1
|
Yu Z, Shen X, Wang A, Hu C, Chen J. The gut microbiome: A line of defense against tuberculosis development. Front Cell Infect Microbiol 2023; 13:1149679. [PMID: 37143744 PMCID: PMC10152471 DOI: 10.3389/fcimb.2023.1149679] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
The tuberculosis (TB) burden remains a significant global public health concern, especially in less developed countries. While pulmonary tuberculosis (PTB) is the most common form of the disease, extrapulmonary tuberculosis, particularly intestinal TB (ITB), which is mostly secondary to PTB, is also a significant issue. With the development of sequencing technologies, recent studies have investigated the potential role of the gut microbiome in TB development. In this review, we summarized studies investigating the gut microbiome in both PTB and ITB patients (secondary to PTB) compared with healthy controls. Both PTB and ITB patients show reduced gut microbiome diversity characterized by reduced Firmicutes and elevated opportunistic pathogens colonization; Bacteroides and Prevotella were reported with opposite alteration in PTB and ITB patients. The alteration reported in TB patients may lead to a disequilibrium in metabolites such as short-chain fatty acid (SCFA) production, which may recast the lung microbiome and immunity via the "gut-lung axis". These findings may also shed light on the colonization of Mycobacterium tuberculosis in the gastrointestinal tract and the development of ITB in PTB patients. The findings highlight the crucial role of the gut microbiome in TB, particularly in ITB development, and suggest that probiotics and postbiotics might be useful supplements in shaping a balanced gut microbiome during TB treatment.
Collapse
Affiliation(s)
- Ziqi Yu
- Munich Medical Research School, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Xiang Shen
- Munich Medical Research School, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Aiyao Wang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Chong Hu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Jianyong Chen
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
- *Correspondence: Jianyong Chen,
| |
Collapse
|
2
|
Serum levels of IgM to phosphatidylcholine predict the response of multiple sclerosis patients to natalizumab or IFN-β. Sci Rep 2022; 12:13357. [PMID: 35922641 PMCID: PMC9349316 DOI: 10.1038/s41598-022-16218-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/06/2022] [Indexed: 11/09/2022] Open
Abstract
We developed an ELISA assay demonstrating the high prevalence of serum IgM to phosphatidylcholine (IgM-PC) in the first stages of multiple sclerosis (MS). We aimed to analyze the role of serum IgM-PC as a biomarker of response to treatment. Paired serum samples from 95 MS patients were obtained before (b.t) and after (a.t) treatment with disease modifying therapies. Patients were classified as non-responders or responders to treatment, according to classical criteria. Serum IgM-PC concentration was analyzed using our house ELISA assay. The level of serum IgM-PC b.t was higher in patients treated later with natalizumab than in those treated with Copaxone (p = 0.011) or interferon-β (p = 0.009). Responders to natalizumab showed higher concentration of serum IgM-PC b.t than those who did not respond to it (p = 0.019). The 73.3% of patients with the highest level of serum IgM-PC b.t responded to natalizumab. IgM-PC level decreased a.t in both cases, non-responders and responders to natalizumab. IgM-PC levels a.t did not decrease in non-responders to interferon-β, but in responders to it the IgM-PC level decreased (p = 0.007). Serum IgM-PC could be a biomarker of response to natalizumab or interferon-β treatment. Further studies would be necessary to validate these results.
Collapse
|
3
|
Melnikov M, Sharanova S, Sviridova A, Rogovskii V, Murugina N, Nikolaeva A, Dagil Y, Murugin V, Ospelnikova T, Boyko A, Pashenkov M. The influence of glatiramer acetate on Th17-immune response in multiple sclerosis. PLoS One 2020; 15:e0240305. [PMID: 33126239 PMCID: PMC7599084 DOI: 10.1371/journal.pone.0240305] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Glatiramer acetate (GA) is approved for the treatment of multiple sclerosis (MS). However, the mechanism of action of GA in MS is still unclear. In particular, it is not known whether GA can modulate the pro-inflammatory Th17-type immune response in MS. We investigated the effects of original GA (Copaxone®, Teva, Israel) and generic GA (Timexone®, Biocad, Russia) on Th17- and Th1-type cytokine production in vitro in 25 patients with relapsing-remitting MS and 25 healthy subjects. Both original and generic GA at concentrations 50–200 μg/ml dose-dependently inhibited interleukin-17 and interferon-γ production by anti-CD3/anti-CD28-activated peripheral blood mononuclear cells from MS patients and healthy subjects. This effect of GA was reproduced using purified CD4+ T cells, suggesting that GA can directly modulate the functions of Th17 and Th1 cells. At high concentrations (100–200 μg/ml), GA also suppressed the production of Th17-differentiation cytokines (interleukin-1β and interleukin-6) by lipopolysaccharide (LPS)-activated dendritic cells (DCs). These GA/LPS-treated DCs induced lower interleukin-17 and interferon-γ production by autologous CD4+ T cells compared to LPS-treated DCs. These data suggest that GA can inhibit Th17-immune response and that this inhibitory effect is preferentially exercised by direct influence of GA on T cells. We also demonstrate a comparable ability of original and generic GA to modulate pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Mikhail Melnikov
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
- Department of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
- * E-mail:
| | - Svetlana Sharanova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Anastasiya Sviridova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia
- Department of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Vladimir Rogovskii
- Department of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
- Department of Molecular Pharmacology and Radiobiology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Nina Murugina
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Anna Nikolaeva
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Yulia Dagil
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Vladimir Murugin
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Tatiana Ospelnikova
- Laboratory of Interferons, I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
| | - Alexey Boyko
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia
- Department of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Mikhail Pashenkov
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| |
Collapse
|
4
|
Kim HS, Chang CY, Yoon HJ, Kim KS, Koh HS, Kim SS, Lee SJ, Kane LP, Park EJ. Glial TIM-3 Modulates Immune Responses in the Brain Tumor Microenvironment. Cancer Res 2020; 80:1833-1845. [PMID: 32094297 DOI: 10.1158/0008-5472.can-19-2834] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/12/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022]
Abstract
T-cell immunoglobulin and mucin domain-containing molecule 3 (TIM-3), a potential immunotherapeutic target for cancer, has been shown to display diverse characteristics in a context-dependent manner. Thus, it would be useful to delineate the precise functional features of TIM-3 in a given situation. Here, we report that glial TIM-3 shows distinctive properties in the brain tumor microenvironment. TIM-3 was expressed on both growing tumor cells and their surrounding cells including glia and T cells in an orthotopic mouse glioma model. The expression pattern of TIM-3 was distinct from those of other immune checkpoint molecules in tumor-exposed and tumor-infiltrating glia. Comparison of cells from tumor-bearing and contralateral hemispheres of a glioma model showed that TIM-3 expression was lower in tumor-infiltrating CD11b+CD45mid glial cells but higher in tumor-infiltrating CD8+ T cells. In TIM-3 mutant mice with intracellular signaling defects and Cre-inducible TIM-3 mice, TIM-3 affected the expression of several immune-associated molecules including iNOS and PD-L1 in primary glia-exposed conditioned media (CM) from brain tumors. Further, TIM-3 was cross-regulated by TLR2, but not by TLR4, in brain tumor CM- or Pam3CSK4-exposed glia. In addition, following exposure to tumor CM, IFNγ production was lower in T cells cocultured with TIM-3-defective glia than with normal glia. Collectively, these findings suggest that glial TIM-3 actively and distinctively responds to brain tumor, and plays specific intracellular and intercellular immunoregulatory roles that might be different from TIM-3 on T cells in the brain tumor microenvironment. SIGNIFICANCE: TIM-3 is typically thought of as a T-cell checkpoint receptor. This study demonstrates a role for TIM-3 in mediating myeloid cell responses in glioblastoma.
Collapse
Affiliation(s)
- Hyung-Seok Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si Gyeonggi-do, Republic of Korea.,Cancer Immunology Branch, National Cancer Center, Goyang-si Gyeonggi-do, Republic of Korea
| | - Chi Young Chang
- Cancer Immunology Branch, National Cancer Center, Goyang-si Gyeonggi-do, Republic of Korea
| | - Hee Jung Yoon
- Cancer Immunology Branch, National Cancer Center, Goyang-si Gyeonggi-do, Republic of Korea
| | - Ki Sun Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si Gyeonggi-do, Republic of Korea.,Cancer Immunology Branch, National Cancer Center, Goyang-si Gyeonggi-do, Republic of Korea
| | - Han Seok Koh
- Cancer Immunology Branch, National Cancer Center, Goyang-si Gyeonggi-do, Republic of Korea
| | - Sang Soo Kim
- Fusion Technology Research Branch, National Cancer Center, Goyang-si Gyeonggi-do, Republic of Korea
| | - Sang-Jin Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si Gyeonggi-do, Republic of Korea.,Cancer Immunology Branch, National Cancer Center, Goyang-si Gyeonggi-do, Republic of Korea
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eun Jung Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si Gyeonggi-do, Republic of Korea. .,Cancer Immunology Branch, National Cancer Center, Goyang-si Gyeonggi-do, Republic of Korea
| |
Collapse
|
5
|
Rojas-Morales E, Santos-López G, Hernández-Cabañas S, Arcega-Revilla R, Rosas-Murrieta N, Jasso-Miranda C, El-Kassis EG, Reyes-Leyva J, Sedeño-Monge V. Differential Transcription of SOCS5 and SOCS7 in Multiple Sclerosis Patients Treated with Interferon Beta or Glatiramer Acetate. Int J Mol Sci 2019; 21:ijms21010218. [PMID: 31905601 PMCID: PMC6982240 DOI: 10.3390/ijms21010218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 11/25/2022] Open
Abstract
The participation of proinflammatory cytokines in the progression of Multiple Sclerosis (MS) has been well documented. Cytokines activate the JAK-STAT pathway, in which the suppressors of cytokine signaling (SOCS) exert a negative feedback. This paper analyzes the levels of SOCS5 and SOCS7 transcripts, quantified by RT-qPCR, in MS patients, and the concentrations of proinflammatory cytokines, IFN-γ, IL17, and IL6, determined by ELISA. Samples of peripheral blood were obtained from MS patients in the relapsing–remitting phase, treated with IFN-β or glatiramer acetate (GA), and from healthy individuals. SOCS7 mRNA was significantly higher in patients treated with GA (1.36 ± 0.23) than in those treated with IFN-β (0.65 ± 0.1). Regarding gender, the level of SOCS5 and SOCS7 transcripts were similar between MS and healthy females; in MS males, the level of SOCS7 transcripts were significantly lower (0.59 ± 0.03) than in healthy males (1.008 ± 0.05). Plasmatic levels of IFN-γ were significantly higher in MS patients (60 pg/mL, range 0–160) than in healthy subjects (0 range, 0–106). The same pattern was observed in MS patients treated with IFN-β (68 pg/mL, range 0–160) compared to patients treated with GA (51 pg/mL, range 0–114), and in MS females (64 pg/mL, range 0–161) compared to healthy females (0, range 0–99). We hypothesize that the increase in SOCS7 transcription in patients treated with GA could partially explain the action mechanism of this drug, while the increase in the concentration of IFN-γ in MS patients could help elucidate the immunopathology of the disease.
Collapse
Affiliation(s)
- Emmanuel Rojas-Morales
- Decanato de Ciencias de la Salud, Facultad de Medicina, Universidad Popular Autónoma del Estado de Puebla, Puebla 72410, Mexico;
- Decanato de Ciencias Biológicas, Universidad Popular Autónoma del Estado de Puebla, Puebla 72410, Mexico;
| | - Gerardo Santos-López
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla 74360, Mexico (J.R.-L.); (C.J.-M.)
| | | | - Raúl Arcega-Revilla
- Instituto Mexicano del Seguro Social, Puebla 72560, Mexico; (S.H.-C.); (R.A.-R.)
| | - Nora Rosas-Murrieta
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Carolina Jasso-Miranda
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla 74360, Mexico (J.R.-L.); (C.J.-M.)
| | - Elie Girgis El-Kassis
- Decanato de Ciencias Biológicas, Universidad Popular Autónoma del Estado de Puebla, Puebla 72410, Mexico;
| | - Julio Reyes-Leyva
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla 74360, Mexico (J.R.-L.); (C.J.-M.)
| | - Virginia Sedeño-Monge
- Decanato de Ciencias de la Salud, Facultad de Medicina, Universidad Popular Autónoma del Estado de Puebla, Puebla 72410, Mexico;
- Correspondence: or
| |
Collapse
|
6
|
Woodberry T, Bouffler SE, Wilson AS, Buckland RL, Brüstle A. The Emerging Role of Neutrophil Granulocytes in Multiple Sclerosis. J Clin Med 2018; 7:E511. [PMID: 30513926 PMCID: PMC6306801 DOI: 10.3390/jcm7120511] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with a strong autoimmune, neurodegenerative, and neuroinflammatory component. Most of the common disease modifying treatments (DMTs) for MS modulate the immune response targeting disease associated T and B cells and while none directly target neutrophils, several DMTs do impact their abundance or function. The role of neutrophils in MS remains unknown and research is ongoing to better understand the phenotype, function, and contribution of neutrophils to both disease onset and stage of disease. Here we summarize the current state of knowledge of neutrophils and their function in MS, including in the rodent based MS model, and we discuss the potential effects of current treatments on these functions. We propose that neutrophils are likely to participate in MS pathogenesis and their abundance and function warrant monitoring in MS.
Collapse
Affiliation(s)
- Tonia Woodberry
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| | - Sophie E Bouffler
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| | - Alicia S Wilson
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| | - Rebecca L Buckland
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| | - Anne Brüstle
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| |
Collapse
|
7
|
Negron A, Robinson RR, Stüve O, Forsthuber TG. The role of B cells in multiple sclerosis: Current and future therapies. Cell Immunol 2018; 339:10-23. [PMID: 31130183 DOI: 10.1016/j.cellimm.2018.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023]
Abstract
While it was long held that T cells were the primary mediators of multiple sclerosis (MS) pathogenesis, the beneficial effects observed in response to treatment with Rituximab (RTX), a monoclonal antibody (mAb) targeting CD20, shed light on a key contributor to MS that had been previously underappreciated: B cells. This has been reaffirmed by results from clinical trials testing the efficacy of subsequently developed B cell-depleting mAbs targeting CD20 as well as studies revisiting the effects of previous disease-modifying therapies (DMTs) on B cell subsets thought to modulate disease severity. In this review, we summarize current knowledge regarding the complex roles of B cells in MS pathogenesis and current and potential future B cell-directed therapies.
Collapse
Affiliation(s)
- Austin Negron
- Department of Biology, University of Texas at San Antonio, TX 78249, USA
| | - Rachel R Robinson
- Department of Biology, University of Texas at San Antonio, TX 78249, USA
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Neurology Section, VA North Texas Health Care System, Medical Service, Dallas, TX, USA
| | | |
Collapse
|
8
|
Li R, Patterson KR, Bar-Or A. Reassessing B cell contributions in multiple sclerosis. Nat Immunol 2018; 19:696-707. [PMID: 29925992 DOI: 10.1038/s41590-018-0135-x] [Citation(s) in RCA: 285] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023]
Abstract
There is growing recognition that B cell contributions to normal immune responses extend well beyond their potential to become antibody-producing cells, including roles at the innate-adaptive interface and their potential to modulate the responses of other immune cells such as T cells and myeloid cells. These B cell functions can have both pathogenic and protective effects in the context of central nervous system (CNS) inflammation. Here, we review recent advances in the field of multiple sclerosis (MS), which has traditionally been viewed as primarily a T cell-mediated disease, and we consider antibody-dependent and, particularly, emerging antibody-independent functions of B cells that may be relevant in both the peripheral and CNS disease compartments.
Collapse
Affiliation(s)
- Rui Li
- Center for Neuroinflammation and Experimental Therapeutics (CNET) and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristina R Patterson
- Center for Neuroinflammation and Experimental Therapeutics (CNET) and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics (CNET) and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|