastasis.
Collapse
Affiliation(s)
- Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.,Excellence Center for Research, Transfer and High Education DenoTHE, University of Florence, Florence, Italy
| | - Paolo Cirri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.,Excellence Center for Research, Transfer and High Education DenoTHE, University of Florence, Florence, Italy
| |
Collapse
|
16
|
Abstract
Experiments in culture systems where one cell type is provided with abundant nutrients and oxygen have been used to inform much of our understanding of cancer metabolism. However, many differences have been observed between the metabolism of tumors and the metabolism of cancer cells grown in monoculture. These differences reflect, at least in part, the presence of nonmalignant cells in the tumor microenvironment and the interactions between those cells and cancer cells. However, less is known about how the metabolism of various tumor stromal cell types differs from that of cancer cells, and how this difference might inform therapeutic targeting of metabolic pathways. Emerging data have identified both cooperative and competitive relationships between different cell types in a tumor, and this review examines how four abundant stromal cell types in the tumor microenvironment, fibroblasts, T cells, macrophages, and endothelial cells, contribute to the metabolism of tumors.
Collapse
Affiliation(s)
- Allison N. Lau
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;,
| | - Matthew G. Vander Heiden
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;,
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| |
Collapse
|
17
|
Pasquier J, Ghiabi P, Chouchane L, Razzouk K, Rafii S, Rafii A. Angiocrine endothelium: from physiology to cancer. J Transl Med 2020; 18:52. [PMID: 32014047 PMCID: PMC6998193 DOI: 10.1186/s12967-020-02244-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/28/2020] [Indexed: 02/08/2023] Open
Abstract
The concept of cancer as a cell-autonomous disease has been challenged by the wealth of knowledge gathered in the past decades on the importance of tumor microenvironment (TM) in cancer progression and metastasis. The significance of endothelial cells (ECs) in this scenario was initially attributed to their role in vasculogenesis and angiogenesis that is critical for tumor initiation and growth. Nevertheless, the identification of endothelial-derived angiocrine factors illustrated an alternative non-angiogenic function of ECs contributing to both physiological and pathological tissue development. Gene expression profiling studies have demonstrated distinctive expression patterns in tumor-associated endothelial cells that imply a bilateral crosstalk between tumor and its endothelium. Recently, some of the molecular determinants of this reciprocal interaction have been identified which are considered as potential targets for developing novel anti-angiocrine therapeutic strategies.
Collapse
Affiliation(s)
- Jennifer Pasquier
- Nice Breast Institute, 57 bld de la Californie, 06000, Nice, France.
- Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar.
| | - Pegah Ghiabi
- Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Lotfi Chouchane
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
- Laboratory of Genetic Medicine and Immunology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Kais Razzouk
- Nice Breast Institute, 57 bld de la Californie, 06000, Nice, France
| | - Shahin Rafii
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Arash Rafii
- Nice Breast Institute, 57 bld de la Californie, 06000, Nice, France
- Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
18
|
ABT737 enhances ovarian cancer cells sensitivity to cisplatin through regulation of mitochondrial fission via Sirt3 activation. Life Sci 2019; 232:116561. [DOI: 10.1016/j.lfs.2019.116561] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 01/10/2023]
|
19
|
Akella NM, Ciraku L, Reginato MJ. Fueling the fire: emerging role of the hexosamine biosynthetic pathway in cancer. BMC Biol 2019; 17:52. [PMID: 31272438 PMCID: PMC6610925 DOI: 10.1186/s12915-019-0671-3] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Altered metabolism and deregulated cellular energetics are now considered a hallmark of all cancers. Glucose, glutamine, fatty acids, and amino acids are the primary drivers of tumor growth and act as substrates for the hexosamine biosynthetic pathway (HBP). The HBP culminates in the production of an amino sugar uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) that, along with other charged nucleotide sugars, serves as the basis for biosynthesis of glycoproteins and other glycoconjugates. These nutrient-driven post-translational modifications are highly altered in cancer and regulate protein functions in various cancer-associated processes. In this review, we discuss recent progress in understanding the mechanistic relationship between the HBP and cancer.
Collapse
Affiliation(s)
- Neha M Akella
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Lorela Ciraku
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
20
|
Hoarau-Véchot J, Touboul C, Halabi N, Blot-Dupin M, Lis R, Abi Khalil C, Rafii S, Rafii A, Pasquier J. Akt-activated endothelium promotes ovarian cancer proliferation through notch activation. J Transl Med 2019; 17:194. [PMID: 31182109 PMCID: PMC6558713 DOI: 10.1186/s12967-019-1942-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/30/2019] [Indexed: 12/17/2022] Open
Abstract
Background One main challenge in ovarian cancer rests on the presence of a relapse and an important metastatic disease, despite extensive surgical debulking and chemotherapy. The difficulty in containing metastatic cancer is partly due to the heterotypic interaction of tumor and its microenvironment. In this context, evidence suggests that endothelial cells (EC) play an important role in ovarian tumor growth and chemoresistance. Here, we studied the role of tumor endothelium on ovarian cancer cells (OCCs). Methods We evaluated the effect of activated endothelial cells on ovarian cancer cell proliferation and resistance to chemotherapy and investigated the survival pathways activated by endothelial co-culture. Results The co-culture between OCCs and E4+ECs, induced an increase of OCCs proliferation both in vitro and in vivo. This co-culture induced an increase of Notch receptors expression on OCC surface and an increase of Jagged 1 expression on E4+ECs surface and activation of survival pathways leading to chemoresistance by E4+ECs. Conclusion The targeting of aberrant NOTCH signaling could constitute a strategy to disrupt the pro-tumoral endothelial niche.
Collapse
Affiliation(s)
- Jessica Hoarau-Véchot
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar.,Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, PO box 24144, Doha, Qatar
| | - Cyril Touboul
- INSERM U955, Equipe 7, Créteil, France.,Faculté de Médecine de Créteil UPEC-Paris XII, Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Centre Hospitalier Intercommunal de Créteil, 40 Avenue de Verdun, 94000, Créteil, France
| | - Najeeb Halabi
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Morgane Blot-Dupin
- Faculté de Médecine de Créteil UPEC-Paris XII, Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Centre Hospitalier Intercommunal de Créteil, 40 Avenue de Verdun, 94000, Créteil, France
| | - Raphael Lis
- Department of Genetic Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Charbel Abi Khalil
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, PO box 24144, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Shahin Rafii
- Department of Genetic Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Arash Rafii
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar. .,Department of Genetic Medicine, Weill Cornell Medicine, New York City, NY, USA. .,Department of Gynecologic Oncology, Hospital Foch, Surresnes, France. .,Department of Genetic Medicine and Obstetrics and Gynecology, Stem Cell and Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Qatar-Foundation, PO: 24144, Doha, Qatar.
| | - Jennifer Pasquier
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar. .,INSERM U955, Equipe 7, Créteil, France.
| |
Collapse
|
21
|
Vlachavas E, Pilalis E, Papadodima O, Koczan D, Willis S, Klippel S, Cheng C, Pan L, Sachpekidis C, Pintzas A, Gregoriou V, Dimitrakopoulou-Strauss A, Chatziioannou A. Radiogenomic Analysis of F-18-Fluorodeoxyglucose Positron Emission Tomography and Gene Expression Data Elucidates the Epidemiological Complexity of Colorectal Cancer Landscape. Comput Struct Biotechnol J 2019; 17:177-185. [PMID: 30809322 PMCID: PMC6374701 DOI: 10.1016/j.csbj.2019.01.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Transcriptomic profiling has enabled the neater genomic characterization of several cancers, among them colorectal cancer (CRC), through the derivation of genes with enhanced causal role and informative gene sets. However, the identification of small-sized gene signatures, which can serve as potential biomarkers in CRC, remains challenging, mainly due to the great genetic heterogeneity of the disease. METHODS We developed and exploited an analytical framework for the integrative analysis of CRC datasets, encompassing transcriptomic data and positron emission tomography (PET) measurements. Profiling data comprised two microarray datasets, pertaining biopsy specimen from 30 untreated patients with primary CRC, coupled by their F-18-Fluorodeoxyglucose (FDG) PET values, using tracer kinetic analysis measurements. The computational framework incorporates algorithms for semantic processing, multivariate analysis, data mining and dimensionality reduction. RESULTS Transcriptomic and PET data feature sets, were evaluated for their discrimination performance between primary colorectal adenocarcinomas and adjacent normal mucosa. A composite signature was derived, pertaining 12 features: 7 genes and 5 PET variables. This compact signature manifests superior performance in classification accuracy, through the integration of gene expression and PET data. CONCLUSIONS This work represents an effort for the integrative, multilayered, signature-oriented analysis of CRC, in the context of radio-genomics, inferring a composite signature with promising results for patient stratification.
Collapse
Key Words
- 18F-FDG PET
- ACADM, Acyl-Coenzyme A Dehydrogenase
- AUC, Area Under the Curve
- CCT7, Chaperonin Containing TCP1 Subunit 7
- CD44, CD44 Molecule (Indian Blood Group)
- CRC, Colorectal cancer
- Colorectal cancer
- DE, Differentially Expressed
- FD, Fractal Dimension
- FDG, F-18-Fluorodeoxyglucose
- GDC, Genomics Data Commons
- GEO, Gene Expression Omnibus
- GSTP1, Glutathione S-Transferase Pi 1
- KIT, Proto-Oncogene Receptor Tyrosine Kinase
- Lasso, least absolute shrinkage and selection operator
- MFA, Multiple Factor Analysis
- Microarray analysis
- PCs, Principal Components
- PET, Positron Emission Tomography
- ROC, Receiver-operator Characteristic curve
- Radiogenomics
- SUV, Standardized Uptake Value
- TCGA
- TCGA-COAD, The Cancer Genome Atlas-Colon Adenocarcinoma
- Translational bioinformatics
Collapse
Affiliation(s)
- Efstathios–Iason Vlachavas
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Dragana, Greece
- Enios Applications Private Limited Company, A17671 Athens, Greece
| | - Eleftherios Pilalis
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece
- Enios Applications Private Limited Company, A17671 Athens, Greece
| | - Olga Papadodima
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Dirk Koczan
- Core Facility Micro-Array-Technology, Center of Medical Research, University of Rostock, Germany
| | | | - Sven Klippel
- Surgical Clinic A, Klinikum Ludwigshafen, Germany
| | - Caixia Cheng
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Leyun Pan
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Alexandros Pintzas
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Vasilis Gregoriou
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | - Aristotelis Chatziioannou
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece
- Enios Applications Private Limited Company, A17671 Athens, Greece
| |
Collapse
|
22
|
Lysophospholipid Signaling in the Epithelial Ovarian Cancer Tumor Microenvironment. Cancers (Basel) 2018; 10:cancers10070227. [PMID: 29987226 PMCID: PMC6071084 DOI: 10.3390/cancers10070227] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022] Open
Abstract
As one of the important cancer hallmarks, metabolism reprogramming, including lipid metabolism alterations, occurs in tumor cells and the tumor microenvironment (TME). It plays an important role in tumorigenesis, progression, and metastasis. Lipids, and several lysophospholipids in particular, are elevated in the blood, ascites, and/or epithelial ovarian cancer (EOC) tissues, making them not only useful biomarkers, but also potential therapeutic targets. While the roles and signaling of these lipids in tumor cells are extensively studied, there is a significant gap in our understanding of their regulations and functions in the context of the microenvironment. This review focuses on the recent study development in several oncolipids, including lysophosphatidic acid and sphingosine-1-phosphate, with emphasis on TME in ovarian cancer.
Collapse
|
23
|
Sun F, Choi AA, Wu R. Systematic Analysis of Fatty Acids in Human Cells with a Multiplexed Isobaric Tag (TMT)-Based Method. J Proteome Res 2018. [PMID: 29521506 DOI: 10.1021/acs.jproteome.7b00896] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fatty acids (FAs) are essential components in cells and are involved in many cellular activities. Abnormal FA metabolism has been reported to be related to human diseases such as cancer and cardiovascular diseases. Identification and quantification of FAs provide insights into their functions in biological systems, but it is very challenging to analyze them due to their structures and properties. In this work, we developed a novel method by integrating FAs tagged with stable isotope labeled aminoxy tandem mass tags (aminoxyTMTs) and mass spectrometric analysis in the positive mode. On the basis of their structures, the aminoxyTMT reagents reacted with the carboxylic acid group of the FAs, resulting in an amine group with high proton affinity covalently attached to the analytes. This enabled the analysis of FAs under the positive electrospray ionization-mass spectrometry (ESI-MS) mode, which is normally more popular and sensitive compared to the negative mode. More importantly, the multiplexed TMT tags allowed us to quantify FAs from several samples simultaneously, which increased the experimental throughput and quantification accuracy. FAs extracted from three types of breast cells, i.e., MCF 10A (normal), MCF7 (minimally invasive) and MDA-MB-231 (highly invasive) cells, were labeled with the six-plexed aminoxyTMTs and quantified by LC-MS/MS. The results demonstrated that the abundances of some FAs, such as C22:5 and C20:3, were markedly increased in MCF7 and MDA-MB-231 cancer cells compared to normal MCF 10A cells. For the first time, aminoxyTMT reagents were exploited to label FAs for their identification and quantification in complex biological samples in the positive MS mode. The current method enabled us to confidently identify FAs and to accurately quantify them from several samples simultaneously. Because this method does not have sample restrictions, it can be extensively applied for biological and biomedical research.
Collapse
Affiliation(s)
- Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Alexander A Choi
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
24
|
Maan M, Peters JM, Dutta M, Patterson AD. Lipid metabolism and lipophagy in cancer. Biochem Biophys Res Commun 2018; 504:582-589. [PMID: 29438712 DOI: 10.1016/j.bbrc.2018.02.097] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 12/21/2022]
Abstract
The tumor microenvironment can be hypoxic, acidic, and deficient in nutrients, thus causing the metabolism of tumor cells as well as the neighboring stromal cells to be remodelled to facilitate tumor survival, proliferation, and metastasis. Abnormal tumor lipid metabolism is a fairly new field, which has received attention in the past few years. Cross-talk between tumor cells and tumor-associated stromal cells modulates the high metabolic needs of the tumor. Fatty acid turnover is high in tumor cells to meet the energy as well as synthetic requirements of the growing tumor. Lipolysis of lipids stored in lipid droplets was earlier considered to be solely carried out by cytosolic lipases. However recent studies demonstrate that lipophagy (autophagic degradation of lipids by acidic lipases) serves as an alternate pathway for the degradation of lipid droplets. Involvement of lipophagy in lipid turnover makes it a crucial player in tumorigenesis and metastasis. In this review we discuss the metabolic reprogramming of tumor cells with special focus on lipid metabolism. We also address the lipid turnover machinery in the tumor cell, especially the lipophagic pathway. Finally, we integrate the current understanding of lipophagy with tumor lipid metabolism.
Collapse
Affiliation(s)
- Meenu Maan
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Jeffrey M Peters
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary & Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, United States
| | - Mainak Dutta
- Department of Biotechnology, BITS Pilani-Dubai Campus, Academic City, Dubai 345055, United Arab Emirates.
| | - Andrew D Patterson
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary & Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
25
|
Yu Y, Xu L, Qi L, Wang C, Xu N, Liu S, Li S, Tian H, Liu W, Xu Y, Li Z. ABT737 induces mitochondrial pathway apoptosis and mitophagy by regulating DRP1-dependent mitochondrial fission in human ovarian cancer cells. Biomed Pharmacother 2017; 96:22-29. [DOI: 10.1016/j.biopha.2017.09.111] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 01/31/2023] Open
|
26
|
Abstract
PURPOSE OF REVIEW Lipid metabolism in cancer cells and tumor-associated stromal cells was recently identified to contribute to disease progression particularly in response to changes in tumor microenvironment such as acidosis and hypoxia. RECENT FINDINGS New molecular mechanisms driving lipid metabolism in various cancers were elicited through genetic silencing, pharmacological inhibition of key metabolic enzymes, including those involved in fatty acid oxidation and synthesis, and modulation of diet composition. SUMMARY To proliferate, metastasize, or resist stress conditions imposed by the microenvironment, many cancer cells rely on fatty acid β-oxidation to generate acetyl-CoA and fuel the TCA cycle, and on fatty acid synthesis to produce building blocks. These processes are fine-tuned through regulation of acetyl-CoA carboxylases expression and activity. Stromal cells including lymphocytes, (lymphatic) endothelial cells and adipocytes also participate through either fatty acid transfer or lipid-based signaling to cancer disease progression. Altogether, these data identify critical nodes in the orchestration of lipid metabolism in cancer that may facilitate the design of synthetic-lethal treatments.
Collapse
Affiliation(s)
- Cyril Corbet
- aPole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium *Olivier Feron and Cyril Corbet equally contributed to this article
| | | |
Collapse
|