1
|
Germani S, Van Ho AT, Cherubini A, Varone E, Chernorudskiy A, Renna GM, Fumagalli S, Gobbi M, Lucchetti J, Bolis M, Guarrera L, Craparotta I, Rastelli G, Piccoli G, de Napoli C, Nogara L, Poggio E, Brini M, Cattaneo A, Bachi A, Simmen T, Calì T, Quijano-Roy S, Boncompagni S, Blaauw B, Ferreiro A, Zito E. SEPN1-related myopathy depends on the oxidoreductase ERO1A and is druggable with the chemical chaperone TUDCA. Cell Rep Med 2024; 5:101439. [PMID: 38402623 PMCID: PMC10982971 DOI: 10.1016/j.xcrm.2024.101439] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/06/2023] [Accepted: 01/31/2024] [Indexed: 02/27/2024]
Abstract
Selenoprotein N (SEPN1) is a protein of the endoplasmic reticulum (ER) whose inherited defects originate SEPN1-related myopathy (SEPN1-RM). Here, we identify an interaction between SEPN1 and the ER-stress-induced oxidoreductase ERO1A. SEPN1 and ERO1A, both enriched in mitochondria-associated membranes (MAMs), are involved in the redox regulation of proteins. ERO1A depletion in SEPN1 knockout cells restores ER redox, re-equilibrates short-range MAMs, and rescues mitochondrial bioenergetics. ERO1A knockout in a mouse background of SEPN1 loss blunts ER stress and improves multiple MAM functions, including Ca2+ levels and bioenergetics, thus reversing diaphragmatic weakness. The treatment of SEPN1 knockout mice with the ER stress inhibitor tauroursodeoxycholic acid (TUDCA) mirrors the results of ERO1A loss. Importantly, muscle biopsies from patients with SEPN1-RM exhibit ERO1A overexpression, and TUDCA-treated SEPN1-RM patient-derived primary myoblasts show improvement in bioenergetics. These findings point to ERO1A as a biomarker and a viable target for intervention and to TUDCA as a pharmacological treatment for SEPN1-RM.
Collapse
Affiliation(s)
- Serena Germani
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy; Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Andrew Tri Van Ho
- Basic and Translational Myology Laboratory, Université Paris, BFA, UMR 8251, CNRS, 75013 Paris, France
| | | | - Ersilia Varone
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | | | | | - Marco Gobbi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Jacopo Lucchetti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marco Bolis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy; Bioinformatics Core Unit, Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland
| | - Luca Guarrera
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Giorgia Rastelli
- CAST, Center for Advanced Studies and Technology & DNICS, Department of Neuroscience, Imaging and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Giorgia Piccoli
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Cosimo de Napoli
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Leonardo Nogara
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Department of Pharmaceutical Sciences, University of Padova, Padova, Italy
| | - Elena Poggio
- Department of Biology, University of Padova, Padova, Italy
| | - Marisa Brini
- Department of Pharmaceutical Sciences, University of Padova, Padova, Italy; Department of Biology, University of Padova, Padova, Italy; Study Center for Neurodegeneration (CESNE), University of Padova, Padova, Italy
| | | | - Angela Bachi
- IFOM-ETS AIRC Institute of Molecular Oncology, Milan, Italy
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tito Calì
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Study Center for Neurodegeneration (CESNE), University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Susana Quijano-Roy
- APHP-Université Paris-Saclay, Reference Center for Neuromuscular Disorders Nord-Est-Ile de France, FILNEMUS, ERN-Euro-NMD, Creteil, France; Pediatric Neurology and ICU Department, DMU Santé Enfant Adolescent (SEA), Raymond Poincaré University Hospital, Garches, France
| | - Simona Boncompagni
- CAST, Center for Advanced Studies and Technology & DNICS, Department of Neuroscience, Imaging and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Bert Blaauw
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Venetian Institute of Molecular Medicine, Padova, Italy.
| | - Ana Ferreiro
- Basic and Translational Myology Laboratory, Université Paris, BFA, UMR 8251, CNRS, 75013 Paris, France; APHP, Reference Center for Neuromuscular Disorders Nord-Est-Ile de France, Neuromyology Department, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.
| | - Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy; Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| |
Collapse
|
2
|
Thomasy SM, Leonard BC, Greiner MA, Skeie JM, Raghunathan VK. Squishy matters - Corneal mechanobiology in health and disease. Prog Retin Eye Res 2024; 99:101234. [PMID: 38176611 PMCID: PMC11193890 DOI: 10.1016/j.preteyeres.2023.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
The cornea, as a dynamic and responsive tissue, constantly interacts with mechanical forces in order to maintain its structural integrity, barrier function, transparency and refractive power. Cells within the cornea sense and respond to various mechanical forces that fundamentally regulate their morphology and fate in development, homeostasis and pathophysiology. Corneal cells also dynamically regulate their extracellular matrix (ECM) with ensuing cell-ECM crosstalk as the matrix serves as a dynamic signaling reservoir providing biophysical and biochemical cues to corneal cells. Here we provide an overview of mechanotransduction signaling pathways then delve into the recent advances in corneal mechanobiology, focusing on the interplay between mechanical forces and responses of the corneal epithelial, stromal, and endothelial cells. We also identify species-specific differences in corneal biomechanics and mechanotransduction to facilitate identification of optimal animal models to study corneal wound healing, disease, and novel therapeutic interventions. Finally, we identify key knowledge gaps and therapeutic opportunities in corneal mechanobiology that are pressing for the research community to address especially pertinent within the domains of limbal stem cell deficiency, keratoconus and Fuchs' endothelial corneal dystrophy. By furthering our understanding corneal mechanobiology, we can contextualize discoveries regarding corneal diseases as well as innovative treatments for them.
Collapse
Affiliation(s)
- Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States; California National Primate Research Center, Davis, CA, United States.
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States
| | - Mark A Greiner
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | - Jessica M Skeie
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | | |
Collapse
|
3
|
Jalilian I, Muppala S, Ali M, Anderson JD, Phinney B, Salemi M, Wilmarth PA, Murphy CJ, Thomasy SM, Raghunathan V. Cell derived matrices from bovine corneal endothelial cells as a model to study cellular dysfunction. Exp Eye Res 2023; 226:109303. [PMID: 36343671 PMCID: PMC11349083 DOI: 10.1016/j.exer.2022.109303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/12/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Fuchs endothelial corneal dystrophy (FECD) is a progressive corneal disease that impacts the structure and stiffness of the Descemet's membrane (DM), the substratum for corneal endothelial cells (CECs). These structural alterations of the DM could contribute to the loss of the CECs resulting in corneal edema and blindness. Oxidative stress and transforming growth factor-β (TGF-β) pathways have been implicated in endothelial cell loss and endothelial to mesenchymal transition of CECs in FECD. Ascorbic acid (AA) is found at high concentrations in FECD and its impact on CEC survival has been investigated. However, how TGF-β and AA effect the composition and rigidity of the CEC's matrix remains unknown. METHODS In this study, we investigated the effect of AA, TGF-β1 and TGF-β3 on the deposition, ultrastructure, stiffness, and composition of the extracellular matrix (ECM) secreted by primary bovine corneal endothelial cells (BCECs). RESULTS Immunofluorescence and electron microscopy post-decellularization demonstrated a robust deposition and distinct structure of ECM in response to treatments. AFM measurements showed that the modulus of the matrix in BCECs treated with TGF-β1 and TGF-β3 was significantly lower than the controls. There was no difference in the stiffness of the matrix between the AA-treated cell and controls. Gene Ontology analysis of the proteomics results revealed that AA modulates the oxidative stress pathway in the matrix while TGF-β induces the expression of matrix proteins collagen IV, laminin, and lysyl oxidase homolog 1. CONCLUSIONS Molecular pathways identified in this study demonstrate the differential role of soluble factors in the pathogenesis of FECD.
Collapse
Affiliation(s)
- Iman Jalilian
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Santoshi Muppala
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA; Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Maryam Ali
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Johnathon D Anderson
- Department of Otolaryngology, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Brett Phinney
- Proteomics Core, University of California, Davis Genome Center, Davis, CA, 95616, USA
| | - Michelle Salemi
- Proteomics Core, University of California, Davis Genome Center, Davis, CA, 95616, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resources, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA; Department of Ophthalmology & Vision Science, School of Medicine, UC Davis Medical Center, Sacramento, CA, 95817, USA
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA; Department of Ophthalmology & Vision Science, School of Medicine, UC Davis Medical Center, Sacramento, CA, 95817, USA.
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, 77204, USA; Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
4
|
Loss-of-rescue of Ryr1 I4895T-related pathology by the genetic inhibition of the ER stress response mediator CHOP. Sci Rep 2022; 12:20632. [PMID: 36450915 PMCID: PMC9712496 DOI: 10.1038/s41598-022-25198-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/25/2022] [Indexed: 12/07/2022] Open
Abstract
RYR1 is the gene encoding the ryanodine receptor 1, a calcium release channel of the endo/sarcoplasmic reticulum. I4898T in RYR1 is one of the most common mutations that give rise to central core disease (CCD), with a variable phenotype ranging from mild to severe myopathy to lethal early-onset core-rod myopathy. Mice with the corresponding I4895T mutation in Ryr1 present mild myopathy when the mutation is heterozygous while I4895T homozygous is perinatal-lethal. Here we show that skeletal muscles of I4895T homozygous mice at birth present signs of stress of the endoplasmic reticulum (ER stress) and of the related unfolded protein response (UPR) with increased levels of the maladaptive mediators CHOP and ERO1. To gain information on the role of CHOP in the pathogenesis of RYR1I4895T-related myopathy, we generated compound Ryr1I4895T, Chop knock-out (-/-) mice. However, the genetic deletion of Chop, although it attenuates ER stress in the skeletal muscle of the newborns, does not rescue any phenotypic or functional features of Ryr1I4895T in mice: neither the perinatal-lethal phenotype nor the inability of Ryr1I4895T to respond to its agonist caffeine, but protects from ER stress-induced apoptosis. These findings suggest that genetic deletion of the ER stress response mediator CHOP is not sufficient to counteract the pathological Ryr1I4895T phenotype.
Collapse
|
5
|
Dogan SA, Giacchin G, Zito E, Viscomi C. Redox Signaling and Stress in Inherited Myopathies. Antioxid Redox Signal 2022; 37:301-323. [PMID: 35081731 DOI: 10.1089/ars.2021.0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Reactive oxygen species (ROS) are highly reactive compounds that behave like a double-edged sword; they damage cellular structures and act as second messengers in signal transduction. Mitochondria and endoplasmic reticulum (ER) are interconnected organelles with a central role in ROS production, detoxification, and oxidative stress response. Skeletal muscle is the most abundant tissue in mammals and one of the most metabolically active ones and thus relies mainly on oxidative phosphorylation (OxPhos) to synthesize adenosine triphosphate. The impairment of OxPhos leads to myopathy and increased ROS production, thus affecting both redox poise and signaling. In addition, ROS enter the ER and trigger ER stress and its maladaptive response, which also lead to a myopathic phenotype with mitochondrial involvement. Here, we review the role of ROS signaling in myopathies due to either mitochondrial or ER dysfunction. Recent Advances: Relevant advances have been evolving over the last 10 years on the intricate ROS-dependent pathways that act as modifiers of the disease course in several myopathies. To this end, pathways related to mitochondrial biogenesis, satellite cell differentiation, and ER stress have been studied extensively in myopathies. Critical Issues: The analysis of the chemistry and the exact quantitation, as well as the localization of ROS, are still challenging due to the intrinsic labile nature of ROS and the technical limitations of their sensors. Future Directions: The mechanistic studies of the pathogenesis of mitochondrial and ER-related myopathies offer a unique possibility to discover novel ROS-dependent pathways. Antioxid. Redox Signal. 37, 301-323.
Collapse
Affiliation(s)
- Sukru Anil Dogan
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkey
| | - Giacomo Giacchin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ester Zito
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.,Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Calcium and Redox Liaison: A Key Role of Selenoprotein N in Skeletal Muscle. Cells 2021; 10:cells10051116. [PMID: 34066362 PMCID: PMC8148124 DOI: 10.3390/cells10051116] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Selenoprotein N (SEPN1) is a type II glycoprotein of the endoplasmic reticulum (ER) that senses calcium levels to tune the activity of the sarcoplasmic reticulum calcium pump (SERCA pump) through a redox-mediated mechanism, modulating ER calcium homeostasis. In SEPN1-depleted muscles, altered ER calcium homeostasis triggers ER stress, which induces CHOP-mediated malfunction, altering excitation–contraction coupling. SEPN1 is localized in a region of the ER where the latter is in close contact with mitochondria, i.e., the mitochondria-associated membranes (MAM), which are important for calcium mobilization from the ER to mitochondria. Accordingly, SEPN1-depleted models have impairment of both ER and mitochondria calcium regulation and ATP production. SEPN1-related myopathy (SEPN1-RM) is an inherited congenital muscle disease due to SEPN1 loss of function, whose main histopathological features are minicores, i.e., areas of mitochondria depletion and sarcomere disorganization in muscle fibers. SEPN1-RM presents with weakness involving predominantly axial and diaphragmatic muscles. Since there is currently no disease-modifying drug to treat this myopathy, analysis of SEPN1 function in parallel with that of the muscle phenotype in SEPN1 loss of function models should help in understanding the pathogenic basis of the disease and possibly point to novel drugs for therapy. The present essay recapitulates the novel biological findings on SEPN1 and how these reconcile with the muscle and bioenergetics phenotype of SEPN1-related myopathy.
Collapse
|
7
|
Pozzer D, Invernizzi RW, Blaauw B, Cantoni O, Zito E. Ascorbic Acid Route to the Endoplasmic Reticulum: Function and Role in Disease. Antioxid Redox Signal 2021; 34:845-855. [PMID: 31867990 DOI: 10.1089/ars.2019.7912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Humans cannot synthesize ascorbic acid (AscH2) (vitamin C), so deficiencies in dietary AscH2 cause the life-threatening disease of scurvy and many other diseases. After oral ingestion, plasma AscH2 concentrations are strictly controlled by transporters, which are required for entry into the cell and into intracellular organelles. Recent Advances: Besides its general antioxidant function, AscH2 is a cofactor for endoplasmic reticulum (ER)-localized collagen hydroxylases. Its important role in ER homeostasis is also highlighted by the fact that AscH2 deficiency in auxotrophic species triggers ER stress. Critical Issues: Characterizations of the molecular basis of diseases suggest that intracellular AscH2 deficiency is due not only to limited dietary access but also to its limited intracellular transport and net loss under conditions of intracellular hyperoxidation in the ER. This essay will offer an overview of the different transporters of vitamin C regulating its intracellular concentration, its function inside the ER, and the phenotypes of the diseases that can be triggered by increased depletion of this vitamin in the ER. Future Directions: When considering the benefits of increasing dietary AscH2, it is important to consider pharmacokinetic differences in the bioavailability between orally and intravenously administered AscH2: the latter bypasses intestinal absorption and is, therefore, the only route that can lead to the high plasma concentrations that may provide some health effects, and it is this route that needs to be chosen in clinical trials for those diseases associated with a deficiency of AscH2. Antioxid. Redox Signal. 34, 845-855.
Collapse
Affiliation(s)
- Diego Pozzer
- Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | | | - Bert Blaauw
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| |
Collapse
|
8
|
Pathways for Sensing and Responding to Hydrogen Peroxide at the Endoplasmic Reticulum. Cells 2020; 9:cells9102314. [PMID: 33080949 PMCID: PMC7603117 DOI: 10.3390/cells9102314] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) has emerged as a source of hydrogen peroxide (H2O2) and a hub for peroxide-based signaling events. Here we outline cellular sources of ER-localized peroxide, including sources within and near the ER. Focusing on three ER-localized proteins-the molecular chaperone BiP, the transmembrane stress-sensor IRE1, and the calcium pump SERCA2-we discuss how post-translational modification of protein cysteines by H2O2 can alter ER activities. We review how changed activities for these three proteins upon oxidation can modulate signaling events, and also how cysteine oxidation can serve to limit the cellular damage that is most often associated with elevated peroxide levels.
Collapse
|
9
|
Selenoprotein N is an endoplasmic reticulum calcium sensor that links luminal calcium levels to a redox activity. Proc Natl Acad Sci U S A 2020; 117:21288-21298. [PMID: 32817544 PMCID: PMC7474598 DOI: 10.1073/pnas.2003847117] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Selenoprotein N (SEPN1) is a type II transmembrane protein of the endoplasmic reticulum (ER) that senses luminal calcium through an EF-hand domain. On calcium depletion, a SEPN1 oligomer, prevalent under basal calcium concentrations, dissociates to generate a monomeric polypeptide that has enhanced redox trapping potential for its target the calcium pump, SERCA2, as well as for many additional interactors, indicating enhanced reductase activity. Our studies not only support that SEPN1 is one of the long-sought reductases of the ER, but also identify a feedback mechanism through which SEPN1 senses the luminal calcium level to modulate downstream signal transduction. Our results suggest that SEPN1 regulates the SERCA-mediated replenishment of ER calcium stores, a crucial mechanism for excitation-contraction coupling in skeletal muscle. The endoplasmic reticulum (ER) is the reservoir for calcium in cells. Luminal calcium levels are determined by calcium-sensing proteins that trigger calcium dynamics in response to calcium fluctuations. Here we report that Selenoprotein N (SEPN1) is a type II transmembrane protein that senses ER calcium fluctuations by binding this ion through a luminal EF-hand domain. In vitro and in vivo experiments show that via this domain, SEPN1 responds to diminished luminal calcium levels, dynamically changing its oligomeric state and enhancing its redox-dependent interaction with cellular partners, including the ER calcium pump sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA). Importantly, single amino acid substitutions in the EF-hand domain of SEPN1 identified as clinical variations are shown to impair its calcium-binding and calcium-dependent structural changes, suggesting a key role of the EF-hand domain in SEPN1 function. In conclusion, SEPN1 is a ER calcium sensor that responds to luminal calcium depletion, changing its oligomeric state and acting as a reductase to refill ER calcium stores.
Collapse
|
10
|
Defective endoplasmic reticulum-mitochondria contacts and bioenergetics in SEPN1-related myopathy. Cell Death Differ 2020; 28:123-138. [PMID: 32661288 PMCID: PMC7853070 DOI: 10.1038/s41418-020-0587-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/11/2020] [Accepted: 06/25/2020] [Indexed: 01/19/2023] Open
Abstract
SEPN1-related myopathy (SEPN1-RM) is a muscle disorder due to mutations of the SEPN1 gene, which is characterized by muscle weakness and fatigue leading to scoliosis and life-threatening respiratory failure. Core lesions, focal areas of mitochondria depletion in skeletal muscle fibers, are the most common histopathological lesion. SEPN1-RM underlying mechanisms and the precise role of SEPN1 in muscle remained incompletely understood, hindering the development of biomarkers and therapies for this untreatable disease. To investigate the pathophysiological pathways in SEPN1-RM, we performed metabolic studies, calcium and ATP measurements, super-resolution and electron microscopy on in vivo and in vitro models of SEPN1 deficiency as well as muscle biopsies from SEPN1-RM patients. Mouse models of SEPN1 deficiency showed marked alterations in mitochondrial physiology and energy metabolism, suggesting that SEPN1 controls mitochondrial bioenergetics. Moreover, we found that SEPN1 was enriched at the mitochondria-associated membranes (MAM), and was needed for calcium transients between ER and mitochondria, as well as for the integrity of ER-mitochondria contacts. Consistently, loss of SEPN1 in patients was associated with alterations in body composition which correlated with the severity of muscle weakness, and with impaired ER-mitochondria contacts and low ATP levels. Our results indicate a role of SEPN1 as a novel MAM protein involved in mitochondrial bioenergetics. They also identify a systemic bioenergetic component in SEPN1-RM and establish mitochondria as a novel therapeutic target. This role of SEPN1 contributes to explain the fatigue and core lesions in skeletal muscle as well as the body composition abnormalities identified as part of the SEPN1-RM phenotype. Finally, these results point out to an unrecognized interplay between mitochondrial bioenergetics and ER homeostasis in skeletal muscle. They could therefore pave the way to the identification of biomarkers and therapeutic drugs for SEPN1-RM and for other disorders in which muscle ER-mitochondria cross-talk are impaired.
Collapse
|
11
|
Zito E. Targeting ER stress/ER stress response in myopathies. Redox Biol 2019; 26:101232. [PMID: 31181458 PMCID: PMC6556854 DOI: 10.1016/j.redox.2019.101232] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/14/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022] Open
Abstract
There is more skeletal muscle tissue in the body than any other tissue and, as it is the organ of the majority of metabolic activity, muscle defect can affect the health of the entire body. Endoplasmic reticulum (ER) stress due to defects in protein folding/degradation balance, altered calcium and lipid levels and alterations in ER-mitochondria contacts has recently been recognised as the pathogenic cause of many different myopathies. In addition, a maladaptive ER stress response triggered by ER stress and mediated by three ER stress sensors (PERK, IRE1 and ATF6) is involved in a failure to relieve muscle tissue from this stress. Targeting ER stress and the ER stress response pathway offers a broad range of opportunities for treating myopathies but, as the inhibition of the three ER stress sensors may not be safe because it could lead to unexpected effects; it therefore calls for careful analysis of the changes in downstream signal transduction in the different myopathies so these sub-pathways can be pharmacologically targeted. This review summarises the known inhibitors of the ER stress response and the successful results obtained using some of them in mouse models of muscle diseases caused by ER stress/ER stress response. ER stress and the ER stress response are pathogenic causes of myopathies. Pre-clinical models improve our understanding of the safest branch or sub-branch of the ER stress response to inhibit. The inhibitors of signalling downstream of the three ER stress sensors is the safest pharmacological option. Chemical chaperones are promising pharmacological means of treating myopathies.
Collapse
Affiliation(s)
- Ester Zito
- Dulbecco Telethon Institute at IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| |
Collapse
|
12
|
Role of Transforming Growth Factor-β in Skeletal Muscle Fibrosis: A Review. Int J Mol Sci 2019; 20:ijms20102446. [PMID: 31108916 PMCID: PMC6566291 DOI: 10.3390/ijms20102446] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor-beta (TGF-β) isoforms are cytokines involved in a variety of cellular processes, including myofiber repair and regulation of connective tissue formation. Activation of the TGF-β pathway contributes to pathologic fibrosis in most organs. Here, we have focused on examining the evidence demonstrating the involvement of TGF-β in the fibrosis of skeletal muscle particularly. The TGF-β pathway plays a role in different skeletal muscle myopathies, and TGF-β signaling is highly induced in these diseases. In this review, we discuss different molecular mechanisms of TGF-β-mediated skeletal muscle fibrosis and highlight different TGF-β-targeted treatments that target these relevant pathways.
Collapse
|
13
|
SELENON (SEPN1) protects skeletal muscle from saturated fatty acid-induced ER stress and insulin resistance. Redox Biol 2019; 24:101176. [PMID: 30921636 PMCID: PMC6438913 DOI: 10.1016/j.redox.2019.101176] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/04/2019] [Accepted: 03/20/2019] [Indexed: 01/08/2023] Open
Abstract
Selenoprotein N (SELENON) is an endoplasmic reticulum (ER) protein whose loss of function leads to a congenital myopathy associated with insulin resistance (SEPN1-related myopathy). The exact cause of the insulin resistance in patients with SELENON loss of function is not known. Skeletal muscle is the main contributor to insulin-mediated glucose uptake, and a defect in this muscle-related mechanism triggers insulin resistance and glucose intolerance. We have studied the chain of events that connect the loss of SELENON with defects in insulin-mediated glucose uptake in muscle cells and the effects of this on muscle performance. Here, we show that saturated fatty acids are more lipotoxic in SELENON-devoid cells, and blunt the insulin-mediated glucose uptake of SELENON-devoid myotubes by increasing ER stress and mounting a maladaptive ER stress response. Furthermore, the hind limb skeletal muscles of SELENON KO mice fed a high-fat diet mirrors the features of saturated fatty acid-treated myotubes, and show signs of myopathy with a compromised force production. These findings suggest that the absence of SELENON together with a high-fat dietary regimen increases susceptibility to insulin resistance by triggering a chronic ER stress in skeletal muscle and muscle weakness. Importantly, our findings suggest that environmental cues eliciting ER stress in skeletal muscle (such as a high-fat diet) affect the pathological phenotype of SEPN1-related myopathy and can therefore contribute to the assessment of prognosis beyond simple genotype-phenotype correlations.
Collapse
|
14
|
Enguita M, Razquin N, Pamplona R, Quiroga J, Prieto J, Fortes P. The cirrhotic liver is depleted of docosahexaenoic acid (DHA), a key modulator of NF-κB and TGFβ pathways in hepatic stellate cells. Cell Death Dis 2019; 10:14. [PMID: 30622239 PMCID: PMC6325107 DOI: 10.1038/s41419-018-1243-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023]
Abstract
Liver cirrhosis results from chronic hepatic damage and is characterized by derangement of the organ architecture with increased liver fibrogenesis and defective hepatocellular function. It frequently evolves into progressive hepatic insufficiency associated with high mortality unless liver transplantation is performed. We have hypothesized that the deficiency of critical nutrients such as essential omega-3 fatty acids might play a role in the progression of liver cirrhosis. Here we evaluated by LC-MS/MS the liver content of omega-3 docosahexaenoic fatty acid (DHA) in cirrhotic patients and investigated the effect of DHA in a murine model of liver injury and in the response of hepatic stellate cells (HSCs) (the main producers of collagen in the liver) to pro-fibrogenic stimuli. We found that cirrhotic livers exhibit a marked depletion of DHA and that this alteration correlates with the progression of the disease. Administration of DHA exerts potent anti-fibrogenic effects in an acute model of liver damage. Studies with HSCs show that DHA inhibits fibrogenesis more intensely than other omega-3 fatty acids. Data from expression arrays revealed that DHA blocks TGFβ and NF-κB pathways. Mechanistically, DHA decreases late, but not early, SMAD3 nuclear accumulation and inhibits p65/RelA-S536 phosphorylation, which is required for HSC survival. Notably, DHA increases ADRP expression, leading to the formation of typical quiescence-associated perinuclear lipid droplets. In conclusion, a marked depletion of DHA is present in the liver of patients with advanced cirrhosis. DHA displays anti-fibrogenic activities on HSCs targeting NF-κB and TGFβ pathways and inducing ADPR expression and quiescence in these cells.
Collapse
Affiliation(s)
- Mónica Enguita
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Nerea Razquin
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida (IRB), Lleida, Spain
| | - Jorge Quiroga
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Liver Unit, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Pamplona, Spain
| | | | - Puri Fortes
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain. .,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
| |
Collapse
|
15
|
Pozzer D, Varone E, Chernorudskiy A, Schiarea S, Missiroli S, Giorgi C, Pinton P, Canato M, Germinario E, Nogara L, Blaauw B, Zito E. A maladaptive ER stress response triggers dysfunction in highly active muscles of mice with SELENON loss. Redox Biol 2018; 20:354-366. [PMID: 30391828 PMCID: PMC6223234 DOI: 10.1016/j.redox.2018.10.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/02/2018] [Accepted: 10/21/2018] [Indexed: 12/12/2022] Open
Abstract
Selenoprotein N (SELENON) is an endoplasmic reticulum (ER) protein whose loss of function leads to human SELENON-related myopathies. SelenoN knockout (KO) mouse limb muscles, however, are protected from the disease, and display no major alterations in muscle histology or contractile properties. Interestingly, we find that the highly active diaphragm muscle shows impaired force production, in line with the human phenotype. In addition, after repeated stimulation with a protocol which induces muscle fatigue, also hind limb muscles show altered relaxation times. Mechanistically, muscle SELENON loss alters activity-dependent calcium handling selectively impinging on the Ca2+ uptake of the sarcoplasmic reticulum and elicits an ER stress response, including the expression of the maladaptive CHOP-induced ERO1. In SELENON-devoid models, ERO1 shifts ER redox to a more oxidised poise, and further affects Ca2+ uptake. Importantly, CHOP ablation in SelenoN KO mice completely prevents diaphragm dysfunction, the prolonged limb muscle relaxation after fatigue, and restores Ca2+ uptake by attenuating the induction of ERO1. These findings suggest that SELENON is part of an ER stress-dependent antioxidant response and that the CHOP/ERO1 branch of the ER stress response is a novel pathogenic mechanism underlying SELENON-related myopathies.
Collapse
Affiliation(s)
- Diego Pozzer
- Dulbecco Telethon Institute at Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ersilia Varone
- Dulbecco Telethon Institute at Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alexander Chernorudskiy
- Dulbecco Telethon Institute at Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Silvia Schiarea
- Dulbecco Telethon Institute at Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Sonia Missiroli
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Marta Canato
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Elena Germinario
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Leonardo Nogara
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Venetian Institute of Molecular Medicine, Padua, Italy
| | - Bert Blaauw
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Venetian Institute of Molecular Medicine, Padua, Italy.
| | - Ester Zito
- Dulbecco Telethon Institute at Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|