1
|
Cai Y, Fan Y, Chen A, Wang X, Wang L, Chen J, Wang Z, Li J, Yi X, Ju C. Characteristics of upper and lower respiratory tract microbiota after lung transplantation. Respir Res 2025; 26:160. [PMID: 40281571 PMCID: PMC12023598 DOI: 10.1186/s12931-025-03235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND The composition and characteristics of airway microbiota offer critical insights for clinical decision-making. Current research on chronic lung diseases shows differences in the composition and characteristics of upper and lower respiratory tract microbiota compared with healthy individuals. However, the temporal changes of these microbial communities in lung transplant recipients remain poorly characterized. METHODS This is a longitudinal prospective study. Respiratory specimens were collected regularly from lung transplant recipients for testing and analysis. A total of 150 bronchoalveolar lavage fluid (BALF) samples, 150 throat swab samples, 51 sputum samples, and 36 lung tissue samples were collected from the recipients, at 7 days, 14 days, 1 month, 2 months, 3 months, and 6 months post-transplant for 16S rRNA gene sequencing and analysis. RESULTS Our study showed that there were significant differences in α-diversity and β-diversity among lung tissue, throat swab, and sputum samples, although α-diversity did not show a significant difference between lung tissue and BALF. Most amplicon sequence variants (ASVs) belonged to the families Enterobacteriaceae, Pseudomonadaceae, and Stenotrophomonas in BALF, while most ASVs belonged to the genera Streptococcus, Pseudomonadaceae, and Stenotrophomonas in sputum samples. Regarding dynamic changes, Corynebacterium and Staphylococcus were more prevalent in the early post-operative period but gradually decreased by 7 days post-operatively, while the common microbiota found in healthy populations based on literature became the most abundant ASVs at 6 months post-operatively in our study participants. Pseudomonadaceae and Stenotrophomonas contributed to the similarity in the composition of upper and lower respiratory microbiota. CONCLUSIONS This study demonstrates that lung transplant recipients exhibit unique characteristics in their upper and lower respiratory tract microbiota, which are distinct ecological profiles, and both undergo significant changes within 6 months post-operatively. The similarity between upper and lower respiratory tract microbiota is associated with microbial diversity and taxonomic dominance. CLINICAL TRIAL The clinical trial was registered at Chinese Clinical Trial Registry (ChiCTR2200056908) in February 2022.
Collapse
Affiliation(s)
- Yuhang Cai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guang Dong, China
| | - Yuchen Fan
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guang Dong, China
| | - Ao Chen
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guang Dong, China
| | - Xiaohua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guang Dong, China
| | - Lulin Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guang Dong, China
| | - Jiaqi Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guang Dong, China
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guang Dong, China
| | - Jia Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guang Dong, China.
| | - Xinzhu Yi
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guang Dong, China.
| | - Chunrong Ju
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guang Dong, China.
| |
Collapse
|
2
|
Shepherd MJ, Fu T, Harrington NE, Kottara A, Cagney K, Chalmers JD, Paterson S, Fothergill JL, Brockhurst MA. Ecological and evolutionary mechanisms driving within-patient emergence of antimicrobial resistance. Nat Rev Microbiol 2024; 22:650-665. [PMID: 38689039 DOI: 10.1038/s41579-024-01041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 05/02/2024]
Abstract
The ecological and evolutionary mechanisms of antimicrobial resistance (AMR) emergence within patients and how these vary across bacterial infections are poorly understood. Increasingly widespread use of pathogen genome sequencing in the clinic enables a deeper understanding of these processes. In this Review, we explore the clinical evidence to support four major mechanisms of within-patient AMR emergence in bacteria: spontaneous resistance mutations; in situ horizontal gene transfer of resistance genes; selection of pre-existing resistance; and immigration of resistant lineages. Within-patient AMR emergence occurs across a wide range of host niches and bacterial species, but the importance of each mechanism varies between bacterial species and infection sites within the body. We identify potential drivers of such differences and discuss how ecological and evolutionary analysis could be embedded within clinical trials of antimicrobials, which are powerful but underused tools for understanding why these mechanisms vary between pathogens, infections and individuals. Ultimately, improving understanding of how host niche, bacterial species and antibiotic mode of action combine to govern the ecological and evolutionary mechanism of AMR emergence in patients will enable more predictive and personalized diagnosis and antimicrobial therapies.
Collapse
Affiliation(s)
- Matthew J Shepherd
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK.
| | - Taoran Fu
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Niamh E Harrington
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Anastasia Kottara
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Kendall Cagney
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Steve Paterson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Joanne L Fothergill
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Michael A Brockhurst
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Ponholzer F, Bogensperger C, Krendl FJ, Krapf C, Dumfarth J, Schneeberger S, Augustin F. Beyond the organ: lung microbiome shapes transplant indications and outcomes. Eur J Cardiothorac Surg 2024; 66:ezae338. [PMID: 39288305 PMCID: PMC11466426 DOI: 10.1093/ejcts/ezae338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/30/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024] Open
Abstract
The lung microbiome plays a crucial role in the development of chronic lung diseases, which may ultimately lead to the need for lung transplantation. Also, perioperative results seem to be connected with altered lung microbiomes and its dynamic changes providing a possible target for optimizing short-term outcome after transplantation. A literature review using MEDLINE, PubMed Central and Bookshelf was performed. Chronic lung allograft dysfunction (CLAD) seems to be influenced and partly triggered by changes in the pulmonary microbiome and dysbiosis, e.g. through increased bacterial load or abundance of specific species such as Pseudomonas aeruginosa. Additionally, the specific indications for transplantation, with their very heterogeneous changes and influences on the pulmonary microbiome, influence long-term outcome. Next to composition and measurable bacterial load, dynamic changes in the allografts microbiome also possess the ability to alter long-term outcomes negatively. This review discusses the "new" microbiome after transplantation and the associations with direct postoperative outcome. With the knowledge of these principles the impact of alterations in the pulmonary microbiome in hindsight to CLAD and possible therapeutic implications are described and discussed. The aim of this review is to summarize the current literature regarding pre- and postoperative lung microbiomes and how they influence different lung diseases on their progression to failure of conservative treatment. This review provides a summary of current literature for centres looking for further options in optimizing lung transplant outcomes and highlights possible areas for further research activities investigating the pulmonary microbiome in connection to transplantation.
Collapse
Affiliation(s)
- Florian Ponholzer
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Christina Bogensperger
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Julius Krendl
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Krapf
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Dumfarth
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Augustin
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Pascale R, Tazza B, Amicucci A, Salvaterra E, Dolci G, Antonacci F, Baiocchi M, Pastore S, Ambretti S, Peghin M, Viale P, Giannella M. Antibiotic Prophylaxis in Patients Undergoing Lung Transplant: Single-Center Cohort Study. Transpl Int 2024; 37:13245. [PMID: 39220301 PMCID: PMC11361928 DOI: 10.3389/ti.2024.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Perioperative antibiotic prophylaxis (PAP) in lung transplant recipients (LuTRs) has high heterogeneity between centers. Our aim was to investigate retrospectively the approach to PAP in our center over a 20-year period (2002-2023), and its impact on early post-operative infections (EPOIs) after lung transplantation (LuT). Primary endpoint was diagnosis of EPOI, defined as any bacterial infection including donor-derived events diagnosed within 30 days from LuT. Main exposure variables were type of PAP (combination vs. monotherapy) and PAP duration. We enrolled 111 LuTRs. PAP consisted of single-agent or combination regimens in 26 (25.2%) and 85 (74.8%) LuTR. Median PAP duration was 10 days (IQR 6-13) days. Piperacillin/tazobactam was the most common agent used either as monotherapy (n = 21, 80.7%) or as combination with levofloxacin (n = 79, 92.9%). EPOIs were diagnosed in 30 (27%) patients. At multivariable analysis no advantages were found for combination regimens compared to single-agent PAP in preventing EPOI (OR: 1.57, 95% CI: 0.488-5.068, p:0.448). The impact of PAP duration on EPOIs development was investigated including duration of PAP ≤6 days as main exposure variables, without finding a significantly impact (OR:2.165, 95% CI: 0.596-7.863, p: 0.240). Our results suggest no advantages for combination regimens PAP in preventing EPOI in LuTR.
Collapse
Affiliation(s)
- Renato Pascale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Infectious Diseases Unit, Scientific Institute for Research, Hospitalization and Healthcare Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Beatrice Tazza
- Infectious Diseases Unit, Scientific Institute for Research, Hospitalization and Healthcare Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Armando Amicucci
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Elena Salvaterra
- Division of Interventional Pulmonology Unit, Scientific Institute for Research, Hospitalization and Healthcare Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giampiero Dolci
- Thoracic Surgery, Azienda Ospedaliero Universitaria di Ferrara, Ferrara, Italy
| | - Filippo Antonacci
- Thoracic Surgery, Scientific Institute for Research, Hospitalization and Healthcare Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Massimo Baiocchi
- Anaesthesiology and Intensive Care, Scientific Institute for Research, Hospitalization and Healthcare Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Saverio Pastore
- Anaesthesiology and Intensive Care, Scientific Institute for Research, Hospitalization and Healthcare Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Simone Ambretti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Microbiology Unit, Scientific Institute for Research, Hospitalization and Healthcare Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maddalena Peghin
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, Varese, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Infectious Diseases Unit, Scientific Institute for Research, Hospitalization and Healthcare Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maddalena Giannella
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Infectious Diseases Unit, Scientific Institute for Research, Hospitalization and Healthcare Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
5
|
Li CX, Lv M, Liu HY, Lin YX, Pan JB, You CX, Su J. Comparison of the upper and lower airway microbiome in early postoperative lung transplant recipients. Microbiol Spectr 2024; 12:e0379123. [PMID: 38747583 PMCID: PMC11237413 DOI: 10.1128/spectrum.03791-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/29/2024] [Indexed: 06/06/2024] Open
Abstract
The upper and lower respiratory tract may share microbiome because they are directly continuous, and the nasal microbiome contributes partially to the composition of the lung microbiome. But little is known about the upper and lower airway microbiome of early postoperative lung transplant recipients (LTRs). Using 16S rRNA gene sequencing, we compared paired nasal swab (NS) and bronchoalveolar lavage fluid (BALF) microbiome from 17 early postoperative LTRs. The microbiome between the two compartments were significantly different in Shannon diversity and beta diversity. Four and eight core NS-associated and BALF-associated microbiome were identified, respectively. NS samples harbored more Corynebacterium, Acinetobacter, and Pseudomonas, while BALF contained more Ralstonia, Stenotrophomonas, Enterococcus, and Pedobacter. The within-subject dissimilarity was higher than the between-subject dissimilarity, indicating a greater impact of sampling sites than sampling individuals on microbial difference. There were both difference and homogeneity between NS and BALF microbiome in early postoperative LTRs. High levels of pathogens were detected in both samples, suggesting that both of them can reflect the diseases characteristics of transplanted lung. The differences between upper and lower airway microbiome mainly come from sampling sites instead of sampling individuals. IMPORTANCE Lung transplantation is the only therapeutic option for patients with end-stage lung disease, but its outcome is much worse than other solid organ transplants. Little is known about the NS and BALF microbiome of early postoperative LTRs. Here, we compared paired samples of the nasal and lung microbiome from 17 early postoperative LTRs and showed both difference and homogeneity between the two samples. Most of the "core" microbiome in both NS and BALF samples were recognized respiratory pathogens, suggesting that both samples can reflect the diseases characteristics of transplanted lung. We also found that the differences between upper and lower airway microbiome in early postoperative LTRs mainly come from sampling sites instead of sampling individuals.
Collapse
Affiliation(s)
- Chun-xi Li
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meng Lv
- Department of Oncology, Medical Center for Overseas Patient, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-yue Liu
- Department of laboratory medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yan-xia Lin
- Hospital Infection-Control Department, Shenzhen University General Hospital, Shenzhen, China
| | - Jian-bing Pan
- Department of Respiratory Medicine, Meizhou People's Hospital, Meizhou, China
| | - Chang-xuan You
- Department of Oncology, Medical Center for Overseas Patient, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Su
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Zemke AC, Hilliam Y, Stapleton AL, Kimple AJ, Goralski JL, Shaffer AD, Pilewski JM, Senior BA, Lee SE, Cooper VS. Elexacaftor-tezacaftor-ivacaftor decreases pseudomonas abundance in the sinonasal microbiome in cystic fibrosis. Int Forum Allergy Rhinol 2024; 14:928-938. [PMID: 37837613 PMCID: PMC11131353 DOI: 10.1002/alr.23288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/15/2023] [Accepted: 09/23/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is common in individuals with cystic fibrosis (CF) and is marked by chronic inflammation and episodes of infection that negatively impact quality of life. Several studies have shown that elexacaftor-tezacaftor-ivacaftor (ETI) improves symptoms and examination findings in CF-CRS. The current study determines the effect of ETI on the sinonasal microbiota in CF. METHODS Sinonasal samples were collected under endoscopic visualization before and after starting ETI. Samples were subjected to 16S amplicon sequencing and sequences were processed with the QIIME2 pipeline with subsequent analysis using the vegan R-package. RESULTS Twenty-nine individual baseline samples and 23 sample pairs pre-/post-ETI were available. At baseline, the cohort had samples dominated by Staphylococcus, and alpha diversity was lower than that of a published reference set of individuals without sinonasal disease. Individuals with prior sinus surgery had lower alpha diversity as measured by Shannon Index, Observed Richness, and Faith's phylogenetic diversity Index. Beta diversity differed between individuals with and without allergic rhinitis, with higher Staphylococcus abundance in those with allergic rhinitis. No change in alpha or beta diversity was seen after a median of 9 months on ETI. With ETI, the Pseudomonas genus and the genus containing Burkholderia decreased in samples containing these taxa at baseline. Pseudomonas abundance decreased with treatment as measured by qPCR. Core sinonasal microbiome members Staphylococcus, Corynebacterium, and Streptococcus were unchanged, while Moraxella increased with ETI. CONCLUSIONS Treatment with ETI leads to a reduction in Pseudomonas abundance within the sinonasal microbiome of individuals with Pseudomonas at baseline.
Collapse
Affiliation(s)
- Anna C Zemke
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yasmin Hilliam
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Amanda L Stapleton
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam J Kimple
- Department of Otolaryngology-Head & Neck Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jennifer L Goralski
- Division of Pulmonary Diseases & CCM, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Amber D Shaffer
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brent A Senior
- Department of Otolaryngology-Head & Neck Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Stella E Lee
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Otolaryngology-Head & Neck Surgery, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Vasiljevs S, Witney AA, Baines DL. The presence of cystic fibrosis-related diabetes modifies the sputum microbiome in cystic fibrosis disease. Am J Physiol Lung Cell Mol Physiol 2024; 326:L125-L134. [PMID: 38084404 PMCID: PMC11244689 DOI: 10.1152/ajplung.00219.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/30/2023] [Accepted: 11/23/2023] [Indexed: 01/24/2024] Open
Abstract
Cystic fibrosis-related diabetes (CFRD) affects 40%-50% of adults with CF and is associated with a decline in respiratory health. The microbial flora of the lung is known to change with the development of CF disease, but how CFRD affects the microbiome has not been described. We analyzed the microbiome in sputa from 14 people with CF, 14 with CFRD, and two who were classed as pre-CFRD by extracting DNA and amplifying the variable V3-V4 region of the microbial 16S ribosomal RNA gene by PCR. Sequences were analyzed and sources were identified to genus level. We found that the α-diversity of the microbiome using Shannon's diversity index was increased in CFRD compared with CF. Bray Curtis dissimilarity analysis showed that there was separation of the microbiomes in CF and CFRD sputa. The most abundant phyla identified in the sputum samples were Firmicutes and Proteobacteria, Actinobacteriota and Bacteroidota, and the ratio of Firmicutes/Bacteroidota was reduced in CFRD compared with CF. Pseudomonas, Azhorizophilus, Porphyromonas, and Actinobacillus were more abundant in CFRD compared with CF, whereas Staphylococcus was less abundant. The relative abundance of these genera did not correlate with age; some correlated with a decline in FEV1/FVC but all correlated with hemoglobin A1C (HbA1c) indicating that development of CFRD mediates further changes to the respiratory microbiome in CF.NEW & NOTEWORTHY Cystic fibrosis-related diabetes (CFRD) is associated with a decline in respiratory health. We show for the first time that there was a change in the sputum microbiome of people with CFRD compared with CF that correlated with markers of raised blood glucose.
Collapse
Affiliation(s)
- Stanislavs Vasiljevs
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| | - Adam A Witney
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| | - Deborah L Baines
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| |
Collapse
|
8
|
Zhou Y, Liu M, Liu K, Wu G, Tan Y. Lung microbiota and potential treatment of respiratory diseases. Microb Pathog 2023:106197. [PMID: 37321423 DOI: 10.1016/j.micpath.2023.106197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/21/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
The unique microbiome found in the lungs has been studied and shown to be associated with both pulmonary homeostasis and lung diseases. The lung microbiome has the potential to produce metabolites that modulate host-microbe interactions. Specifically, short-chain fatty acids (SCFAs) produced by certain strains of the lung microbiota have been shown to regulate immune function and maintain gut mucosal health. In response, this review described the distribution and composition of the microbiota in lung diseases and discussed the impact of the lung microbiota on health and lung disease. In addition, the review further elaborated on the mechanism of microbial metabolites in microbial-host interaction and their application in the treatment of lung diseases. A better understanding of the interaction between the microbiota, metabolites, and host will provide potential strategies for the development of novel methods for the treatment of pulmonary microbial induced lung diseases.
Collapse
Affiliation(s)
- Yaxuan Zhou
- Department of Psychiatry, Department of Medicine, Xiangya School of Medical, Central South University, Changsha, 410083, Hunan, China
| | - Mengjun Liu
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, 410083, Hunan, China
| | - Kaixuan Liu
- Department of Excellent Doctor Training, Xiangya School of Medicine, Central South University, Changsha, 410083, Hunan, China
| | - Guojun Wu
- Department of Medical Microbiology, School of Basic Medicine, Central South University, Changsha, 410083, Hunan, China.
| | - Yurong Tan
- Department of Medical Microbiology, School of Basic Medicine, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|
9
|
Analysis of Donor to Recipient Pathogen Transmission in Relation to Cold Ischemic Time and Other Selected Aspects of Lung Transplantation-Single Center Experience. Pathogens 2023; 12:pathogens12020306. [PMID: 36839578 PMCID: PMC9961556 DOI: 10.3390/pathogens12020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/24/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Infections are one of the leading causes of death in the early postoperative period after lung transplantation (LuTx). METHODS We analyzed 59 transplantations and culture results of the donor bronchial aspirates (DBA), graft endobronchial swabs (GES), and recipient cultures (RC) before and after the procedure (RBA). We correlated the results with a cold ischemic time (CIT), recipient intubation time, and length of stay in the hospital and intensive care unit (ICU), among others. RESULTS CIT of the first and second lungs were 403 and 541 min, respectively. Forty-two and eighty-three percent of cultures were positive in DBA and GES, respectively. Furthermore, positive results were obtained in 79.7% of RC and in 33.9% of RBA. Longer donor hospitalization was correlated with Gram-negative bacteria isolation in DBA. Longer CIT was associated with Gram-positive bacteria other than Staphylococcus aureus in GES and it resulted in longer recipient stay in the ICU. Furthermore, longer CIT resulted in the development of the new pathogens in RBA. CONCLUSION Results of GES brought more clinically relevant information than DBA. Donor hospitalization was associated with the occurrence of Gram-negative bacteria. Positive cultures of DBA, GES, and RBA were not associated with recipient death.
Collapse
|
10
|
Guohui J, Kun W, Dong T, Ji Z, Dong L, Dong W, Jingyu C. Microbiosis in lung allotransplantation and xenotransplantation: State of the art and future perspective. HEALTH CARE SCIENCE 2022; 1:119-128. [PMID: 38938886 PMCID: PMC11080722 DOI: 10.1002/hcs2.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/10/2022] [Accepted: 08/03/2022] [Indexed: 06/29/2024]
Abstract
The respiratory tract is known to harbor a microbial community including bacteria, viruses, and fungi. New techniques contribute enormously to the identification of unknown or culture-independent species and reveal the interaction of the community with the host immune system. The existing respiratory microbiome and substantial equilibrium of the transplanted microbiome from donor lung grafts provide an extreme bloom of dynamic changes in the microenvironment in lung transplantation (LT) recipients. Dysbiosis in grafts are not only related to the modified microbial components but also involve the kinetics of the host-graft "talk," which signifies the destination of graft allograft injury, acute rejection, infection, and chronic allograft dysfunction development in short- and long-term survival. Microbiome-derived factors may contribute to lung xenograft survival when using genetically multimodified pig-derived organs. Here, we review the most advanced knowledge of the dynamics and resilience of microbial communities in transplanted lungs with various pretransplant indications. Conceptual and analytical points of view have been illustrated along the time series, gaining insight into the microbiome and lung grafts. Future endeavors on precise tools, sophisticated models, and novel targeted regimens are needed to improve the long-term survival in these patients.
Collapse
Affiliation(s)
- Jiao Guohui
- Center for Medical Device Evaluation, NMPABeijingChina
| | - Wu Kun
- Center for Medical Device Evaluation, NMPABeijingChina
| | - Tian Dong
- Department of Thoracic Surgery, West China HospitalSichuan UniversityChengduChina
| | - Zhang Ji
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiChina
| | - Liu Dong
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiChina
| | - Wei Dong
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiChina
| | - Chen Jingyu
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiChina
| |
Collapse
|
11
|
Watzenboeck ML, Gorki AD, Quattrone F, Gawish R, Schwarz S, Lambers C, Jaksch P, Lakovits K, Zahalka S, Rahimi N, Starkl P, Symmank D, Artner T, Pattaroni C, Fortelny N, Klavins K, Frommlet F, Marsland BJ, Hoetzenecker K, Widder S, Knapp S. Multi-omics profiling predicts allograft function after lung transplantation. Eur Respir J 2022; 59:2003292. [PMID: 34244315 DOI: 10.1183/13993003.03292-2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/09/2021] [Indexed: 11/05/2022]
Abstract
RATIONALE Lung transplantation is the ultimate treatment option for patients with end-stage respiratory diseases but bears the highest mortality rate among all solid organ transplantations due to chronic lung allograft dysfunction (CLAD). The mechanisms leading to CLAD remain elusive due to an insufficient understanding of the complex post-transplant adaptation processes. OBJECTIVES To better understand these lung adaptation processes after transplantation and to investigate their association with future changes in allograft function. METHODS We performed an exploratory cohort study of bronchoalveolar lavage samples from 78 lung recipients and donors. We analysed the alveolar microbiome using 16S rRNA sequencing, the cellular composition using flow cytometry, as well as metabolome and lipidome profiling. MEASUREMENTS AND MAIN RESULTS We established distinct temporal dynamics for each of the analysed data sets. Comparing matched donor and recipient samples, we revealed that recipient-specific as well as environmental factors, rather than the donor microbiome, shape the long-term lung microbiome. We further discovered that the abundance of certain bacterial strains correlated with underlying lung diseases even after transplantation. A decline in forced expiratory volume during the first second (FEV1) is a major characteristic of lung allograft dysfunction in transplant recipients. By using a machine learning approach, we could accurately predict future changes in FEV1 from our multi-omics data, whereby microbial profiles showed a particularly high predictive power. CONCLUSION Bronchoalveolar microbiome, cellular composition, metabolome and lipidome show specific temporal dynamics after lung transplantation. The lung microbiome can predict future changes in lung function with high precision.
Collapse
Affiliation(s)
- Martin L Watzenboeck
- Research Laboratory of Infection Biology, Dept of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- These authors contributed equally
| | - Anna-Dorothea Gorki
- Research Laboratory of Infection Biology, Dept of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- These authors contributed equally
| | - Federica Quattrone
- Research Laboratory of Infection Biology, Dept of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- These authors contributed equally
| | - Riem Gawish
- Research Laboratory of Infection Biology, Dept of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- These authors contributed equally
| | - Stefan Schwarz
- Division of Thoracic Surgery, Dept of Surgery, Medical University of Vienna, Vienna, Austria
- These authors contributed equally
| | - Christopher Lambers
- Division of Thoracic Surgery, Dept of Surgery, Medical University of Vienna, Vienna, Austria
| | - Peter Jaksch
- Division of Thoracic Surgery, Dept of Surgery, Medical University of Vienna, Vienna, Austria
| | - Karin Lakovits
- Research Laboratory of Infection Biology, Dept of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sophie Zahalka
- Research Laboratory of Infection Biology, Dept of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Nina Rahimi
- Research Laboratory of Infection Biology, Dept of Medicine I, Medical University of Vienna, Vienna, Austria
- Division of Thoracic Surgery, Dept of Surgery, Medical University of Vienna, Vienna, Austria
| | - Philipp Starkl
- Research Laboratory of Infection Biology, Dept of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Dörte Symmank
- Research Laboratory of Infection Biology, Dept of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tyler Artner
- Research Laboratory of Infection Biology, Dept of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Céline Pattaroni
- Dept of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Nikolaus Fortelny
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kristaps Klavins
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Florian Frommlet
- Institute of Medical Statistics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | | | - Konrad Hoetzenecker
- Division of Thoracic Surgery, Dept of Surgery, Medical University of Vienna, Vienna, Austria
| | - Stefanie Widder
- Research Laboratory of Infection Biology, Dept of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria
- S. Widder and S. Knapp contributed equally to this article as lead authors and supervised the work
| | - Sylvia Knapp
- Research Laboratory of Infection Biology, Dept of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- S. Widder and S. Knapp contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
12
|
Stampf S, Mueller NJ, van Delden C, Pascual M, Manuel O, Banz V, Binet I, De Geest S, Bochud PY, Leichtle A, Schaub S, Steiger J, Koller M. Cohort profile: The Swiss Transplant Cohort Study (STCS): A nationwide longitudinal cohort study of all solid organ recipients in Switzerland. BMJ Open 2021; 11:e051176. [PMID: 34911712 PMCID: PMC8679072 DOI: 10.1136/bmjopen-2021-051176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE The Swiss Transplant Cohort Study (STCS) is a prospective multicentre cohort study which started to actively enrol study participants in May 2008. It takes advantage of combining data from all transplant programmes in one unique system to perform comprehensive nationwide reporting and to promote translational and clinical post-transplant outcome research in the framework of Swiss transplantation medicine. PARTICIPANTS Over 5500 solid organ transplant recipients have been enrolled in all six Swiss transplant centres by end of 2019, around three-quarter of them for kidney and liver transplants. Ninety-three per cent of all transplanted recipients have consented to study participation, almost all of them (99%) contributed to bio-sampling. The STCS genomic data set includes around 3000 patients. FINDINGS TO DATE Detailed clinical and laboratory data in high granularity as well as patient-reported outcomes from transplant recipients and activities in Switzerland are available in the last decade. Interdisciplinary contributions in diverse fields of transplantation medicine such as infectious diseases, genomics, oncology, immunology and psychosocial science have resulted in approximately 70 scientific papers getting published in peer-review journals so far. FUTURE PLANS The STCS will deepen its efforts in personalised medicine and digital epidemiology, and will also focus on allocation research and the use of causal inference methods to make complex matters in transplant medicine more understandable and transparent.
Collapse
Affiliation(s)
- Susanne Stampf
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Nicolas J Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Christian van Delden
- Transplant Infectious Diseases Unit, University Hospitals Geneva and Faculty of Medicine, Geneva, Switzerland
| | - Manuel Pascual
- Transplantation Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Oriol Manuel
- Transplantation Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of Infectious Diseases, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vanessa Banz
- Department for Visceral Surgery and Medicine, Inselspital, University Hospital Bern and Bern University, Bern, Switzerland
| | - Isabelle Binet
- Nephrology and Transplantation Medicine, Kantonsspital St Gallen, Sankt Gallen, Switzerland
| | - Sabina De Geest
- Department of Public Health, Institute of Nursing Science, University of Basel, Basel, Switzerland
| | - Pierre-Yves Bochud
- Service of Infectious Diseases, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Alexander Leichtle
- Center for Laboratory Medicine, University Institute of Clinical Chemistry, Inselspital University Hospital Bern, Bern, Switzerland
| | - Stefan Schaub
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Jürg Steiger
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Michael Koller
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
13
|
McCort M, MacKenzie E, Pursell K, Pitrak D. Bacterial infections in lung transplantation. J Thorac Dis 2021; 13:6654-6672. [PMID: 34992843 PMCID: PMC8662486 DOI: 10.21037/jtd-2021-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/18/2021] [Indexed: 12/30/2022]
Abstract
Lung transplantation has lower survival rates compared to other than other solid organ transplants (SOT) due to higher rates of infection and rejection-related complications, and bacterial infections (BI) are the most frequent infectious complications. Excess morbidity and mortality are not only a direct consequence of these BI, but so are subsequent loss of allograft tolerance, rejection, and chronic lung allograft dysfunction due to bronchiolitis obliterans syndrome (BOS). A wide variety of pathogens can cause infections in lung transplant recipients (LTRs), including a number of nosocomial pathogens and other multidrug-resistant (MDR) pathogens. Although pneumonia and intrathoracic infections predominate, LTRs are at risk of a number of types of infections. Risk factors include altered anatomy and function of airways, impaired immunity, the microbial flora of the donor and recipient, underlying medical conditions, and genetic factors. Further work on immune monitoring has the potential to improve outcomes. The infecting agents can be derived from the donor lung, pre-existing recipient flora, or acquired from the environment over time. Certain infections may preclude lung transplantation, but this varies from center to center, and more recent studies suggest fewer patients should be disqualified. New molecular methods allow microbiome studies of the lung, gut, and other sites that may further our knowledge of how airway colonization can result in infection and allograft loss. Surveillance, early diagnosis, and aggressive antimicrobial therapy of BI is critical in LTRs. Antibiotic resistance is a major barrier to successful management of these infections. The availability of new agents for MDR Gram-negatives may improve outcomes. Other new therapies, such as bacteriophage therapy, show promise for the future. Finally, it is important to prevent infections through peri-transplant prophylaxis, vaccination, and infection control measures.
Collapse
Affiliation(s)
- Margaret McCort
- Albert Einstein College of Medicine, Division of Infectious Disease, New York, NY, USA
| | - Erica MacKenzie
- University of Chicago Medicine, Section of Infectious Diseases and Global Health, Chicago, IL, USA
| | - Kenneth Pursell
- University of Chicago Medicine, Section of Infectious Diseases and Global Health, Chicago, IL, USA
| | - David Pitrak
- University of Chicago Medicine, Section of Infectious Diseases and Global Health, Chicago, IL, USA
| |
Collapse
|
14
|
McGinniss JE, Whiteside SA, Simon-Soro A, Diamond JM, Christie JD, Bushman FD, Collman RG. The lung microbiome in lung transplantation. J Heart Lung Transplant 2021; 40:733-744. [PMID: 34120840 PMCID: PMC8335643 DOI: 10.1016/j.healun.2021.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/21/2022] Open
Abstract
Culture-independent study of the lower respiratory tract after lung transplantation has enabled an understanding of the microbiome - that is, the collection of bacteria, fungi, and viruses, and their respective gene complement - in this niche. The lung has unique features as a microbial environment, with balanced entry from the upper respiratory tract, clearance, and local replication. There are many pressures impacting the microbiome after transplantation, including donor allograft factors, recipient host factors such as underlying disease and ongoing exposure to the microbe-rich upper respiratory tract, and transplantation-related immunosuppression, antimicrobials, and postsurgical changes. To date, we understand that the lung microbiome after transplant is dysbiotic; that is, it has higher biomass and altered composition compared to a healthy lung. Emerging data suggest that specific microbiome features may be linked to host responses, both immune and non-immune, and clinical outcomes such as chronic lung allograft dysfunction (CLAD), but many questions remain. The goal of this review is to put into context our burgeoning understanding of the lung microbiome in the postlung transplant patient, the interactions between microbiome and host, the role the microbiome may play in post-transplant complications, and critical outstanding research questions.
Collapse
Affiliation(s)
- John E McGinniss
- Division of Pulmonary, Allergy and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Samantha A Whiteside
- Division of Pulmonary, Allergy and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aurea Simon-Soro
- Department of Orthodontics and Divisions of Community Oral Health and Pediatric Dentistry, School of Dental Medicine at the University of Pennsylvania
| | - Joshua M Diamond
- Division of Pulmonary, Allergy and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jason D Christie
- Division of Pulmonary, Allergy and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fredrick D Bushman
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ronald G Collman
- Division of Pulmonary, Allergy and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Boynton PJ, Wloch‐Salamon D, Landermann D, Stukenbrock EH. Forest Saccharomyces paradoxus are robust to seasonal biotic and abiotic changes. Ecol Evol 2021; 11:6604-6619. [PMID: 34141244 PMCID: PMC8207440 DOI: 10.1002/ece3.7515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 01/02/2023] Open
Abstract
Microorganisms are famous for adapting quickly to new environments. However, most evidence for rapid microbial adaptation comes from laboratory experiments or domesticated environments, and it is unclear how rates of adaptation scale from human-influenced environments to the great diversity of wild microorganisms. We examined potential monthly-scale selective pressures in the model forest yeast Saccharomyces paradoxus. Contrary to expectations of seasonal adaptation, the S. paradoxus population was stable over four seasons in the face of abiotic and biotic environmental changes. While the S. paradoxus population was diverse, including 41 unique genotypes among 192 sampled isolates, there was no correlation between S. paradoxus genotypes and seasonal environments. Consistent with observations from other S. paradoxus populations, the forest population was highly clonal and inbred. This lack of recombination, paired with population stability, implies that selection is not acting on the forest S. paradoxus population on a seasonal timescale. Saccharomyces paradoxus may instead have evolved generalism or phenotypic plasticity with regard to seasonal environmental changes long ago. Similarly, while the forest population included diversity among phenotypes related to intraspecific interference competition, there was no evidence for active coevolution among these phenotypes. At least ten percent of the forest S. paradoxus individuals produced "killer toxins," which kill sensitive Saccharomyces cells, but the presence of a toxin-producing isolate did not predict resistance to the toxin among nearby isolates. How forest yeasts acclimate to changing environments remains an open question, and future studies should investigate the physiological responses that allow microbial cells to cope with environmental fluctuations in their native habitats.
Collapse
Affiliation(s)
- Primrose J. Boynton
- Biology DepartmentWheaton CollegeNortonMAUSA
- Environmental Genomics Research GroupMax‐Planck Institute for Evolutionary BiologyPlönGermany
| | - Dominika Wloch‐Salamon
- Faculty of BiologyInstitute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - Doreen Landermann
- Environmental Genomics Research GroupMax‐Planck Institute for Evolutionary BiologyPlönGermany
| | - Eva H. Stukenbrock
- Environmental Genomics Research GroupMax‐Planck Institute for Evolutionary BiologyPlönGermany
- Botanical InstituteChristian‐Albrechts UniversitätKielGermany
| |
Collapse
|
16
|
A prevalent and culturable microbiota links ecological balance to clinical stability of the human lung after transplantation. Nat Commun 2021; 12:2126. [PMID: 33837203 PMCID: PMC8035266 DOI: 10.1038/s41467-021-22344-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
There is accumulating evidence that the lower airway microbiota impacts lung health. However, the link between microbial community composition and lung homeostasis remains elusive. We combine amplicon sequencing and bacterial culturing to characterize the viable bacterial community in 234 longitudinal bronchoalveolar lavage samples from 64 lung transplant recipients and establish links to viral loads, host gene expression, lung function, and transplant health. We find that the lung microbiota post-transplant can be categorized into four distinct compositional states, 'pneumotypes'. The predominant 'balanced' pneumotype is characterized by a diverse bacterial community with moderate viral loads, and host gene expression profiles suggesting immune tolerance. The other three pneumotypes are characterized by being either microbiota-depleted, or dominated by potential pathogens, and are linked to increased immune activity, lower respiratory function, and increased risks of infection and rejection. Collectively, our findings establish a link between the lung microbial ecosystem, human lung function, and clinical stability post-transplant.
Collapse
|
17
|
Datar R, Coello Pelegrin A, Orenga S, Chalansonnet V, Mirande C, Dombrecht J, Perry JD, Perry A, Goossens H, van Belkum A. Phenotypic and Genomic Variability of Serial Peri-Lung Transplantation Pseudomonas aeruginosa Isolates From Cystic Fibrosis Patients. Front Microbiol 2021; 12:604555. [PMID: 33897629 PMCID: PMC8058383 DOI: 10.3389/fmicb.2021.604555] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis (CF) represents one of the major genetic and chronic lung diseases affecting Caucasians of European descent. Patients with CF suffer from recurring infections that lead to further damage of the lungs. Pulmonary infection due to Pseudomonas aeruginosa is most prevalent, further increasing CF-related mortality. The present study describes the phenotypic and genotypic variations among 36 P. aeruginosa isolates obtained serially from a non-CF and five CF patients before, during and after lung transplantation (LTx). The classical and genomic investigation of these isolates revealed a common mucoid phenotype and only subtle differences in the genomes. Isolates originating from an individual patient shared ≥98.7% average nucleotide identity (ANI). However, when considering isolates from different patients, substantial variations in terms of sequence type (ST), virulence factors and antimicrobial resistance (AMR) genes were observed. Whole genome multi-locus sequence typing (MLST) confirmed the presence of unique STs per patient regardless of the time from LTx. It was supported by the monophyletic clustering found in the genome-wide phylogeny. The antibiogram shows that ≥91.6% of the isolates were susceptible to amikacin, colistin and tobramycin. For other antibiotics from the panel, isolates frequently showed resistance. Alternatively, a comparative analysis of the 36 P. aeruginosa isolates with 672 strains isolated from diverse ecologies demonstrated clustering of the CF isolates according to the LTx patients from whom they were isolated. We observed that despite LTx and associated measures, all patients remained persistently colonized with similar isolates. The present study shows how whole genome sequencing (WGS) along with phenotypic analysis can help us understand the evolution of P. aeruginosa over time especially its antibiotic resistance.
Collapse
Affiliation(s)
| | - Andreu Coello Pelegrin
- BioMérieux, La Balme les Grottes, France
- Laboratory of Medical Microbiology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | - John D. Perry
- Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Audrey Perry
- Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Herman Goossens
- Laboratory of Medical Microbiology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
18
|
Abstract
Within-host adaptation is a hallmark of chronic bacterial infections, involving substantial genomic changes. Recent large-scale genomic data from prolonged infections allow the examination of adaptive strategies employed by different pathogens and open the door to investigate whether they converge toward similar strategies. Here, we compiled extensive data of whole-genome sequences of bacterial isolates belonging to miscellaneous species sampled at sequential time points during clinical infections. Analysis of these data revealed that different species share some common adaptive strategies, achieved by mutating various genes. Although the same genes were often mutated in several strains within a species, different genes related to the same pathway, structure, or function were changed in other species utilizing the same adaptive strategy (e.g., mutating flagellar genes). Strategies exploited by various bacterial species were often predicted to be driven by the host immune system, a powerful selective pressure that is not species specific. Remarkably, we find adaptive strategies identified previously within single species to be ubiquitous. Two striking examples are shifts from siderophore-based to heme-based iron scavenging (previously shown for Pseudomonas aeruginosa) and changes in glycerol-phosphate metabolism (previously shown to decrease sensitivity to antibiotics in Mycobacterium tuberculosis). Virulence factors were often adaptively affected in different species, indicating shifts from acute to chronic virulence and virulence attenuation during infection. Our study presents a global view on common within-host adaptive strategies employed by different bacterial species and provides a rich resource for further studying these processes.
Collapse
Affiliation(s)
- Yair E Gatt
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
19
|
Glanville AR. Pseudomonas and risk factor mitigation for chronic lung allograft dysfunction. Eur Respir J 2020; 56:56/4/2001968. [DOI: 10.1183/13993003.01968-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 06/22/2020] [Indexed: 11/05/2022]
|
20
|
Martinu T, Koutsokera A, Benden C, Cantu E, Chambers D, Cypel M, Edelman J, Emtiazjoo A, Fisher AJ, Greenland JR, Hayes D, Hwang D, Keller BC, Lease ED, Perch M, Sato M, Todd JL, Verleden S, von der Thüsen J, Weigt SS, Keshavjee S. International Society for Heart and Lung Transplantation consensus statement for the standardization of bronchoalveolar lavage in lung transplantation. J Heart Lung Transplant 2020; 39:1171-1190. [PMID: 32773322 PMCID: PMC7361106 DOI: 10.1016/j.healun.2020.07.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 01/09/2023] Open
Abstract
Bronchoalveolar lavage (BAL) is a key clinical and research tool in lung transplantation (LTx). However, BAL collection and processing are not standardized across LTx centers. This International Society for Heart and Lung Transplantation-supported consensus document on BAL standardization aims to clarify definitions and propose common approaches to improve clinical and research practice standards. The following 9 areas are covered: (1) bronchoscopy procedure and BAL collection, (2) sample handling, (3) sample processing for microbiology, (4) cytology, (5) research, (6) microbiome, (7) sample inventory/tracking, (8) donor bronchoscopy, and (9) pediatric considerations. This consensus document aims to harmonize clinical and research practices for BAL collection and processing in LTx. The overarching goal is to enhance standardization and multicenter collaboration within the international LTx community and enable improvement and development of new BAL-based diagnostics.
Collapse
Affiliation(s)
- Tereza Martinu
- Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| | - Angela Koutsokera
- Lung Transplant Program, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Lung Transplant Program, Division of Pulmonology, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Edward Cantu
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel Chambers
- Lung Transplant Program, The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Marcelo Cypel
- Lung Transplant Program, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Jeffrey Edelman
- Lung Transplant Program, Puget Sound VA Medical Center, Seattle, Washington
| | - Amir Emtiazjoo
- Lung Transplant Program, University of Florida, Gainesville, Florida
| | - Andrew J Fisher
- Institute of Transplantation, Newcastle Upon Tyne Hospitals and Newcastle University, United Kingdom
| | - John R Greenland
- Department of Medicine, VA Health Care System, San Francisco, California
| | - Don Hayes
- Lung Transplant Program, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - David Hwang
- Department of Pathology, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Brian C Keller
- Lung Transplant Program, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Erika D Lease
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Washington
| | - Michael Perch
- Lung Transplant Program, Rigshospitalet, Copenhagen, Denmark
| | - Masaaki Sato
- Department of Surgery, University of Tokyo, Tokyo, Japan
| | - Jamie L Todd
- Lung Transplant Program, Duke University Medical Center, Durham, North Carolina
| | - Stijn Verleden
- Laboratory of Pneumology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - S Samuel Weigt
- Lung Transplant Program, University of California Los Angeles, Los Angeles, California
| | - Shaf Keshavjee
- Lung Transplant Program, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | | |
Collapse
|
21
|
Clark ST, Guttman DS, Hwang DM. Diversification of Pseudomonas aeruginosa within the cystic fibrosis lung and its effects on antibiotic resistance. FEMS Microbiol Lett 2019; 365:4834010. [PMID: 29401362 DOI: 10.1093/femsle/fny026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/30/2018] [Indexed: 12/13/2022] Open
Abstract
The evolution and diversification of bacterial pathogens within human hosts represent potential barriers to the diagnosis and treatment of life-threatening infections. Tremendous genetic and phenotypic diversity is characteristic of host adaptation in strains of Pseudomonas aeruginosa that infect the airways of individuals with chronic lung diseases and prove to be extremely difficult to eradicate. In this MiniReview, we examine recent advances in understanding within-host diversity and antimicrobial resistance in P. aeruginosa populations from the lower airways of individuals with the fatal genetic disease cystic fibrosis and the potential impacts that this diversity may have on detecting and interpreting antimicrobial susceptibility within these populations.
Collapse
Affiliation(s)
- Shawn T Clark
- Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT - MaRS Centre, Toronto, Ontario M5G 1L7, Canada
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada.,Centre for the Analysis of Genome Evolution & Function, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada
| | - David M Hwang
- Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT - MaRS Centre, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
22
|
Jin J, Gan Y, Liu H, Wang Z, Yuan J, Deng T, Zhou Y, Zhu Y, Zhu H, Yang S, Shen W, Xie D, Wu H, Liu D, Li W. Diminishing microbiome richness and distinction in the lower respiratory tract of lung cancer patients: A multiple comparative study design with independent validation. Lung Cancer 2019; 136:129-135. [PMID: 31494531 DOI: 10.1016/j.lungcan.2019.08.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Current evidence suggests that microorganisms are associated with neoplastic diseases; however, the role of the airway microbiome in lung cancer remains unknown. To investigate the taxonomic profiles of the lower respiratory tract (LRT) microbiome in patients with lung cancer. MATERIALS AND METHODS BALF samples were collected in a discovery set comprising 150 individuals, including 91 patients with lung cancer, 29 patients with nonmalignant pulmonary diseases and 30 healthy subjects, and an independent validation set including 85 participants. The samples were assessed by metagenomics analysis. Random forest regression analysis was performed to select a diagnostic panel. RESULTS In the discovery set, richness was reduced in lung cancer patients compared with that in healthy subjects, and the microbiome of patients with nonmalignant diseases resembled that of patients with lung cancer. Interestingly, Bradyrhizobium japonicum was only found in patients with lung cancer, whereas Acidovorax was found in patients with cancer and nonmalignant pulmonary diseases. A microbiota-related diagnostic model consisting of age, pack year of smoking and eleven types of bacteria was built, and the area under the curve (AUC) for discriminating the patients with cancer was 0.882 (95%CI: 0.807-0.957) in the training set and 0.796 (95%CI: 0.673-0.920) in the independent validation set. CONCLUSION Our study demonstrates that the LRT microbiome richness is diminished in lung cancer patients compared with that in healthy subjects and that microbiota-specific biomarkers may be useful for diagnosing patients for whom lung biopsy is not feasible.
Collapse
Affiliation(s)
- Jing Jin
- Department of Respiratory & Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Yuncui Gan
- Department of Respiratory & Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Huayong Liu
- BGI-Guangzhou Medical Laboratory, BGI-Shenzhen, Guangzhou, 510006, China
| | - Zirong Wang
- BGI-Guangzhou Medical Laboratory, BGI-Shenzhen, Guangzhou, 510006, China
| | - Jianying Yuan
- BGI-Guangzhou Medical Laboratory, BGI-Shenzhen, Guangzhou, 510006, China
| | - Taibing Deng
- Department of Respiratory Medicine. West China-Guangan Hospital, Sichuan University, Guangan, 638500, Sichuan Province, China
| | - Yongzhao Zhou
- Department of Respiratory & Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Yingying Zhu
- Department of Respiratory & Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Hui Zhu
- Department of Respiratory & Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Sai Yang
- Department of Respiratory & Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Wei Shen
- Hangzhou YITU Healthcare Technology Co, Ltd, Zhejiang, Hangzhou, 310000, China
| | - Dan Xie
- Center of Precision Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, Sichuan Province, 610041, China
| | - Honglong Wu
- BGI-Guangzhou Medical Laboratory, BGI-Shenzhen, Guangzhou, 510006, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| | - Dan Liu
- Department of Respiratory & Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China.
| | - Weimin Li
- Department of Respiratory & Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
23
|
|
24
|
Mendez R, Banerjee S, Bhattacharya SK, Banerjee S. Lung inflammation and disease: A perspective on microbial homeostasis and metabolism. IUBMB Life 2019; 71:152-165. [PMID: 30466159 PMCID: PMC6352907 DOI: 10.1002/iub.1969] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/05/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022]
Abstract
It is now well appreciated that the human microbiome plays a significant role in a number of processes in the body, significantly affecting its metabolic, inflammatory, and immune homeostasis. Recent research has revealed that almost every mucosal surface in the human body is associated with a resident commensal microbiome of its own. While the gut microbiome and its role in regulation of host metabolism along with its alteration in a disease state has been well studied, there is a lacuna in understanding the resident microbiota of other mucosal surfaces. Among these, the scientific information on the role of lung microbiota in pulmonary diseases is currently severely limited. Historically, lungs have been considered to be sterile and lung diseases have only been studied in the context of bacterial pathogenesis. Recently however, studies have revealed a resilient microbiome in the upper and lower respiratory tracts and there is increased evidence on its central role in respiratory diseases. Knowledge of lung microbiome and its metabolic fallout (local and systemic) is still in its nascent stages and attracting immense interest in recent times. In this review, we will provide a perspective on lung-associated metabolic disorders defined for lung diseases (e.g., chronic obstructive pulmonary disease, asthma, and respiratory depression due to infection) and correlate it with lung microbial perturbation. Such perturbations may be due to altered biochemical or metabolic stress as well. Finally, we will draw evidence from microbiome and classical microbiology literature to demonstrate how specific lung morbidities associate with specific metabolic characteristics of the disease, and with the role of microbiome in this context. © 2018 IUBMB Life, 71(1):152-165, 2019.
Collapse
Affiliation(s)
- Roberto Mendez
- Surgery, Miller School of Medicine, University of Miami, Florida, USA
| | - Sulagna Banerjee
- Surgery, Miller School of Medicine, University of Miami, Florida, USA
- Miami Integrative Metabolomics Research Center, University of Miami, Florida, USA
| | - Sanjoy K. Bhattacharya
- Bascom Palmer Eye Institute, University of Miami, Florida, USA
- Miami Integrative Metabolomics Research Center, University of Miami, Florida, USA
| | - Santanu Banerjee
- Surgery, Miller School of Medicine, University of Miami, Florida, USA
- Miami Integrative Metabolomics Research Center, University of Miami, Florida, USA
| |
Collapse
|
25
|
Diaz Caballero J, Clark ST, Wang PW, Donaldson SL, Coburn B, Tullis DE, Yau YCW, Waters VJ, Hwang DM, Guttman DS. A genome-wide association analysis reveals a potential role for recombination in the evolution of antimicrobial resistance in Burkholderia multivorans. PLoS Pathog 2018; 14:e1007453. [PMID: 30532201 PMCID: PMC6300292 DOI: 10.1371/journal.ppat.1007453] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/19/2018] [Accepted: 11/02/2018] [Indexed: 01/05/2023] Open
Abstract
Cystic fibrosis (CF) lung infections caused by members of the Burkholderia cepacia complex, such as Burkholderia multivorans, are associated with high rates of mortality and morbidity. We performed a population genomics study of 111 B. multivorans sputum isolates from one CF patient through three stages of infection including an early incident isolate, deep sampling of a one-year period of chronic infection occurring weeks before a lung transplant, and deep sampling of a post-transplant infection. We reconstructed the evolutionary history of the population and used a lineage-controlled genome-wide association study (GWAS) approach to identify genetic variants associated with antibiotic resistance. We found the incident isolate was basally related to the rest of the strains and more susceptible to antibiotics from three classes (β-lactams, aminoglycosides, quinolones). The chronic infection isolates diversified into multiple, distinct genetic lineages and showed reduced antimicrobial susceptibility to the same antibiotics. The post-transplant reinfection isolates derived from the same source as the incident isolate and were genetically distinct from the chronic isolates. They also had a level of susceptibility in between that of the incident and chronic isolates. We identified numerous examples of potential parallel pathoadaptation, in which multiple mutations were found in the same locus or even codon. The set of parallel pathoadaptive loci was enriched for functions associated with virulence and resistance. Our GWAS analysis identified statistical associations between a polymorphism in the ampD locus with resistance to β-lactams, and polymorphisms in an araC transcriptional regulator and an outer membrane porin with resistance to both aminoglycosides and quinolones. Additionally, these three loci were independently mutated four, three and two times, respectively, providing further support for parallel pathoadaptation. Finally, we identified a minimum of 14 recombination events, and observed that loci carrying putative parallel pathoadaptations and polymorphisms statistically associated with β-lactam resistance were over-represented in these recombinogenic regions. Cystic fibrosis (CF) is the most common lethal genetic disorder affecting individuals of European descent. Most CF patients die at a young age due to chronic lung infections. Among the organisms involved in these infections are bacteria from the Burkholderia cepacia complex (BCC), which are strongly associated with poor clinical prognosis. This study examines how the most prevalent BCC species among CF patients, B. multivorans, evolves within a single CF patient by studying the first B. multivorans isolate recovered from the patient, one hundred isolates recovered over a one year period during the chronic infection phase, and an additional ten isolates recovered after the reinfection of the transplanted lungs. We found that B. multivorans diversify phenotypically and genetically within the CF lung over the course of the infection, and evolves into a complex population during the chronic infection phase. We found that isolates collected from the post-transplant reinfection were more closely related to descendants of the original isolate rather than those recovered in the chronic infection. We identify genetic variants statistically associated with resistance to the antibiotics, and showed that some of these variants were found in regions that show patterns of recombination (genetic exchange) between strains. We also found that genes which were mutated multiple times during overall infection were more likely to be found in regions showing signals consistent with recombination. The presence of multiple independent mutations in a gene is a very strong signal that the gene helps bacteria adapt to their environment. Overall, this study provides insight into how pathogens adapt to the host during long-term infections, specific genes associated with antibiotic resistance, and the origin of new and recurrent infections.
Collapse
Affiliation(s)
- Julio Diaz Caballero
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Shawn T. Clark
- Latner Thoracic Surgery Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Pauline W. Wang
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Sylva L. Donaldson
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Bryan Coburn
- Division of Infectious Diseases, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - D. Elizabeth Tullis
- Adult Cystic Fibrosis Clinic, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Yvonne C. W. Yau
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatric Laboratory Medicine, Division of Microbiology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Valerie J. Waters
- Department of Pediatrics, Division of Infectious Diseases, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - David M. Hwang
- Latner Thoracic Surgery Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Pathology, University Health Network, Toronto, Ontario, Canada
| | - David S. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
26
|
First multicenter study of nontuberculous mycobacteria and/or Aspergillus infections in lung transplant recipients in Japan. Respir Investig 2018; 56:201-202. [PMID: 29773288 DOI: 10.1016/j.resinv.2018.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Koskella B, Hall LJ, Metcalf CJE. The microbiome beyond the horizon of ecological and evolutionary theory. Nat Ecol Evol 2017; 1:1606-1615. [DOI: 10.1038/s41559-017-0340-2] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/07/2017] [Indexed: 01/16/2023]
|
28
|
Costa J, Benvenuto LJ, Sonett JR. Long-term outcomes and management of lung transplant recipients. Best Pract Res Clin Anaesthesiol 2017; 31:285-297. [PMID: 29110800 DOI: 10.1016/j.bpa.2017.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/23/2017] [Indexed: 12/11/2022]
Abstract
Lung transplantation is an established treatment for patients with end-stage lung disease. Improvements in immunosuppression and therapeutic management of infections have resulted in improved long-term survival and a decline in allograft rejection. Allograft rejection continues to be a serious complication following lung transplantation, thereby leading to acute graft failure and, subsequently, chronic lung allograft dysfunction (CLAD). Bronchiolitis obliterans syndrome (BOS), the most common phenotype of CLAD, is the leading cause of late mortality and morbidity in lung recipients, with 50% having developed BOS within 5 years of lung transplantation. Infections in lung transplant recipients are also a significant complication and represent the most common cause of death within the first year. The success of lung transplantation depends on careful management of immunosuppressive regimens to reduce the rate of rejection, while monitoring recipients for infections and complications to help identify problems early. The long-term outcomes and management of lung transplant recipients are critically based on modulating natural immune response of the recipient to prevent acute and chronic rejection. Understanding the immune mechanisms and temporal correlation of acute and chronic rejection is thus critical in the long-term management of lung recipients.
Collapse
Affiliation(s)
- Joseph Costa
- Columbia University College of Physicians and Surgeons, Columbia University Medical Center, 622 West 168th St, PH 14, Room 108, New York, NY 10032, USA.
| | - Luke J Benvenuto
- Columbia University College of Physicians and Surgeons, Division Pulmonary, Allergy and Critical Care Medicine, Columbia University Medical Center, 622 West 168th St, PH 14, Room 104, New York, NY 10032, USA.
| | - Joshua R Sonett
- The Price Family Center for Comprehensive Chest Care, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, 161 Fort Washington Avenue, New York, NY 10032, USA.
| |
Collapse
|
29
|
Harrison E, Hall JPJ, Paterson S, Spiers AJ, Brockhurst MA. Conflicting selection alters the trajectory of molecular evolution in a tripartite bacteria-plasmid-phage interaction. Mol Ecol 2017; 26:2757-2764. [PMID: 28247474 PMCID: PMC5655702 DOI: 10.1111/mec.14080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 01/21/2023]
Abstract
Bacteria engage in a complex network of ecological interactions, which includes mobile genetic elements (MGEs) such as phages and plasmids. These elements play a key role in microbial communities as vectors of horizontal gene transfer but can also be important sources of selection for their bacterial hosts. In natural communities, bacteria are likely to encounter multiple MGEs simultaneously and conflicting selection among MGEs could alter the bacterial evolutionary response to each MGE. Here, we test the effect of interactions with multiple MGEs on bacterial molecular evolution in the tripartite interaction between the bacterium, Pseudomonas fluorescens, the lytic bacteriophage, SBW25φ2, and conjugative plasmid, pQBR103, using genome sequencing of experimentally evolved bacteria. We show that individually, both plasmids and phages impose selection leading to bacterial evolutionary responses that are distinct from bacterial populations evolving without MGEs, but that together, plasmids and phages impose conflicting selection on bacteria, constraining the evolutionary responses observed in pairwise interactions. Our findings highlight the likely difficulties of predicting evolutionary responses to multiple selective pressures from the observed evolutionary responses to each selective pressure alone. Understanding evolution in complex microbial communities comprising many species and MGEs will require that we go beyond studies of pairwise interactions.
Collapse
Affiliation(s)
- Ellie Harrison
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - James P. J. Hall
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - Steve Paterson
- Institute of Integrative BiologyUniversity of LiverpoolLiverpoolL69 7ZBUK
| | | | | |
Collapse
|