1
|
Jabbour R, Kang JS, Sobhi HF. Effect of Quorum Sensing Molecules on the Quality of Bacterial Nanocellulose Materials. ACS OMEGA 2024; 9:20003-20011. [PMID: 38737048 PMCID: PMC11079910 DOI: 10.1021/acsomega.3c10053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024]
Abstract
Bacterial nanocellulose (BNC) biofilms, produced by various bacterial species, such as Gluconacetobacter xylinus, represent a highly promising multifunctional material characterized by distinctive physiochemical properties. These biofilms have demonstrated remarkable versatility as nano biomaterials, finding extensive applications across medical, defense, electronics, optics, and food industries. In contrast to plant cellulose, BNC biofilms exhibit numerous advantages, including elevated purity and crystallinity, expansive surface area, robustness, and excellent biocompatibility, making them exceptional multifunctional materials. However, their production with consistent morphological properties and their transformation into practical forms present challenges. This difficulty often arises from the heterogeneity in cell density, which is influenced by the presence of N-acyl-homoserine lactones (AHLs) serving as quorum sensing signaling molecules during the biosynthesis of BNC biofilms. In this study, we employed surface characterization methodologies including scanning electron microscopy, energy-dispersive spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy, and atomic force microscopy to characterize BNC biofilms derived from growth media supplemented with varying concentrations of distinct N-acyl-homoserine lactone signaling molecules. The data obtained through these analytical techniques elucidated that the morphological properties of the BNC biofilms were influenced by the specific AHLs, signaling molecules, introduced into the growth media. These findings lay the groundwork for future exploration of leveraging synthetic biology and biomimetic methods for tailoring BNC with predetermined morphological properties.
Collapse
Affiliation(s)
- Rabih
E. Jabbour
- U.S.
Army Edgewood Chemical Biological Center, Research & Technology Directorate, 5183 Blackhawk Rd, Aberdeen Proving Ground, Aberdeen, Maryland 21010, United States
| | - Joshua S. Kang
- Center
for Organic Synthesis, Department of Natural Sciences, Coppin State University, Baltimore, Maryland 21216, United States
| | - Hany F. Sobhi
- Center
for Organic Synthesis, Department of Natural Sciences, Coppin State University, Baltimore, Maryland 21216, United States
| |
Collapse
|
2
|
Pradeep HK, Patel DH, Onkarappa HS, Pratiksha CC, Prasanna GD. Role of nanocellulose in industrial and pharmaceutical sectors - A review. Int J Biol Macromol 2022; 207:1038-1047. [PMID: 35364203 DOI: 10.1016/j.ijbiomac.2022.03.171] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023]
Abstract
Lignocellulosic biomass from agricultural residues serves as the critical component to replace synthetic polymeric materials in the coming future. Agricultural residues can be used to obtain cellulose by delignification followed by bleaching. Further, cellulose is converted into nanocellulose by various methods. Nanocellulose is used in multiple pharmaceutical applications as a polymer in hydrogels, transdermal drug delivery systems, aerogels, wound healing dressing materials, as superdisintegrants in fast dissolving tablets, emulgel, microparticles, gels, foams, thickening agents, stabilizers, cosmetics, medical implants, tissue engineering, liposomes, food and composites, etc. This review provides detailed knowledge about the nature of nanocellulose regarding its high surface area, high polymerization, loading, and binding capacity of hydrophilic and hydrophobic active pharmaceutical ingredients and significance of various applications of nanocellulose. Biocompatible and non-toxic, it makes it an ideal material for applications in the biomedical field. A significant advantage is a biocompatibility, which is non-toxic for many biomedical applications.
Collapse
Affiliation(s)
- H K Pradeep
- Department of Pharmaceutics, Parul Institute of Pharmacy and Research, Parul University, Vadodara, Gujarat, India.
| | - Dipti H Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy and Research, Parul University, Vadodara, Gujarat, India
| | - H S Onkarappa
- Department of Chemistry, GM Institute of Technology, Davanagere, Karnataka, India
| | - C C Pratiksha
- Department of Pharmaceutics, GM Institute of Pharmaceutical Sciences and Research, Davanagere, Karnataka, India
| | - G D Prasanna
- Department of Physics, Davangere University, Davanagere, Karnataka, India
| |
Collapse
|
3
|
Liu W, Liu K, Du H, Zheng T, Zhang N, Xu T, Pang B, Zhang X, Si C, Zhang K. Cellulose Nanopaper: Fabrication, Functionalization, and Applications. NANO-MICRO LETTERS 2022; 14:104. [PMID: 35416525 PMCID: PMC9008119 DOI: 10.1007/s40820-022-00849-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/22/2022] [Indexed: 05/07/2023]
Abstract
Cellulose nanopaper has shown great potential in diverse fields including optoelectronic devices, food packaging, biomedical application, and so forth, owing to their various advantages such as good flexibility, tunable light transmittance, high thermal stability, low thermal expansion coefficient, and superior mechanical properties. Herein, recent progress on the fabrication and applications of cellulose nanopaper is summarized and discussed based on the analyses of the latest studies. We begin with a brief introduction of the three types of nanocellulose: cellulose nanocrystals, cellulose nanofibrils and bacterial cellulose, recapitulating their differences in preparation and properties. Then, the main preparation methods of cellulose nanopaper including filtration method and casting method as well as the newly developed technology are systematically elaborated and compared. Furthermore, the advanced applications of cellulose nanopaper including energy storage, electronic devices, water treatment, and high-performance packaging materials were highlighted. Finally, the prospects and ongoing challenges of cellulose nanopaper were summarized.
Collapse
Affiliation(s)
- Wei Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany
| | - Kun Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Haishun Du
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA.
| | - Ting Zheng
- Department of Automotive Engineering, Clemson University, Greenville, SC, 29607, USA
| | - Ning Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Ting Xu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Bo Pang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany.
| | - Xinyu Zhang
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
4
|
Squinca P, Bilatto S, Badino AC, Farinas CS. The use of enzymes to isolate cellulose nanomaterials: A systematic map review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
5
|
He Y, Kukhta NA, Marks A, Luscombe CK. The effect of side chain engineering on conjugated polymers in organic electrochemical transistors for bioelectronic applications. JOURNAL OF MATERIALS CHEMISTRY. C 2022; 10:2314-2332. [PMID: 35310858 PMCID: PMC8852261 DOI: 10.1039/d1tc05229b] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/07/2021] [Indexed: 05/08/2023]
Abstract
Bioelectronics focuses on the establishment of the connection between the ion-driven biosystems and readable electronic signals. Organic electrochemical transistors (OECTs) offer a viable solution for this task. Organic mixed ionic/electronic conductors (OMIECs) rest at the heart of OECTs. The balance between the ionic and electronic conductivities of OMIECs is closely connected to the OECT device performance. While modification of the OMIECs' electronic properties is largely related to the development of conjugated scaffolds, properties such as ion permeability, solubility, flexibility, morphology, and sensitivity can be altered by side chain moieties. In this review, we uncover the influence of side chain molecular design on the properties and performance of OECTs. We summarise current understanding of OECT performance and focus specifically on the knowledge of ionic-electronic coupling, shedding light on the significance of side chain development of OMIECs. We show how the versatile synthetic toolbox of side chains can be successfully employed to tune OECT parameters via controlling the material properties. As the field continues to mature, more detailed investigations into the crucial role side chain engineering plays on the resultant OMIEC properties will allow for side chain alternatives to be developed and will ultimately lead to further enhancements within the field of OECT channel materials.
Collapse
Affiliation(s)
- Yifei He
- Materials Science and Engineering Department, University of Washington Seattle Washington 98195-2120 USA
| | - Nadzeya A Kukhta
- Materials Science and Engineering Department, University of Washington Seattle Washington 98195-2120 USA
| | - Adam Marks
- Department of Chemistry, University of Oxford Oxford OX1 3TA UK
| | - Christine K Luscombe
- Materials Science and Engineering Department, University of Washington Seattle Washington 98195-2120 USA
- Department of Chemistry, University of Washington, Seattle Washington 98195 USA
| |
Collapse
|
6
|
Li M, He B, Chen Y, Zhao L. Physicochemical Properties of Nanocellulose Isolated from Cotton Stalk Waste. ACS OMEGA 2021; 6:25162-25169. [PMID: 34632175 PMCID: PMC8495699 DOI: 10.1021/acsomega.1c02568] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/09/2021] [Indexed: 05/27/2023]
Abstract
In recent years, nanocellulose has become an attractive and high-value-added product. The cotton stalk is a waste product with a high cellulose content. Therefore, nanocellulose can be isolated from the cotton stalk. Properties of nanocellulose are affected by its nanoscale. In this study, the characteristics of cellulose in nanoscale were investigated. A series of cotton stalk nanocelluloses were prepared by sulfuric acid hydrolysis to study their physicochemical properties and the differences of nanocelluloses on different nanoscales. The obtained nanocelluloses were analyzed by atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TA), and X-ray diffractometry (XRD). From the morphology analysis, the mean length and width of nanocelluloses were decreased to 90.5 and 7.0 nm, respectively. From the FTIR analysis, with the particle size decreasing, hydrogen bonds were broken and recombined. Acid hydrolysis mainly acted on intramolecular hydrogen bonds of cellulose macromolecules, especially on O(3)H···O(5) bonds. The crystal arrangement model of nanocellulose was investigated. From the TA analysis, the thermal property was decreased with a reduction of nanocellulose particle size. The CrI of the cotton stalk nanocellulose was the highest at up to 87.10%. The differences of cotton stalk nanocelluloses give significant changes to physicochemical behaviors at the nanoscale. The research would provide a theoretical basis for the future application of nanocelluloses.
Collapse
Affiliation(s)
- Ming Li
- Printing
& Packaging of China National Light Industry, Key Laboratory of
Printing & Packaging Materials and Technology of Shandong Province,
School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Daxue Road, Changqing District, Ji’nan City, Shandong Province 250353, P.R. China
- State
Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Beihai He
- State
Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Yiyi Chen
- Hubei
Province Fibre Inspection Bureau, Wuhan 430000, P.R. China
| | - Lihong Zhao
- State
Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| |
Collapse
|
7
|
Blum SM, Lee MS, Mgboji GE, Funk VL, Beabout K, Harbaugh SV, Roth PA, Liem AT, Miklos AE, Emanuel PA, Walper SA, Chávez JL, Lux MW. Impact of Porous Matrices and Concentration by Lyophilization on Cell-Free Expression. ACS Synth Biol 2021; 10:1116-1131. [PMID: 33843211 DOI: 10.1021/acssynbio.0c00634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell-free expression systems have drawn increasing attention as a tool to achieve complex biological functions outside of the cell. Several applications of the technology involve the delivery of functionality to challenging environments, such as field-forward diagnostics or point-of-need manufacturing of pharmaceuticals. To achieve these goals, cell-free reaction components are preserved using encapsulation or lyophilization methods, both of which often involve an embedding of components in porous matrices like paper or hydrogels. Previous work has shown a range of impacts of porous materials on cell-free expression reactions. Here, we explored a panel of 32 paperlike materials and 5 hydrogel materials for the impact on reaction performance. The screen included a tolerance to lyophilization for reaction systems based on both cell lysates and purified expression components. For paperlike materials, we found that (1) materials based on synthetic polymers were mostly incompatible with cell-free expression, (2) lysate-based reactions were largely insensitive to the matrix for cellulosic and microfiber materials, and (3) purified systems had an improved performance when lyophilized in cellulosic but not microfiber matrices. The impact of hydrogel materials ranged from completely inhibitory to a slight enhancement. The exploration of modulating the rehydration volume of lyophilized reactions yielded reaction speed increases using an enzymatic colorimetric reporter of up to twofold with an optimal ratio of 2:1 lyophilized reaction to rehydration volume for the lysate system and 1.5:1 for the purified system. The effect was independent of the matrices assessed. Testing with a fluorescent nonenzymatic reporter and no matrix showed similar improvements in both yields and reaction speeds for the lysate system and yields but not reaction speeds for the purified system. We finally used these observations to show an improved performance of two sensors that span reaction types, matrix, and reporters. In total, these results should enhance efforts to develop field-forward applications of cell-free expression systems.
Collapse
Affiliation(s)
- Steven M. Blum
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| | - Marilyn S. Lee
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| | - Glory E. Mgboji
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830-6209, United States
| | - Vanessa L. Funk
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| | - Kathryn Beabout
- UES, Inc., Dayton, Ohio 45432, United States
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Svetlana V. Harbaugh
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Pierce A. Roth
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
- DCS Corporation, 4696 Millenium Drive, Suite 450, Belcamp, Maryland 21017, United States
| | - Alvin T. Liem
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
- DCS Corporation, 4696 Millenium Drive, Suite 450, Belcamp, Maryland 21017, United States
| | - Aleksandr E. Miklos
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| | - Peter A. Emanuel
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| | - Scott A. Walper
- Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| | - Jorge Luis Chávez
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Matthew W. Lux
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| |
Collapse
|
8
|
Khan S, Siddique R, Huanfei D, Shereen MA, Nabi G, Bai Q, Manan S, Xue M, Ullah MW, Bowen H. Perspective Applications and Associated Challenges of Using Nanocellulose in Treating Bone-Related Diseases. Front Bioeng Biotechnol 2021; 9:616555. [PMID: 34026739 PMCID: PMC8139407 DOI: 10.3389/fbioe.2021.616555] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
Bone serves to maintain the shape of the human body due to its hard and solid nature. A loss or weakening of bone tissues, such as in case of traumatic injury, diseases (e.g., osteosarcoma), or old age, adversely affects the individuals quality of life. Although bone has the innate ability to remodel and regenerate in case of small damage or a crack, a loss of a large volume of bone in case of a traumatic injury requires the restoration of bone function by adopting different biophysical approaches and chemotherapies as well as a surgical reconstruction. Compared to the biophysical and chemotherapeutic approaches, which may cause complications and bear side effects, the surgical reconstruction involves the implantation of external materials such as ceramics, metals, and different other materials as bone substitutes. Compared to the synthetic substitutes, the use of biomaterials could be an ideal choice for bone regeneration owing to their renewability, non-toxicity, and non-immunogenicity. Among the different types of biomaterials, nanocellulose-based materials are receiving tremendous attention in the medical field during recent years, which are used for scaffolding as well as regeneration. Nanocellulose not only serves as the matrix for the deposition of bioceramics, metallic nanoparticles, polymers, and different other materials to develop bone substitutes but also serves as the drug carrier for treating osteosarcomas. This review describes the natural sources and production of nanocellulose and discusses its important properties to justify its suitability in developing scaffolds for bone and cartilage regeneration and serve as the matrix for reinforcement of different materials and as a drug carrier for treating osteosarcomas. It discusses the potential health risks, immunogenicity, and biodegradation of nanocellulose in the human body.
Collapse
Affiliation(s)
- Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rabeea Siddique
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ding Huanfei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Muhammad Adnan Shereen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ghulam Nabi
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Qian Bai
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sehrish Manan
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hu Bowen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Lee MS, Lux MW, DeCoste JB. BEAMS: a workforce development program to bridge the gap between biologists and material scientists. Synth Biol (Oxf) 2020; 5:ysaa009. [PMID: 33134553 DOI: 10.1093/synbio/ysaa009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 11/13/2022] Open
Abstract
To maximize innovation in materials science and synthetic biology, it is critical to master interdisciplinary understanding and communication within an organization. Programming aimed at this juncture has the potential to bring members of the workforce together to frame new networks and spark collaboration. In this article, we recognize the potential synergy between materials and synthetic biology research and describe our approach to this challenge as a case study. A workforce development program was devised consisting of a lecture series, laboratory demonstrations and a hands-on laboratory competition to produce a bacterial cellulose material with the highest tensile strength. This program, combined with support for infrastructure and research, resulted in a significant return on investment with new externally funded synthetic biology for materials programs for our organization. The learning elements described here may be adapted by other institutions for a variety of settings and goals.
Collapse
Affiliation(s)
- Marilyn S Lee
- US Army Combat Capabilities Development Command Chemical Biological Center (CCDC CBC), Aberdeen Proving Ground, MD 21010, USA
| | - Matthew W Lux
- US Army Combat Capabilities Development Command Chemical Biological Center (CCDC CBC), Aberdeen Proving Ground, MD 21010, USA
| | - Jared B DeCoste
- US Army Combat Capabilities Development Command Chemical Biological Center (CCDC CBC), Aberdeen Proving Ground, MD 21010, USA
| |
Collapse
|
10
|
Al‐Attar H, Alwattar AA, Haddad A, Abdullah BA, Quayle P, Yeates SG. Polylactide‐perylene
derivative for blue biodegradable organic light‐emitting diodes. POLYM INT 2020. [DOI: 10.1002/pi.6083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hameed Al‐Attar
- Department of Physics, College of Science University of Basrah Basrah Iraq
- Department of Physics University of Durham Durham UK
| | - Aula A Alwattar
- Department of Chemistry, College of Science University of Basrah Basrah Iraq
- Departmment of Chemistry University of Manchester Manchester UK
| | - Athir Haddad
- Department of Chemistry, College of Science University of Basrah Basrah Iraq
- Departmment of Chemistry University of Manchester Manchester UK
| | - Bassil A Abdullah
- Department of Physics, College of Science University of Basrah Basrah Iraq
| | - Peter Quayle
- Departmment of Chemistry University of Manchester Manchester UK
| | | |
Collapse
|
11
|
Xue Q, Li Z, Wang Q, Pan W, Chang Y, Duan X. Nanostrip flexible microwave enzymatic biosensor for noninvasive epidermal glucose sensing. NANOSCALE HORIZONS 2020; 5:934-943. [PMID: 32301449 DOI: 10.1039/d0nh00098a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microwave sensors based on microstrip antennas are promising as wearable devices because of their flexibility and wireless communication compatibility. However, their sensitivity is limited due to the reduced sensor size and the potential of biochemical monitoring needs to be explored. In this work, we present a new concept to enhance the microwave signals using nanostrip-based metamaterials. The introduction of the nanostrip structures was achieved by theory and simulations. Experiments prove their enhancement of the electric field and sensing response in the characteristic gigahertz (GHz) wave band. Ordered nanostrips were fabricated on a plastic substrate through a simple nanoscale printing approach. Glucose oxidase is directly doped into the nanostrips, which enables a flexible wearable enzymatic biosensor for glucose sensing. Sensing experiments demonstrated that the nanostrip biosensor gives excellent performance for glucose detection, including high sensitivity, fast response, low detection limit, high affinity, and low power consumption. The applicability of the nanostrip-based sensor as a wearable epidermal device for real-time noninvasive monitoring of glucose in sweat is verified as well.
Collapse
Affiliation(s)
- Qiannan Xue
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | |
Collapse
|
12
|
Wu X, Surendran A, Moser M, Chen S, Muhammad BT, Maria IP, McCulloch I, Leong WL. Universal Spray-Deposition Process for Scalable, High-Performance, and Stable Organic Electrochemical Transistors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20757-20764. [PMID: 32281363 DOI: 10.1021/acsami.0c04776] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic electrochemical transistors (OECTs) with high transconductance and good operating stability in an aqueous environment are receiving substantial attention as promising ion-to-electron transducers for bioelectronics. However, to date, in most of the reported OECTs, the fabrication procedures have been devoted to spin-coating processes that may nullify the advantages of large-area and scalable manufacturing. In addition, conventional microfabrication and photolithography techniques are complicated or incompatible with various nonplanar flexible and curved substrates. Herein, we demonstrate a facile patterning method via spray deposition to fabricate ionic-liquid-doped poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based OECTs, with a high peak transconductance of 12.9 mS and high device stability over 4000 switching cycles. More importantly, this facile technique makes it possible to fabricate high-performance OECTs on versatile substrates with different textures and form factors such as thin permeable membranes, flexible plastic sheets, hydrophobic elastomers, and rough textiles. Overall, the results highlight the spray-deposition technique as a convenient route to prepare high-performing OECTs and will contribute to the translation of OECTs into real-world applications.
Collapse
Affiliation(s)
- Xihu Wu
- School of Electrical Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Abhijith Surendran
- School of Electrical Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Maximilian Moser
- Department of Chemistry, Imperial College London, London SW7 2AX, U.K
| | - Shuai Chen
- School of Electrical Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Bening Tirta Muhammad
- School of Electrical Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | | | - Iain McCulloch
- Department of Chemistry, Imperial College London, London SW7 2AX, U.K
- Physical Sciences and Engineering Division, KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Wei Lin Leong
- School of Electrical Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
13
|
Microbial Nanocellulose Printed Circuit Boards for Medical Sensing. SENSORS 2020; 20:s20072047. [PMID: 32268471 PMCID: PMC7181041 DOI: 10.3390/s20072047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 02/06/2023]
Abstract
We demonstrate the viability of using ultra-thin sheets of microbially grown nanocellulose to build functional medical sensors. Microbially grown nanocellulose is an interesting alternative to plastics, as it is hydrophilic, biocompatible, porous, and hydrogen bonding, thereby allowing the potential development of new application routes. Exploiting the distinguishing properties of this material enables us to develop solution-based processes to create nanocellulose printed circuit boards, allowing a variety of electronics to be mounted onto our nanocellulose. As proofs of concept, we have demonstrated applications in medical sensing such as heart rate monitoring and temperature sensing-potential applications fitting the wide-ranging paradigm of a future where the Internet of Things is dominant.
Collapse
|
14
|
Dai L, Wang Y, Zou X, Chen Z, Liu H, Ni Y. Ultrasensitive Physical, Bio, and Chemical Sensors Derived from 1-, 2-, and 3-D Nanocellulosic Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906567. [PMID: 32049432 DOI: 10.1002/smll.201906567] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/11/2020] [Indexed: 05/23/2023]
Abstract
Sensors are of increasing interest since they can be applied to daily life in different areas from various industrial sectors. As a natural nanomaterial, nanocellulose plays a vital role in the development of novel sensors, particularly in the context of constructing multidimensional architectures. This review summarizes the utilization of nanocellulose including cellulose nanofibers, cellulose nanocrystals, and bacterial cellulose for sensor design, mainly focusing on the influence of nanocellulose on the sensing performance of these sensors. Special attention is paid to nanocellulose in different forms (1D, 2D, and 3D) to highlight the impact of nanocellulose constructed structures. The aim is to provide a critical review on the most recent progress (especially after 2017) related to nanocellulose-containing sensors, since there are significantly increasing research activities in this area. Moreover, the outlook for the development of nanocellulose-containing sensors is also provided at the end of this work.
Collapse
Affiliation(s)
- Lei Dai
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yan Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Xuejun Zou
- FPInnovations, 570 boul. St-Jean, Pointe-Claire, Quebec, H9R3J9, Canada
| | - Zhirong Chen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| |
Collapse
|
15
|
Fidanovski K, Mawad D. Conjugated Polymers in Bioelectronics: Addressing the Interface Challenge. Adv Healthc Mater 2019; 8:e1900053. [PMID: 30941922 DOI: 10.1002/adhm.201900053] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/22/2019] [Indexed: 12/21/2022]
Abstract
Conjugated polymers are the material of choice for organic bioelectronic interfaces as they combine mechanical flexibility with electric and ionic conductivity. Their attractive properties are largely demonstrated in vitro, while the in vivo applications are limited to the coating of inorganic electrodes, where they are used to improve the intimate electronic contact between the device and the tissue. However, there has not been a commensurate rise in the in vivo applications of entirely organic implantable electronic devices based on conjugated polymers. To date, there is no comprehensive understanding of how these devices will interface with real biological systems. With the push toward increasingly thinner and more flexible next generation medical implants, this limitation remains a major detractor in the translation of conjugated polymers toward biological applications. This research news article examines the few reported in vivo studies and attempts to establish why there is such a dearth in the literature.
Collapse
Affiliation(s)
- Kristina Fidanovski
- School of Materials Science and Engineering UNSW Sydney Sydney New South Wales 2052 Australia
| | - Damia Mawad
- School of Materials Science and Engineering UNSW Sydney Sydney New South Wales 2052 Australia
| |
Collapse
|
16
|
Bacakova L, Pajorova J, Bacakova M, Skogberg A, Kallio P, Kolarova K, Svorcik V. Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing. NANOMATERIALS 2019; 9:nano9020164. [PMID: 30699947 PMCID: PMC6410160 DOI: 10.3390/nano9020164] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/08/2019] [Accepted: 01/24/2019] [Indexed: 12/29/2022]
Abstract
Nanocellulose is cellulose in the form of nanostructures, i.e., features not exceeding 100 nm at least in one dimension. These nanostructures include nanofibrils, found in bacterial cellulose; nanofibers, present particularly in electrospun matrices; and nanowhiskers, nanocrystals, nanorods, and nanoballs. These structures can be further assembled into bigger two-dimensional (2D) and three-dimensional (3D) nano-, micro-, and macro-structures, such as nanoplatelets, membranes, films, microparticles, and porous macroscopic matrices. There are four main sources of nanocellulose: bacteria (Gluconacetobacter), plants (trees, shrubs, herbs), algae (Cladophora), and animals (Tunicata). Nanocellulose has emerged for a wide range of industrial, technology, and biomedical applications, namely for adsorption, ultrafiltration, packaging, conservation of historical artifacts, thermal insulation and fire retardation, energy extraction and storage, acoustics, sensorics, controlled drug delivery, and particularly for tissue engineering. Nanocellulose is promising for use in scaffolds for engineering of blood vessels, neural tissue, bone, cartilage, liver, adipose tissue, urethra and dura mater, for repairing connective tissue and congenital heart defects, and for constructing contact lenses and protective barriers. This review is focused on applications of nanocellulose in skin tissue engineering and wound healing as a scaffold for cell growth, for delivering cells into wounds, and as a material for advanced wound dressings coupled with drug delivery, transparency and sensorics. Potential cytotoxicity and immunogenicity of nanocellulose are also discussed.
Collapse
Affiliation(s)
- Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic.
| | - Julia Pajorova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic.
| | - Marketa Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic.
| | - Anne Skogberg
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Pasi Kallio
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Katerina Kolarova
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6-Dejvice, Czech Republic.
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6-Dejvice, Czech Republic.
| |
Collapse
|
17
|
Thomas B, Raj MC, B AK, H RM, Joy J, Moores A, Drisko GL, Sanchez C. Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chem Rev 2018; 118:11575-11625. [PMID: 30403346 DOI: 10.1021/acs.chemrev.7b00627] [Citation(s) in RCA: 636] [Impact Index Per Article: 90.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
With increasing environmental and ecological concerns due to the use of petroleum-based chemicals and products, the synthesis of fine chemicals and functional materials from natural resources is of great public value. Nanocellulose may prove to be one of the most promising green materials of modern times due to its intrinsic properties, renewability, and abundance. In this review, we present nanocellulose-based materials from sourcing, synthesis, and surface modification of nanocellulose, to materials formation and applications. Nanocellulose can be sourced from biomass, plants, or bacteria, relying on fairly simple, scalable, and efficient isolation techniques. Mechanical, chemical, and enzymatic treatments, or a combination of these, can be used to extract nanocellulose from natural sources. The properties of nanocellulose are dependent on the source, the isolation technique, and potential subsequent surface transformations. Nanocellulose surface modification techniques are typically used to introduce either charged or hydrophobic moieties, and include amidation, esterification, etherification, silylation, polymerization, urethanization, sulfonation, and phosphorylation. Nanocellulose has excellent strength, high Young's modulus, biocompatibility, and tunable self-assembly, thixotropic, and photonic properties, which are essential for the applications of this material. Nanocellulose participates in the fabrication of a large range of nanomaterials and nanocomposites, including those based on polymers, metals, metal oxides, and carbon. In particular, nanocellulose complements organic-based materials, where it imparts its mechanical properties to the composite. Nanocellulose is a promising material whenever material strength, flexibility, and/or specific nanostructuration are required. Applications include functional paper, optoelectronics, and antibacterial coatings, packaging, mechanically reinforced polymer composites, tissue scaffolds, drug delivery, biosensors, energy storage, catalysis, environmental remediation, and electrochemically controlled separation. Phosphorylated nanocellulose is a particularly interesting material, spanning a surprising set of applications in various dimensions including bone scaffolds, adsorbents, and flame retardants and as a support for the heterogenization of homogeneous catalysts.
Collapse
Affiliation(s)
- Bejoy Thomas
- Department of Chemistry , Newman College, Thodupuzha , 685 585 Thodupuzha , Kerala , India
| | - Midhun C Raj
- Department of Chemistry , Newman College, Thodupuzha , 685 585 Thodupuzha , Kerala , India
| | - Athira K B
- Department of Chemistry , Newman College, Thodupuzha , 685 585 Thodupuzha , Kerala , India
| | - Rubiyah M H
- Department of Chemistry , Newman College, Thodupuzha , 685 585 Thodupuzha , Kerala , India
| | - Jithin Joy
- Department of Chemistry , Newman College, Thodupuzha , 685 585 Thodupuzha , Kerala , India.,International and Interuniversity Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandhi University , 686 560 Kottayam , Kerala , India
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis, Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| | - Glenna L Drisko
- CNRS, ICMCB, Université de Bordeaux, UMR 5026 , F-33600 Pessac , France
| | - Clément Sanchez
- UPMC Université Paris 06, CNRS, UMR 7574 Laboratoire Chimie de la Matière Condensée de Paris, Collège de France , 11 place, Marcelin Berthelot , F-75005 , Paris , France
| |
Collapse
|
18
|
High-sensitivity ion detection at low voltages with current-driven organic electrochemical transistors. Nat Commun 2018; 9:1441. [PMID: 29650956 PMCID: PMC5897342 DOI: 10.1038/s41467-018-03932-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/22/2018] [Indexed: 01/14/2023] Open
Abstract
Ions dissolved in aqueous media play a fundamental role in plants, animals, and humans. Therefore, the in situ quantification of the ion concentration in aqueous media is gathering relevant interest in several fields including biomedical diagnostics, environmental monitoring, healthcare products, water and food test and control, agriculture industry and security. The fundamental limitation of the state-of-art transistor-based approaches is the intrinsic trade-off between sensitivity, ion concentration range and operating voltage. Here we show a current-driven configuration based on organic electrochemical transistors that overcomes this fundamental limit. The measured ion sensitivity exceeds by one order of magnitude the Nernst limit at an operating voltage of few hundred millivolts. The ion sensitivity normalized to the supply voltage is larger than 1200 mV V−1 dec−1, which is the largest value ever reported for ion-sensitive transistors. The proposed approach is general and can be extended to any transistor technology, thus opening opportunities for high-performance bioelectronics. The organic electrochemical transistor is a type of transistor that modulates the channel current by the ion concentration and is thus explored for bio-applications. Here Ghittorelli et al. show a current-driven device configuration to increase the sensitivity by ten times than conventional approaches.
Collapse
|