1
|
Reid XJ, Zhong Y, Mackay JP. How does CHD4 slide nucleosomes? Biochem Soc Trans 2024; 52:1995-2008. [PMID: 39221830 PMCID: PMC11555702 DOI: 10.1042/bst20230070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Chromatin remodelling enzymes reposition nucleosomes throughout the genome to regulate the rate of transcription and other processes. These enzymes have been studied intensively since the 1990s, and yet the mechanism by which they operate has only very recently come into focus, following advances in cryoelectron microscopy and single-molecule biophysics. CHD4 is an essential and ubiquitous chromatin remodelling enzyme that until recently has received less attention than remodellers such as Snf2 and CHD1. Here we review what recent work in the field has taught us about how CHD4 reshapes the genome. Cryoelectron microscopy and single-molecule studies demonstrate that CHD4 shares a central remodelling mechanism with most other chromatin remodellers. At the same time, differences between CHD4 and other chromatin remodellers result from the actions of auxiliary domains that regulate remodeller activity by for example: (1) making differential interactions with nucleosomal epitopes such as the acidic patch and the N-terminal tail of histone H4, and (2) inducing the formation of distinct multi-protein remodelling complexes (e.g. NuRD vs ChAHP). Thus, although we have learned much about remodeller activity, there is still clearly much more waiting to be revealed.
Collapse
Affiliation(s)
- Xavier J. Reid
- School of Life and Environmental Sciences, University of Sydney, Darlington, NSW 2006, Australia
| | - Yichen Zhong
- School of Life and Environmental Sciences, University of Sydney, Darlington, NSW 2006, Australia
| | - Joel P. Mackay
- School of Life and Environmental Sciences, University of Sydney, Darlington, NSW 2006, Australia
| |
Collapse
|
2
|
Reid XJ, Low JKK, Mackay JP. A NuRD for all seasons. Trends Biochem Sci 2023; 48:11-25. [PMID: 35798615 DOI: 10.1016/j.tibs.2022.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/27/2022]
Abstract
The nucleosome-remodeling and deacetylase (NuRD) complex is an essential transcriptional regulator in all complex animals. All seven core subunits of the complex exist as multiple paralogs, raising the question of whether the complex might utilize paralog switching to achieve cell type-specific functions. We examine the evidence for this idea, making use of published quantitative proteomic data to dissect NuRD composition in 20 different tissues, as well as a large-scale CRISPR knockout screen carried out in >1000 human cancer cell lines. These data, together with recent reports, provide strong support for the idea that distinct permutations of the NuRD complex with tailored functions might regulate tissue-specific gene expression programs.
Collapse
Affiliation(s)
- Xavier J Reid
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
3
|
Leighton GO, Irvin EM, Kaur P, Liu M, You C, Bhattaram D, Piehler J, Riehn R, Wang H, Pan H, Williams DC. Densely methylated DNA traps Methyl-CpG-binding domain protein 2 but permits free diffusion by Methyl-CpG-binding domain protein 3. J Biol Chem 2022; 298:102428. [PMID: 36037972 PMCID: PMC9520026 DOI: 10.1016/j.jbc.2022.102428] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 10/29/2022] Open
Abstract
The methyl-CpG-binding domain 2 and 3 proteins (MBD2 and MBD3) provide structural and DNA-binding function for the Nucleosome Remodeling and Deacetylase (NuRD) complex. The two proteins form distinct NuRD complexes and show different binding affinity and selectivity for methylated DNA. Previous studies have shown that MBD2 binds with high affinity and selectivity for a single methylated CpG dinucleotide while MBD3 does not. However, the NuRD complex functions in regions of the genome that contain many CpG dinucleotides (CpG islands). Therefore, in this work, we investigate the binding and diffusion of MBD2 and MBD3 on more biologically relevant DNA templates that contain a large CpG island or limited CpG sites. Using a combination of single-molecule and biophysical analyses, we show that both MBD2 and MBD3 diffuse freely and rapidly across unmethylated CpG-rich DNA. In contrast, we found methylation of large CpG islands traps MBD2 leading to stable and apparently static binding on the CpG island while MBD3 continues to diffuse freely. In addition, we demonstrate both proteins bend DNA, which is augmented by methylation. Together, these studies support a model in which MBD2-NuRD strongly localizes to and compacts methylated CpG islands while MBD3-NuRD can freely mobilize nucleosomes independent of methylation status.
Collapse
Affiliation(s)
- Gage O Leighton
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | | | - Parminder Kaur
- Department of Physics, North Carolina State University, Raleigh, North Carolina, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| | - Ming Liu
- Department of Physics, North Carolina State University, Raleigh, North Carolina, USA
| | - Changjiang You
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Universität Osnabrück, Osnabrück, Germany
| | - Dhruv Bhattaram
- Department of Biomedical Engineering, Georgia Institute of Technology & Emory University of Medicine, Atlanta, Georgia, USA
| | - Jacob Piehler
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Universität Osnabrück, Osnabrück, Germany
| | - Robert Riehn
- Department of Physics, North Carolina State University, Raleigh, North Carolina, USA
| | - Hong Wang
- Toxicology Program, North Carolina State University, Raleigh, North Carolina, USA; Department of Physics, North Carolina State University, Raleigh, North Carolina, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| | - Hai Pan
- Department of Physics, North Carolina State University, Raleigh, North Carolina, USA.
| | - David C Williams
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA.
| |
Collapse
|
4
|
Arvindekar S, Jackman MJ, Low JKK, Landsberg MJ, Mackay JP, Viswanath S. Molecular architecture of nucleosome remodeling and deacetylase sub-complexes by integrative structure determination. Protein Sci 2022; 31:e4387. [PMID: 36040254 PMCID: PMC9413472 DOI: 10.1002/pro.4387] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/18/2022] [Accepted: 06/19/2022] [Indexed: 11/11/2022]
Abstract
The nucleosome remodeling and deacetylase (NuRD) complex is a chromatin-modifying assembly that regulates gene expression and DNA damage repair. Despite its importance, limited structural information describing the complete NuRD complex is available and a detailed understanding of its mechanism is therefore lacking. Drawing on information from SEC-MALLS, DIA-MS, XLMS, negative-stain EM, X-ray crystallography, NMR spectroscopy, secondary structure predictions, and homology models, we applied Bayesian integrative structure determination to investigate the molecular architecture of three NuRD sub-complexes: MTA1-HDAC1-RBBP4, MTA1N -HDAC1-MBD3GATAD2CC , and MTA1-HDAC1-RBBP4-MBD3-GATAD2A [nucleosome deacetylase (NuDe)]. The integrative structures were corroborated by examining independent crosslinks, cryo-EM maps, biochemical assays, known cancer-associated mutations, and structure predictions from AlphaFold. The robustness of the models was assessed by jack-knifing. Localization of the full-length MBD3, which connects the deacetylase and chromatin remodeling modules in NuRD, has not previously been possible; our models indicate two different locations for MBD3, suggesting a mechanism by which MBD3 in the presence of GATAD2A asymmetrically bridges the two modules in NuRD. Further, our models uncovered three previously unrecognized subunit interfaces in NuDe: HDAC1C -MTA1BAH , MTA1BAH -MBD3MBD , and HDAC160-100 -MBD3MBD . Our approach also allowed us to localize regions of unknown structure, such as HDAC1C and MBD3IDR , thereby resulting in the most complete and robustly cross-validated structural characterization of these NuRD sub-complexes so far.
Collapse
Affiliation(s)
- Shreyas Arvindekar
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia
| | - Matthew J. Jackman
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Jason K. K. Low
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Michael J. Landsberg
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Joel P. Mackay
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Shruthi Viswanath
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia
| |
Collapse
|
5
|
Mahana Y, Ohki I, Walinda E, Morimoto D, Sugase K, Shirakawa M. Structural Insights into Methylated DNA Recognition by the Methyl-CpG Binding Domain of MBD6 from Arabidopsis thaliana. ACS OMEGA 2022; 7:3212-3221. [PMID: 35128234 PMCID: PMC8811898 DOI: 10.1021/acsomega.1c04917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/24/2021] [Indexed: 06/01/2023]
Abstract
Cytosine methylation is an epigenetic modification essential for formation of mature heterochromatin, gene silencing, and genomic stability. In plants, methylation occurs not only at cytosine bases in CpG but also in CpHpG and CpHpH contexts, where H denotes A, T, or C. Methyl-CpG binding domain (MBD) proteins, which recognize symmetrical methyl-CpG dinucleotides and act as gene repressors in mammalian cells, are also present in plant cells, although their structural and functional properties still remain poorly understood. To fill this gap, in this study, we determined the solution structure of the MBD domain of the MBD6 protein from Arabidopsis thaliana and investigated its binding properties to methylated DNA by binding assays and an in-depth NMR spectroscopic analysis. The AtMBD6 MBD domain folds into a canonical MBD structure in line with its binding specificity toward methyl-CpG and possesses a DNA binding interface similar to mammalian MBD domains. Intriguingly, however, the binding affinity of the AtMBD6 MBD domain toward methyl-CpG-containing DNA was found to be much lower than that of known mammalian MBD domains. The main difference arises from the absence of positively charged residues in AtMBD6 that supposedly interact with the DNA backbone as seen in mammalian MBD/methyl-CpG-containing DNA complexes. Taken together, we have established a structural basis for methyl-CpG recognition by AtMBD6 to develop a deeper understanding how MBD proteins work as mediators of epigenetic signals in plant cells.
Collapse
Affiliation(s)
- Yutaka Mahana
- Department
of Molecular Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto 615-8510, Japan
| | - Izuru Ohki
- Institute
for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Erik Walinda
- Graduate
School of Medicine, Kyoto University, Yoshida Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Daichi Morimoto
- Department
of Molecular Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto 615-8510, Japan
| | - Kenji Sugase
- Department
of Molecular Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto 615-8510, Japan
| | - Masahiro Shirakawa
- Department
of Molecular Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto 615-8510, Japan
| |
Collapse
|
6
|
Zhang X, Jacobs D. OUP accepted manuscript. Genome Biol Evol 2022; 14:6519162. [PMID: 35104341 PMCID: PMC8857923 DOI: 10.1093/gbe/evab284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2021] [Indexed: 11/14/2022] Open
Abstract
DNA methylation, an important component of eukaryotic epigenetics, varies in pattern and function across Metazoa. Notably, bilaterian vertebrates and invertebrates differ dramatically in gene body methylation (GbM). Using the frequency of cytosine-phospho-guanines (CpGs), which are lost through mutation when methylated, we report the first broad survey of DNA methylation in Cnidaria, the ancient sister group to Bilateria. We find that: 1) GbM differentially relates to expression categories as it does in most bilaterian invertebrates, but distributions of GbM are less discretely bimodal. 2) Cnidarians generally have lower CpG frequencies on gene bodies than bilaterian invertebrates potentially suggesting a compensatory mechanism to replace CpG lost to mutation in Bilateria that is lacking in Cnidaria. 3) GbM patterns show some consistency within taxonomic groups such as the Scleractinian corals; however, GbM patterns variation across a range of taxonomic ranks in Cnidaria suggests active evolutionary change in GbM within Cnidaria. 4) Some but not all GbM variation is associated with life history change and genome expansion, whereas GbM loss is evident in endoparasitic cnidarians. 5) Cnidarian repetitive elements are less methylated than gene bodies, and methylation of both correlate with genome repeat content. 6) These observations reinforce claims that GbM evolved in stem Metazoa. Thus, this work supports overlap between DNA methylation processes in Cnidaria and Bilateria, provides a framework to compare methylation within and between Cnidaria and Bilateria, and demonstrates the previously unknown rapid evolution of cnidarian methylation.
Collapse
Affiliation(s)
- Xinhui Zhang
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | - David Jacobs
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Corresponding author: E-mail:
| |
Collapse
|
7
|
Planques A, Kerner P, Ferry L, Grunau C, Gazave E, Vervoort M. DNA methylation atlas and machinery in the developing and regenerating annelid Platynereis dumerilii. BMC Biol 2021; 19:148. [PMID: 34340707 PMCID: PMC8330077 DOI: 10.1186/s12915-021-01074-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/16/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Methylation of cytosines in DNA (5mC methylation) is a major epigenetic modification that modulates gene expression and constitutes the basis for mechanisms regulating multiple aspects of embryonic development and cell reprogramming in vertebrates. In mammals, 5mC methylation of promoter regions is linked to transcriptional repression. Transcription regulation by 5mC methylation notably involves the nucleosome remodeling and deacetylase complex (NuRD complex) which bridges DNA methylation and histone modifications. However, less is known about regulatory mechanisms involving 5mC methylation and their function in non-vertebrate animals. In this paper, we study 5mC methylation in the marine annelid worm Platynereis dumerilii, an emerging evolutionary and developmental biology model capable of regenerating the posterior part of its body post-amputation. RESULTS Using in silico and experimental approaches, we show that P. dumerilii displays a high level of DNA methylation comparable to that of mammalian somatic cells. 5mC methylation in P. dumerilii is dynamic along the life cycle of the animal and markedly decreases at the transition between larval to post-larval stages. We identify a full repertoire of mainly single-copy genes encoding the machinery associated with 5mC methylation or members of the NuRD complex in P. dumerilii and show that this repertoire is close to the one inferred for the last common ancestor of bilaterians. These genes are dynamically expressed during P. dumerilii development and regeneration. Treatment with the DNA hypomethylating agent Decitabine impairs P. dumerilii larval development and regeneration and has long-term effects on post-regenerative growth. CONCLUSIONS Our data reveal high levels of 5mC methylation in the annelid P. dumerilii, highlighting that this feature is not specific to vertebrates in the bilaterian clade. Analysis of DNA methylation levels and machinery gene expression during development and regeneration, as well as the use of a chemical inhibitor of DNA methylation, suggest an involvement of 5mC methylation in P. dumerilii development and regeneration. We also present data indicating that P. dumerilii constitutes a promising model to study biological roles and mechanisms of DNA methylation in non-vertebrate bilaterians and to provide new knowledge about evolution of the functions of this key epigenetic modification in bilaterian animals.
Collapse
Affiliation(s)
- Anabelle Planques
- Université de Paris, CNRS, Institut Jacques Monod, F-75006, Paris, France
| | - Pierre Kerner
- Université de Paris, CNRS, Institut Jacques Monod, F-75006, Paris, France
| | - Laure Ferry
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75006, Paris, France
| | - Christoph Grunau
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, F-66860, Perpignan, France
| | - Eve Gazave
- Université de Paris, CNRS, Institut Jacques Monod, F-75006, Paris, France.
| | - Michel Vervoort
- Université de Paris, CNRS, Institut Jacques Monod, F-75006, Paris, France.
| |
Collapse
|
8
|
Spruijt CG, Gräwe C, Kleinendorst SC, Baltissen MPA, Vermeulen M. Cross-linking mass spectrometry reveals the structural topology of peripheral NuRD subunits relative to the core complex. FEBS J 2020; 288:3231-3245. [PMID: 33283408 PMCID: PMC8246863 DOI: 10.1111/febs.15650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 10/23/2020] [Accepted: 11/27/2020] [Indexed: 01/08/2023]
Abstract
The multi‐subunit nucleosome remodeling and deacetylase (NuRD) complex consists of seven subunits, each of which comprises two or three paralogs in vertebrates. These paralogs define mutually exclusive and functionally distinct complexes. In addition, several proteins in the complex are multimeric, which complicates structural studies. Attempts to purify sufficient amounts of endogenous complex or recombinantly reconstitute the complex for structural studies have proven quite challenging. Until now, only substructures of individual domains or proteins and low‐resolution densities of (partial) complexes have been reported. In this study, we comprehensively investigated the relative orientation of different subunits within the NuRD complex using multiple cross‐link IP mass spectrometry (xIP‐MS) experiments. Our results confirm that the core of the complex is formed by MTA, RBBP, and HDAC proteins. Assembly of a copy of MBD and GATAD2 onto this core enables binding of the peripheral CHD and CDK2AP proteins. Furthermore, our experiments reveal that not only CDK2AP1 but also CDK2AP2 interacts with the NuRD complex. This interaction requires the C terminus of CHD proteins. Our data provide a more detailed understanding of the topology of the peripheral NuRD subunits relative to the core complex. Database Proteomics data are available in the PRIDE database under the accession numbers PXD017244 and PXD017378.
Collapse
Affiliation(s)
- Cornelia G Spruijt
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Cathrin Gräwe
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Simone C Kleinendorst
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Marijke P A Baltissen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
9
|
DNA Methylation Changes in Human Papillomavirus-Driven Head and Neck Cancers. Cells 2020; 9:cells9061359. [PMID: 32486347 PMCID: PMC7348958 DOI: 10.3390/cells9061359] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Disruption of DNA methylation patterns is one of the hallmarks of cancer. Similar to other cancer types, human papillomavirus (HPV)-driven head and neck cancer (HNC) also reveals alterations in its methylation profile. The intrinsic ability of HPV oncoproteins E6 and E7 to interfere with DNA methyltransferase activity contributes to these methylation changes. There are many genes that have been reported to be differentially methylated in HPV-driven HNC. Some of these genes are involved in major cellular pathways, indicating that DNA methylation, at least in certain instances, may contribute to the development and progression of HPV-driven HNC. Furthermore, the HPV genome itself becomes a target of the cellular DNA methylation machinery. Some of these methylation changes appearing in the viral long control region (LCR) may contribute to uncontrolled oncoprotein expression, leading to carcinogenesis. Consistent with these observations, demethylation therapy appears to have significant effects on HPV-driven HNC. This review article comprehensively summarizes DNA methylation changes and their diagnostic and therapeutic indications in HPV-driven HNC.
Collapse
|
10
|
Bicho RC, Roelofs D, Mariën J, Scott-Fordsmand JJ, Amorim MJB. Epigenetic effects of (nano)materials in environmental species - Cu case study in Enchytraeus crypticus. ENVIRONMENT INTERNATIONAL 2020; 136:105447. [PMID: 31924578 DOI: 10.1016/j.envint.2019.105447] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/17/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Chemical stressors can induce epigenomic changes, i.e., changes that are transferred to the next generation, even when the stressor is removed. Literature on chemical induced epigenetic effects in environmental species is scarce. We here provide the first results on epigenetic effects caused by nanomaterials with an environmental OECD standard soil model species Enchytraeus crypticus species. We assessed the epigenetic potential in terms of global DNA methylation, gene-specific methylation via bisulfite sequencing and MS-HRM (Methylation Sensitive - High Resolution Melting), and gene expression qPCR for genes involved in DNA methylation, histone modifications, non-coding RNA and stress response mechanisms). We have exposed E. crypticus in a multigenerational (MG) test design to Cu (copper oxide nanomaterials (CuO NMs) and copper salt (CuCl2)). To link possible epigenetic effects to population changes, we used exposure concentrations (ECx) that caused a 10% and 50% reduction in the reproductive output (10% and 50% are the standards for regulatory Risk Assessment), the organisms were exposed for five consecutive generations (F1-F5) plus two generations after transferring to clean media (F5-F7), 7 generations in a total of 224 days. Results showed that MG exposure to Cu increased global DNA methylation and corresponded with phenotypic effects (reproduction). Gene expression analyses showed changes in the epigenetic, stress and detoxification gene targets, depending on the generation and Cu form, also occurring in post-exposure generations, hence indicative of transgenerational effects. There were in general clear differences between organisms exposed to different Cu-forms, hence indicate nanoparticulate-specific effects.
Collapse
Affiliation(s)
- Rita C Bicho
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Dick Roelofs
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, the Netherlands
| | - Janine Mariën
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, the Netherlands
| | - Janeck J Scott-Fordsmand
- Department of Bioscience, Aarhus University, Vejlsovej 25, PO BOX 314, DK-8600 Silkeborg, Denmark
| | - Mónica J B Amorim
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
11
|
de Mendoza A, Lister R, Bogdanovic O. Evolution of DNA Methylome Diversity in Eukaryotes. J Mol Biol 2019:S0022-2836(19)30659-X. [PMID: 31726061 DOI: 10.1016/j.jmb.2019.11.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022]
Abstract
Cytosine DNA methylation (5mC) is a widespread base modification in eukaryotic genomes with critical roles in transcriptional regulation. In recent years, our understanding of 5mC has changed because of advances in 5mC detection techniques that allow mapping of this mark on the whole genome scale. Profiling DNA methylomes from organisms across the eukaryotic tree of life has reshaped our views on the evolution of 5mC. In this review, we explore the macroevolution of 5mC in major eukaryotic groups, and then focus on recent advances made in animals. Genomic 5mC patterns as well as the mechanisms of 5mC deposition tend to be evolutionary labile across large phylogenetic distances; however, some common patterns are starting to emerge. Within the animal kingdom, 5mC diversity has proven to be much greater than anticipated. For example, a previously held common view that genome hypermethylation is a trait exclusive to vertebrates has recently been challenged. Also, data from genome-wide studies are starting to yield insights into the potential roles of 5mC in invertebrate cis regulation. Here we provide an evolutionary perspective of both the well-known and enigmatic roles of 5mC across the eukaryotic tree of life.
Collapse
Affiliation(s)
- Alex de Mendoza
- ARC CoE Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia.
| | - Ryan Lister
- ARC CoE Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
12
|
Hodges AJ, Hudson NO, Buck-Koehntop BA. Cys 2His 2 Zinc Finger Methyl-CpG Binding Proteins: Getting a Handle on Methylated DNA. J Mol Biol 2019:S0022-2836(19)30567-4. [PMID: 31628952 DOI: 10.1016/j.jmb.2019.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
DNA methylation is an essential epigenetic modification involved in the maintenance of genomic stability, preservation of cellular identity, and regulation of the transcriptional landscape needed to maintain cellular function. In an increasing number of disease conditions, DNA methylation patterns are inappropriately distributed in a manner that supports the disease phenotype. Methyl-CpG binding proteins (MBPs) are specialized transcription factors that read and translate methylated DNA signals into recruitment of protein assemblies that can alter local chromatin architecture and transcription. MBPs thus play a key intermediary role in gene regulation for both normal and diseased cells. Here, we highlight established and potential structure-function relationships for the best characterized members of the zinc finger (ZF) family of MBPs in propagating DNA methylation signals into downstream cellular responses. Current and future investigations aimed toward expanding our understanding of ZF MBP cellular roles will provide needed mechanistic insight into normal and disease state functions, as well as afford evaluation for the potential of these proteins as epigenetic-based therapeutic targets.
Collapse
Affiliation(s)
- Amelia J Hodges
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Nicholas O Hudson
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Bethany A Buck-Koehntop
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
13
|
Leighton G, Williams DC. The Methyl-CpG-Binding Domain 2 and 3 Proteins and Formation of the Nucleosome Remodeling and Deacetylase Complex. J Mol Biol 2019:S0022-2836(19)30599-6. [PMID: 31626804 DOI: 10.1016/j.jmb.2019.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022]
Abstract
The Nucleosome Remodeling and Deacetylase (NuRD) complex uniquely combines both deacetylase and remodeling enzymatic activities in a single macromolecular complex. The methyl-CpG-binding domain 2 and 3 (MBD2 and MBD3) proteins provide a critical structural link between the deacetylase and remodeling components, while MBD2 endows the complex with the ability to selectively recognize methylated DNA. Hence, NuRD combines three major arms of epigenetic gene regulation. Research over the past few decades has revealed much of the structural basis driving formation of this complex and started to uncover the functional roles of NuRD in epigenetic gene regulation. However, we have yet to fully understand the molecular and biophysical basis for methylation-dependent chromatin remodeling and transcription regulation by NuRD. In this review, we discuss the structural information currently available for the complex, the role MBD2 and MBD3 play in forming and recruiting the complex to methylated DNA, and the biological functions of NuRD.
Collapse
Affiliation(s)
- Gage Leighton
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | - David C Williams
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
14
|
Wang L, Sun HZ, Guan LL, Liu JX. Short communication: Relationship of blood DNA methylation rate and milk performance in dairy cows. J Dairy Sci 2019; 102:5208-5211. [PMID: 30981478 DOI: 10.3168/jds.2018-15869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/15/2019] [Indexed: 12/18/2022]
Abstract
The objective of this study was to investigate the global methylation rate in blood DNA and its relationship with lactation performance. A total of 196 mid-lactation dairy cows were fed the same diet under the same management. Milk yield was recorded and blood samples were collected from the jugular vein before morning feeding. The blood global DNA methylation rates were quantified using a methylation quantification kit. Overall, the average blood global DNA methylation rate of all cows was 12.4%. When DNA methylation rates were compared between cows with high (n = 40; 37.0 to 42.0 kg/d) and low (n = 33; 24.0 to 30.0 kg/d) milk yield, DNA methylation rates in the lower-yield cows (14.1 ± 0.7%) were significantly higher than those in the higher-yield animals (11.6 ± 0.7%). Our results indicated an association of milk and protein yields with global DNA methylation rates in lactating dairy cows. However, further research is needed to determine whether this association reflects the true influence of epigenetic mechanisms on yield or whether other factors, such as different proportions of blood cell types in high- and low-yielding cows, affect apparent global DNA methylation levels.
Collapse
Affiliation(s)
- L Wang
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - H Z Sun
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | - L L Guan
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada.
| | - J X Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China.
| |
Collapse
|
15
|
Hall C, Rodriguez M, Garcia J, Posfai D, DuMez R, Wictor E, Quintero OA, Hill MS, Rivera AS, Hill AL. Secreted frizzled related protein is a target of PaxB and plays a role in aquiferous system development in the freshwater sponge, Ephydatia muelleri. PLoS One 2019; 14:e0212005. [PMID: 30794564 PMCID: PMC6386478 DOI: 10.1371/journal.pone.0212005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
Canonical and non-canonical Wnt signaling, as well as the Pax/Six gene network, are involved in patterning the freshwater sponge aquiferous system. Using computational approaches to identify transcription factor binding motifs in a freshwater sponge genome, we located putative PaxB binding sites near a Secreted Frizzled Related Protein (SFRP) gene in Ephydatia muelleri. EmSFRP is expressed throughout development, but with highest levels in juvenile sponges. In situ hybridization and antibody staining show EmSFRP expression throughout the pinacoderm and choanoderm in a subpopulation of amoeboid cells that may be differentiating archeocytes. Knockdown of EmSFRP leads to ectopic oscula formation during development, suggesting that EmSFRP acts as an antagonist of Wnt signaling in E. muelleri. Our findings support a hypothesis that regulation of the Wnt pathway by the Pax/Six network as well as the role of Wnt signaling in body plan morphogenesis was established before sponges diverged from the rest of the metazoans.
Collapse
Affiliation(s)
- Chelsea Hall
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Melanie Rodriguez
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Josephine Garcia
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Dora Posfai
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Rachel DuMez
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Erik Wictor
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Omar A. Quintero
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Malcolm S. Hill
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
- Department of Biology, Bates College, Lewiston, Maine, United States of America
| | - Ajna S. Rivera
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - April L. Hill
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
- Department of Biology, Bates College, Lewiston, Maine, United States of America
| |
Collapse
|
16
|
Abstract
Background The Wnt signaling pathway is uniquely metazoan and used in many processes during development, including the formation of polarity and body axes. In sponges, one of the earliest diverging animal groups, Wnt pathway genes have diverse expression patterns in different groups including along the anterior-posterior axis of two sponge larvae, and in the osculum and ostia of others. We studied the function of Wnt signaling and body polarity formation through expression, knockdown, and larval manipulation in several freshwater sponge species. Results Sponge Wnts fall into sponge-specific and sponge-class specific subfamilies of Wnt proteins. Notably Wnt genes were not found in transcriptomes of the glass sponge Aphrocallistes vastus. Wnt and its signaling genes were expressed in archaeocytes of the mesohyl throughout developing freshwater sponges. Osculum formation was enhanced by GSK3 knockdown, and Wnt antagonists inhibited both osculum development and regeneration. Using dye tracking we found that the posterior poles of freshwater sponge larvae give rise to tissue that will form the osculum following metamorphosis. Conclusions Together the data indicate that while components of canonical Wnt signaling may be used in development and maintenance of osculum tissue, it is likely that Wnt signaling itself occurs between individual cells rather than whole tissues or structures in freshwater sponges. Electronic supplementary material The online version of this article (10.1186/s12862-018-1118-0) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Ginder GD, Williams DC. Readers of DNA methylation, the MBD family as potential therapeutic targets. Pharmacol Ther 2017; 184:98-111. [PMID: 29128342 DOI: 10.1016/j.pharmthera.2017.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA methylation represents a fundamental epigenetic modification that regulates chromatin architecture and gene transcription. Many diseases, including cancer, show aberrant methylation patterns that contribute to the disease phenotype. DNA methylation inhibitors have been used to block methylation dependent gene silencing to treat hematopoietic neoplasms and to restore expression of developmentally silenced genes. However, these inhibitors disrupt methylation globally and show significant off-target toxicities. As an alternative approach, we have been studying readers of DNA methylation, the 5-methylcytosine binding domain family of proteins, as potential therapeutic targets to restore expression of aberrantly and developmentally methylated and silenced genes. In this review, we discuss the role of DNA methylation in gene regulation and cancer development, the structure and function of the 5-methylcytosine binding domain family of proteins, and the possibility of targeting the complexes these proteins form to treat human disease.
Collapse
Affiliation(s)
- Gordon D Ginder
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, United States; Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States.
| | - David C Williams
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
18
|
Pan H, Bilinovich SM, Kaur P, Riehn R, Wang H, Williams DC. CpG and methylation-dependent DNA binding and dynamics of the methylcytosine binding domain 2 protein at the single-molecule level. Nucleic Acids Res 2017. [PMID: 28637186 PMCID: PMC5587734 DOI: 10.1093/nar/gkx548] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The methylcytosine-binding domain 2 (MBD2) protein recruits the nucleosome remodeling and deacetylase complex (NuRD) to methylated DNA to modify chromatin and regulate transcription. Importantly, MBD2 functions within CpG islands that contain 100s to 1000s of potential binding sites. Since NuRD physically rearranges nucleosomes, the dynamic mobility of this complex is directly related to function. In these studies, we use NMR and single-molecule atomic force microscopy and fluorescence imaging to study DNA binding dynamics of MBD2. Single-molecule fluorescence tracking on DNA tightropes containing regions with CpG-rich and CpG-free regions reveals that MBD2 carries out unbiased 1D diffusion on CpG-rich DNA but subdiffusion on CpG-free DNA. In contrast, the protein stably and statically binds to methylated CpG (mCpG) regions. The intrinsically disordered region (IDR) on MBD2 both reduces exchange between mCpG sites along the DNA as well as the dissociation from DNA, acting like an anchor that restricts the dynamic mobility of the MBD domain. Unexpectedly, MBD2 binding to methylated CpGs induces DNA bending that is augmented by the IDR region of the protein. These results suggest that MBD2 targets NuRD to unmethylated or methylated CpG islands where its distinct dynamic binding modes help maintain open or closed chromatin, respectively.
Collapse
Affiliation(s)
- Hai Pan
- Department of Physics, North Carolina State University, Raleigh, North Carolina, NC 27695, USA
| | - Stephanie M Bilinovich
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Parminder Kaur
- Department of Physics, North Carolina State University, Raleigh, North Carolina, NC 27695, USA
| | - Robert Riehn
- Department of Physics, North Carolina State University, Raleigh, North Carolina, NC 27695, USA
| | - Hong Wang
- Department of Physics, North Carolina State University, Raleigh, North Carolina, NC 27695, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, NC 27695, USA
| | - David C Williams
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
19
|
Sperlazza MJ, Bilinovich SM, Sinanan LM, Javier FR, Williams DC. Structural Basis of MeCP2 Distribution on Non-CpG Methylated and Hydroxymethylated DNA. J Mol Biol 2017; 429:1581-1594. [PMID: 28450074 DOI: 10.1016/j.jmb.2017.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/03/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
Abstract
The Rett-syndrome-associated methyl-CpG-binding protein 2 (MeCP2) selectively binds methylated DNA to regulate transcription during the development of mature neurons. Like other members of the methyl-CpG-binding domain (MBD) family, MeCP2 functions through the recognition of symmetrical 5-methylcytosines in CpG (mCG) dinucleotides. Advances in base-level resolution epigenetic mapping techniques have revealed, however, that MeCP2 can bind asymmetrically methylated and hydroxymethylated CpA dinucleotides and that this alternative binding selectivity modifies gene expression in the developing mammalian brain. The structural determinants of binding to methylated CpA (mCA) and hydroxymethylated DNA have not been previously investigated. Here, we employ isothermal titration calorimetry and NMR spectroscopy to characterize MeCP2 binding to methylated and hydroxymethylated mCG and mCA DNA, examine the effects of Rett-syndrome-associated missense mutations, and make comparisons to the related and evolutionarily most ancient protein, MBD2. These analyses reveal that MeCP2 binds mCA with high affinity in a strand-specific and orientation-dependent manner. In contrast, MBD2 does not show high affinity or methyl-specific binding to mCA. The Rett-associated missense mutations (T158M, R106W, and P101S) destabilize the MeCP2 MBD and disrupt the recognition of mCG and mCA equally. Finally, hydroxymethylation of a high-affinity mCA site does not alter the binding properties, whereas hemi-hydroxylation of the equivalent cytosine in an mCG site decreases affinity and specificity. Based on these findings, we suggest that MeCP2 recognition of methylated/hydroxymethylated CpA dinucleotides functions as an epigenetic switch redistributing MeCP2 among mCG and mCA loci.
Collapse
Affiliation(s)
- M Jeannette Sperlazza
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | - Stephanie M Bilinovich
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | - Leander M Sinanan
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Fatima R Javier
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - David C Williams
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|