1
|
Su L, Liu M, You C, Guo Q, Hu Z, Yang Z, Li G. Nitrogen and phosphorus addition differentially enhance seed production of dominant species in a temperate steppe. Ecol Evol 2021; 11:15020-15029. [PMID: 34765157 PMCID: PMC8571611 DOI: 10.1002/ece3.8185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/19/2021] [Accepted: 09/13/2021] [Indexed: 12/02/2022] Open
Abstract
Previous studies have demonstrated changes in plant growth and reproduction in response to nutrient availability, but responses of plant growth and reproduction to multiple levels of nutrient enrichment remain unclear. In this study, a factorial field experiment was performed with manipulation of nitrogen (N) and phosphorus (P) availability to examine seed production of the dominant species, Stipa krylovii, in response to N and P addition in a temperate steppe. There were three levels of N and P addition in this experiment, including no N addition (0 g N m-2 year-1), low N addition (10 g N m-2 year-1), and high N addition (40 g N m-2 year-1) for N addition treatment, and no P addition (0 g P m-2 year-1), low P addition (5 g P m-2 year-1), and high P addition (10 g P m-2 year-1) for P addition treatment. Low N addition enhanced seed production by 814%, 1371%, and 1321% under ambient, low, and high P addition levels, respectively. High N addition increased seed production by 2136%, 3560%, and 3550% under ambient, low, and high P addition levels, respectively. However, P addition did not affect seed production in the absence of N addition, but enhanced it under N addition. N addition enhanced seed production mainly by increasing the tiller number and inflorescence abundance per plant, whereas P addition stimulated it by decreasing the plant density yet stimulating height of plants and their seed number per inflorescence. Our results indicate seed production is not limited by P availability but rather by N availability in the temperate steppe, whereas seed production will be increased by P addition when N availability is improved. These findings enable a better understanding of plant reproduction dynamics in the temperate steppe under intensified nutrient enrichment and can inform their improved management in the future.
Collapse
Affiliation(s)
- Lei Su
- International Joint Research Laboratory for Global Change EcologySchool of Life SciencesHenan UniversityKaifengChina
| | - Mengzhou Liu
- College of Geography and Environmental ScienceHenan UniversityKaifengChina
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University)Ministry of EducationKaifengChina
| | - Chengming You
- Key Laboratory of Ecosystem Network Observation and ModelingNational Ecosystem Science Data CenterInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze RiverKey Laboratory of Sichuan Province & National Forestry and Grassland AdministrationKey Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Rainy Area of West China Plantation Ecosystem Permanent Scientific Research BaseInstitute of Ecology & ForestrySichuan Agricultural UniversityChengduChina
| | - Qun Guo
- Key Laboratory of Ecosystem Network Observation and ModelingNational Ecosystem Science Data CenterInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
| | - Zhongmin Hu
- School of GeographySouth China Normal UniversityGuangzhouChina
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)GuangdongChina
| | - Zhongling Yang
- International Joint Research Laboratory for Global Change EcologySchool of Life SciencesHenan UniversityKaifengChina
| | - Guoyong Li
- International Joint Research Laboratory for Global Change EcologySchool of Life SciencesHenan UniversityKaifengChina
| |
Collapse
|
2
|
Akin-Fajiye M, Schmidt AC, Fraser LH. Soil nutrients and variation in biomass rather than native species richness influence introduced plant richness in a semi-arid grassland. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Li Y, Hou L, Yang L, Yue M. Transgenerational effect alters the interspecific competition between two dominant species in a temperate steppe. Ecol Evol 2021; 11:1175-1186. [PMID: 33598122 PMCID: PMC7863671 DOI: 10.1002/ece3.7066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022] Open
Abstract
One of the key aims of global change studies is to predict more accurately how plant community composition responds to future environmental changes. Although interspecific relationship is one of the most important forces structuring plant communities, it remains a challenge to integrate long-term consequences at the plant community level. As an increasing number of studies have shown that maternal environment affects offspring phenotypic plasticity as a response to global environment change through transgenerational effects, we speculated that the transgenerational effect would influence offspring competitive relationships. We conducted a 10-year field experiment and a greenhouse experiment in a temperate grassland in an Inner Mongolian grassland to examine the effects of maternal and immediate nitrogen addition (N) and increased precipitation (Pr) on offspring growth and the interspecific relationship between the two dominant species, Stipa krylovii and Artemisia frigida. According to our results, Stipa kryloii suppressed A. frigida growth and population development when they grew in mixture, although immediate N and Pr stimulated S. kryloii and A. frigida growth simultaneously. Maternal N and Pr declined S. krylovii dominance and decreased A. frigida competitive suppression to some extent. The transgenerational effect should further facilitate the coexistence of the two species under scenarios of increased nitrogen input and precipitation. If we predicted these species' interspecific relationships based only on immediate environmental effects, we would overestimate S. krylovii's competitive advantage and population development, and underestimate competitive outcome and population development of A. frigida. In conclusion, our results demonstrated that the transgenerational effect of maternal environment on offspring interspecific competition must be considered when evaluating population dynamics and community composition under the global change scenario.
Collapse
Affiliation(s)
- Yang Li
- Xi’an Botanical Garden of Shaanxi ProvinceInstitute of Botany of Shaanxi ProvinceXi’anChina
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical ResourcesXi’anChina
| | - Longyu Hou
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Liuyi Yang
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Ming Yue
- Xi’an Botanical Garden of Shaanxi ProvinceInstitute of Botany of Shaanxi ProvinceXi’anChina
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical ResourcesXi’anChina
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaNorthwest UniversityXi’anChina
| |
Collapse
|
4
|
Qamar R, Hussain A, Sardar H, Sarwar N, Javeed HMR, Maqbool A, Hussain M. Soil applied boron (B) improves growth, yield and fiber quality traits of cotton grown on calcareous saline soil. PLoS One 2020; 15:e0231805. [PMID: 32760118 PMCID: PMC7410288 DOI: 10.1371/journal.pone.0231805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/23/2020] [Indexed: 12/01/2022] Open
Abstract
Boron (B) is required during all growth stages of cotton crop, especially during boll formation. However, Typic Haplocambid soils of cotton growing belt in Pakistan are B-deficient, which results in low yield and economic returns. Foliar application of B improves cotton productivity; however, information is limited on the role of soil applied B in improving cotton growth and yield. The current study investigated the role of soil applied B in improving growth, yield and fiber quality of cotton crop. Five different B doses (i.e., 0.00, 2.60, 5.52, 7.78 and 10.04 mg kg-1 of soil) and two cotton cultivars (i.e., CIM-600 and CIM-616) were included in the study. Soil applied B (2.60 mg kg-1) significantly improved growth, yield, physiological parameters and fiber quality, while 10.04 mg kg-1 application improved B distribution in roots, seeds, leaves and stalks. Significant improvement was noted in plant height (12%), leaf area (3%), number of bolls (48%), boll size (59%), boll weight (52%), seed cotton yield (52%), photosynthesis (50%), transpiration rate (10%), stomatal conductance (37%) and water use efficiency (44%) of CIM-600 with 2.60 mg kg-1 compared to control treatment of CIM-616. Similarly, B accumulation in roots, seeds, leaves and stalk of CIM-600 was improved by 76, 41, 86 and 70%, respectively compared to control treatment. The application of 2.60 mg kg-1 significantly improved ginning out turn (6%), staple length (3.5%), fiber fineness (17%) and fiber strength (5%) than no B application. The results indicated that cultivar CIM-600 had higher ginning out turn (1.5%), staple length (5.4%), fiber fineness (15.5%) and fiber strength (1.8%) than CIM-616. In crux, 2.60 mg kg-1 soil B application improved growth, yield, physiological and fiber quality traits of cotton cultivar CIM-600. Therefore, cultivar CIM-600 and 2.60 mg kg-1 soil B application is recommended for higher yield and productivity.
Collapse
Affiliation(s)
- Rafi Qamar
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Abid Hussain
- Department of Agronomy, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Hassan Sardar
- Department of Horticulture, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Naeem Sarwar
- Department of Agronomy, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | | | - Amir Maqbool
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Mubshar Hussain
- Department of Agronomy, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| |
Collapse
|
5
|
Zhong M, Miao Y, Han S, Wang D. Nitrogen addition decreases seed germination in a temperate steppe. Ecol Evol 2019; 9:8441-8449. [PMID: 31410252 PMCID: PMC6686302 DOI: 10.1002/ece3.5151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/02/2019] [Accepted: 03/15/2019] [Indexed: 11/10/2022] Open
Abstract
Seed germination and seedling establishment play an important role in driving the responses of plant community structure and function to global change. Nitrogen (N) deposition is one of the driving factors of global change, which often leads to a loss in species richness in grassland ecosystems. However, how seed germination responds to N addition remains unclear. A pot incubation test was conducted in a semi-arid grassland in the Mongolian Plateau, Northern China, to investigate the effect of N addition (0, 5, 10, 20, 40, and 80 g N/m2) on seed germination from May to October 2016. Twenty species germinated under all treatments; however, the responses of the 20 species to N addition were different. The densities of Stipa krylovii, Leymus chinensis, and Artemisia frigida, which are the dominant species in this temperate steppe, decreased significantly as the amount of N addition. Moreover, N addition significantly suppressed seedling densities of the community, perennial forbs, perennial grasses, and annuals and biennials. Furthermore, species richness of the community, perennial forbs, and annuals and biennials decreased sharply with increasing N addition level, but perennial grass species richness did not change. The Shannon-Wiener diversity index also decreased as the amount of N addition increased. Our results suggest that N enrichment plays an important role in the seed germination stage and decreases supplements of seedlings to adult plants. These findings may help explain the causes of species loss by atmospheric N deposition in grassland ecosystems.
Collapse
Affiliation(s)
| | - Yuan Miao
- School of Life SciencesHenan UniversityKaifengChina
| | - Shijie Han
- School of Life SciencesHenan UniversityKaifengChina
| | - Dong Wang
- School of Life SciencesHenan UniversityKaifengChina
| |
Collapse
|
6
|
De novo transcriptomic profiling of the clonal Leymus chinensis response to long-term overgrazing-induced memory. Sci Rep 2018; 8:17912. [PMID: 30559460 PMCID: PMC6297159 DOI: 10.1038/s41598-018-35605-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/07/2018] [Indexed: 01/26/2023] Open
Abstract
Sheepgrass (Leymus chinensis) is one of the dominant grass species present on typical steppes of the Inner Mongolia Plateau. However, L. chinensis has developed a dwarfing phenotype in response to the stressful habitat in grasslands that are severely degraded due to heavy grazing. The lack of transcriptomic and genomic information has prohibited the understanding of the transgenerational effect on physiological alterations in clonal L. chinensis at the molecular level in response to livestock grazing. To solve this problem, transcriptomic information from the leaves of clonal L. chinensis obtained from overgrazed (GR) and non-grazed (NG) grasslands was studied using a paired-end Illumina HiSeq 2500 sequencing platform. First, despite the influence of grazing being absent during the growth of clonal offspring in our hydroponic experiment, compared with those from the NG group, clonal L. chinensis from the GR group exhibited significant dwarf-type morphological traits. A total of 116,356 unigenes were subsequently generated and assembled de novo, of which 55,541 could be annotated to homologous matches in the NCBI non-redundant (Nr), Swiss-Prot, Clusters of Orthologous Groups (COG), gene ontology (GO), or Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The expression of 3,341 unigenes significantly differed between the GR group and the NG group with an absolute value of Log2 ratio ≥ 1. The altered expression of genes involved in defence and immune responses, pathogenic resistance and cell development indicates that livestock grazing induces a transgenerational effect on the growth inhibition of clonal L. chinensis. The results of the present study will provide important large-scale transcriptomic information on L. chinensis. Furthermore, the results facilitated our investigation of grazing-induced transgenerational effects on both the morphological and physiological characteristics of L. chinensis at the molecular levels.
Collapse
|
7
|
Zohaib A, Tabassum T, Jabbar A, Anjum SA, Abbas T, Mehmood A, Irshad S, Kashif M, Nawaz M, Farooq N, Nasir IR, Rasool T, Nadeem M, Ahmad R. Effect of Plant Density, Boron Nutrition and Growth Regulation on Seed Mass, Emergence and Offspring Growth Plasticity in Cotton. Sci Rep 2018; 8:7953. [PMID: 29785043 PMCID: PMC5962529 DOI: 10.1038/s41598-018-26308-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/01/2018] [Indexed: 11/08/2022] Open
Abstract
Seed nutrients reserves have direct relationship with seed functional traits and influence offspring performance. Effects of plant density, foliage boron (B) nutrition and mepiquat chloride (MC) growth regulation on seed nutrients reserves, seed mass and production, and emergence and offspring growth traits of cotton were studied in two years field experiment. Seed nutrients reserves and seed mass were decreased at higher maternal plant density relative to lower plant density with concomitant decrease in emergence and offspring seedling growth. However, maternal foliage B nutrition and MC growth regulation enhanced seed nutrients reserves, seed mass, emergence and offspring seedling growth performance. There was a significant positive relationship between seed mass and seed nutrients reserves indicating that changes in nutrient availability/uptake in response to maternal ecological factors determine variation in seed functional traits. Nonetheless, seed mass was positively correlated with emergence percentage and negatively with emergence timing. Furthermore, variation in offspring seedling growth traits with seed mass indicated the significance of initial seed nutrients reserves for early seedling vigour and establishment. In conclusion, lower maternal plant density, B nutrition and MC growth regulation ensued in higher emergence and offspring seedling growth of cotton because of higher seed nutrient reserves and seed mass.
Collapse
Affiliation(s)
- Ali Zohaib
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Tahira Tabassum
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Abdul Jabbar
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Shakeel Ahmad Anjum
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Tasawer Abbas
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Azhar Mehmood
- Agronomy Department, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Sohail Irshad
- Agricultural Training Institute, Rahim Yar Khan, 64200, Pakistan
| | - Muhammad Kashif
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Mohsin Nawaz
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, P.R. China
| | - Naila Farooq
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | | | - Tassadduq Rasool
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Mubashar Nadeem
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Riaz Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| |
Collapse
|
8
|
Dahro B, Wang F, Peng T, Liu JH. PtrA/NINV, an alkaline/neutral invertase gene of Poncirus trifoliata, confers enhanced tolerance to multiple abiotic stresses by modulating ROS levels and maintaining photosynthetic efficiency. BMC PLANT BIOLOGY 2016. [PMID: 27025596 DOI: 10.1016/j.envexpbot.2018.12.009] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND Alkaline/neutral invertase (A/N-INV), an enzyme that hydrolyzes sucrose irreversibly into glucose and fructose, is essential for normal plant growth,development, and stress tolerance. However, the physiological and/or molecular mechanism underpinning the role of A/N-INV in abiotic stress tolerance is poorly understood. RESULTS In this report, an A/N-INV gene (PtrA/NINV) was isolated from Poncirus trifoliata, a cold-hardy relative of citrus, and functionally characterized. PtrA/NINV expression levels were induced by cold, salt, dehydration, sucrose, and ABA, but decreased by glucose. PtrA/NINV was found to localize in both chloroplasts and mitochondria. Overexpression of PtrA/NINV conferred enhanced tolerance to multiple stresses, including cold, high salinity, and drought, as supported by lower levels of reactive oxygen species (ROS), reduced oxidative damages, decreased water loss rate, and increased photosynthesis efficiency, relative to wild-type (WT). The transgenic plants exhibited higher A/N-INV activity and greater reducing sugar content under normal and stress conditions. CONCLUSIONS PtrA/NINV is an important gene implicated in sucrose decomposition, and plays a positive role in abiotic stress tolerance by promoting osmotic adjustment, ROS detoxification and photosynthesis efficiency. Thus, PtrA/NINV has great potential to be used in transgenic breeding for improvement of stress tolerance.
Collapse
Affiliation(s)
- Bachar Dahro
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Horticulture, Faculty of Agriculture, Tishreen University, Lattakia, Syria
| | - Fei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Peng
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|