1
|
Fekete E, Bíró V, Márton A, Bakondi-Kovács I, Sándor E, Kovács B, Geoffrion N, Tsang A, Kubicek CP, Karaffa L. Transcriptomics identify the triggering of citrate export as the key event caused by manganese deficiency in Aspergillus niger. Microbiol Spectr 2024; 12:e0190624. [PMID: 39377610 PMCID: PMC11537073 DOI: 10.1128/spectrum.01906-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
For over a century, the filamentous Ascomycete fungus Aspergillus niger has played a pivotal role in the industrial production of citric acid. A critical fermentation parameter that sustains high-yield citric acid accumulation is the suboptimal concentration of manganese(II) ions in the culture broth at the early stages of the process. However, the requirement for this deficiency has not been investigated on a functional genomics level. In this study, we compared the transcriptome of the citric acid hyper-producer A. niger NRRL2270 strain grown under citric acid-producing conditions in 6-L scale bioreactors at Mn2+ ion-deficient (5 ppb) and Mn2+ ion-sufficient (100 ppb) conditions at three early time points of cultivation. Of the 11,846 genes in the genome, 963 genes (8.1% of the total) were identified as significantly differentially expressed under these conditions. Disproportionately high number of differentially regulated genes encode predicted extracellular and membrane proteins. The most abundant gene group that was upregulated in Mn2+ ion deficiency condition encodes enzymes acting on polysaccharides. In contrast, six clusters of genes encoding secondary metabolites showed downregulation under manganese deficiency. Mn2+ deficiency also triggers upregulation of the cexA gene, which encodes the citrate exporter. We provide functional evidence that the upregulation of cexA is caused by the intracellular accumulation of citrate or acetyl-CoA and is a major factor in triggering citrate overflow. IMPORTANCE Citric acid is produced on industrial scale by batch fermentation of the filamentous fungus Aspergillus niger. High-yield citric acid production requires a low (<5 ppb) manganese(II) ion concentration in the culture broth. However, the requirement for this deficiency has not been investigated on a functional genomics level. Here, we compared the transcriptome of a citric acid hyper-producer A. niger strain grown under citric acid-producing conditions in 6-L scale bioreactors at Mn2+ ion-deficient (5 ppb) and Mn2+ ion-sufficient (100 ppb) conditions at three early time points of cultivation. We observed that Mn2+ deficiency triggers an upregulation of the citrate exporter gene cexA and provides functional evidence that this event is responsible for citrate overflow. In addition to the industrial relevance, this is the first study that examined the role of Mn2+ ion deficiency in a heterotrophic eukaryotic cell on a genome-wide scale.
Collapse
Affiliation(s)
- Erzsébet Fekete
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Vivien Bíró
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- University of Debrecen, Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, Debrecen, Hungary
| | - Alexandra Márton
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- University of Debrecen, Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, Debrecen, Hungary
| | - István Bakondi-Kovács
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- University of Debrecen, Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, Debrecen, Hungary
| | - Erzsébet Sándor
- Institute of Food Science, Faculty of Agricultural and Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Béla Kovács
- Institute of Food Science, Faculty of Agricultural and Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Nicholas Geoffrion
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Québec, Canada
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Québec, Canada
| | - Christian P. Kubicek
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
2
|
Lu Z, Chen Z, Liu Y, Hua X, Gao C, Liu J. Morphological Engineering of Filamentous Fungi: Research Progress and Perspectives. J Microbiol Biotechnol 2024; 34:1197-1205. [PMID: 38693049 PMCID: PMC11239417 DOI: 10.4014/jmb.2402.02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 05/03/2024]
Abstract
Filamentous fungi are important cell factories for the production of high-value enzymes and chemicals for the food, chemical, and pharmaceutical industries. Under submerged fermentation, filamentous fungi exhibit diverse fungal morphologies that are influenced by environmental factors, which in turn affect the rheological properties and mass transfer of the fermentation system, and ultimately the synthesis of products. In this review, we first summarize the mechanisms of mycelial morphogenesis and then provide an overview of current developments in methods and strategies for morphological regulation, including physicochemical and metabolic engineering approaches. We also anticipate that rapid developments in synthetic biology and genetic manipulation tools will accelerate morphological engineering in the future.
Collapse
Affiliation(s)
- Zhengwu Lu
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Zhiqun Chen
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Yunguo Liu
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Xuexue Hua
- Shandong Fufeng Fermentation Co., Ltd., Linyi 276600, P. R. China
| | - Cuijuan Gao
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Jingjing Liu
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| |
Collapse
|
3
|
Xu J, Cheng S, Zhang R, Cai F, Zhu Z, Cao J, Wang J, Yu Q. Study on the mechanism of sodium ion inhibiting citric acid fermentation in Aspergillus niger. BIORESOURCE TECHNOLOGY 2024; 394:130245. [PMID: 38145764 DOI: 10.1016/j.biortech.2023.130245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Excessive sodium significantly inhibits citric acid fermentation by Aspergillus niger during the recycling of citric acid wastewater. This study aimed to elucidate the inhibition mechanism at the interface of physiology and transcriptomics. The results showed that excessive sodium caused a 22.3 % increase in oxalic acid secretion and a 147.6 % increase in H+-ATPase activity at the 4 h fermentation compared to the control. Meanwhile, a 13.1 % reduction in energy charge level and a 15.2 % decline in NADH content were found, which implied the effects on carbon metabolism and redox balance. In addition, transcriptomic analysis revealed that excessive sodium altered the gene expression profiles related to ATPase, hydrolase, and oxidoreductase, as well as pathways like glyoxylate metabolism, and transmembrane transport. These findings gained insights into the metabolic regulation of A. niger response to environmental stress and provided theoretical guidance for the construction of sodium-tolerant A. niger for industrial application.
Collapse
Affiliation(s)
- Jian Xu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Sulian Cheng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Ruijing Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Fengjiao Cai
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Zhengjun Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Jinghua Cao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Jiangbo Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Qi Yu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China.
| |
Collapse
|
4
|
Zhang C, Wu X, Song F, Liu S, Yu S, Zhou J. Core-Shell Droplet-Based Microfluidic Screening System for Filamentous Fungi. ACS Sens 2023; 8:3468-3477. [PMID: 37603446 DOI: 10.1021/acssensors.3c01018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Filamentous fungi are competitive hosts for the production of drugs, proteins, and chemicals. However, their utility is limited by screening methods and low throughput. In this work, a universal high-throughput system for optimizing protein production in filamentous fungi was described. Droplet microfluidics was used to encapsulate large mutant strain pools in biocompatible core-shell microdroplets designed to avoid mycelial punctures and thus sustain prolonged culture. The self-assembled split GFP was then used to characterize the secretory capacity of the strains and isolate strains with superior production titers according to the fluorescence signals. The platform was applied to optimize the α-amylase secretion of Aspergillus niger, resulting in the isolation of a strain with 2.02-fold higher secretion capacity. The system allows the analysis of >105 single cells per h and will facilitate ultrahigh-throughput screening experiments of filamentous fungi. This method could help identify improved hosts for the large-scale production of biotechnology-relevant proteins. This is a broadly applicable system that can be equally used in other hosts.
Collapse
Affiliation(s)
- Changtai Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiaohui Wu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Fuqiang Song
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Song Liu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
Mores S, de Souza Vandenberghe LP, Martinez-Burgos WJ, Rodrigues C, Soccol CR. Simultaneous reuse and treatment of sugar-sweetened beverage wastes for citric acid production. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2401-2407. [PMID: 37424583 PMCID: PMC10326170 DOI: 10.1007/s13197-023-05761-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 07/11/2023]
Abstract
This study aimed to evaluate the feasibility of using sugar-sweetened beverages (SSB) for citric acid (CA) production and its impact on chemical oxygen demand (COD) of SSB. Five types of SSB were used as a carbon source for CA production by A. niger, and the COD of each SSB was measured before and after the bioprocess. Results showed that all tested SSB were suitable for CA production, with maximum yields ranging from 13.01 to 56.62 g L- 1. The COD was reduced from 53 to 75.64%, indicating that the bioprocess effectively treated SSB wastes. The use of SSB as a substrate for CA production provides an alternative to traditional feedstocks, such as sugarcane and beet molasses. The low-cost and high availability of SSB makes it an attractive option for CA production. Moreover, the study demonstrated the potential of the bioprocess to simultaneously treat and reuse SSB wastes, reducing the environmental impact of the beverage industry. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05761-9.
Collapse
Affiliation(s)
- Sabrina Mores
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), P.O. Box 19011, Curitiba, Paraná 81531-990 Brazil
| | - Luciana Porto de Souza Vandenberghe
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), P.O. Box 19011, Curitiba, Paraná 81531-990 Brazil
| | - Walter José Martinez-Burgos
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), P.O. Box 19011, Curitiba, Paraná 81531-990 Brazil
| | - Cristine Rodrigues
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), P.O. Box 19011, Curitiba, Paraná 81531-990 Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), P.O. Box 19011, Curitiba, Paraná 81531-990 Brazil
| |
Collapse
|
6
|
Zhou S, Ding N, Han R, Deng Y. Metabolic engineering and fermentation optimization strategies for producing organic acids of the tricarboxylic acid cycle by microbial cell factories. BIORESOURCE TECHNOLOGY 2023; 379:128986. [PMID: 37001700 DOI: 10.1016/j.biortech.2023.128986] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
The organic acids of the tricarboxylic acid (TCA) pathway are important platform compounds and are widely used in many areas. The high-productivity strains and high-efficient and low-cost fermentation are required to satisfy a huge market size. The high metabolic flux of the TCA pathway endows microorganisms potential to produce high titers of these organic acids. Coupled with metabolic engineering and fermentation optimization, the titer of the organic acids has been significantly improved in recent years. Herein, we discuss and compare the recent advances in synthetic pathway engineering, cofactor engineering, transporter engineering, and fermentation optimization strategies to maximize the biosynthesis of organic acids. Such engineering strategies were mainly based on the TCA pathway and glyoxylate pathway. Furthermore, organic-acid-secretion enhancement and renewable-substrate-based fermentation are often performed to assist the biosynthesis of organic acids. Further strategies are also discussed to construct high-productivity and acid-resistant strains for industrial large-scale production.
Collapse
Affiliation(s)
- Shenghu Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Nana Ding
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Runhua Han
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Yu Deng
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
7
|
Wang H, Ke X, Jia R, Huang L, Liu Z, Zheng Y. Gibberellic acid overproduction in Fusarium fujikuroi using regulatory modification and transcription analysis. Appl Microbiol Biotechnol 2023; 107:3071-3084. [PMID: 37014394 DOI: 10.1007/s00253-023-12498-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
Gibberellic acid (GA3), one of the natural diterpenoids produced by Fusarium fujikuroi, serves as an important phytohormone in agriculture for promoting plant growth. Presently, the metabolic engineering strategies for increasing the production of GA3 are progressing slowly, which seriously restricted the advancing of the cost-effective industrial production of GA3. In this study, an industrial strain with high-yield GA3 of F. fujikuroi was constructed by metabolic modification, coupling with transcriptome analysis and promoter engineering. The over-expression of AreA and Lae1, two positive factors in the regulatory network, generated an initial producing strain with GA3 production of 2.78 g L-1. Compared with a large abundance of transcript enrichments in the GA3 synthetic gene cluster discovered by the comparative transcriptome analysis, geranylgeranyl pyrophosphate synthase 2 (Ggs2), and cytochrome P450-3 genes, two key genes that respectively participated in the initial and final step of biosynthesis, were identified to be downregulated when the highest GA3 productivity was obtained. Employing with a nitrogen-responsive bidirectional promoter, the two rate-limiting genes were dynamically upregulated, and therefore, the production of GA3 was increased to 3.02 g L-1. Furthermore, the top 20 upregulated genes were characterized in GA3 over-production, and their distributions in chromosomes suggested potential genomic regions with a high transcriptional level for further strain development. The construction of a GA3 high-yield-producing strain was successfully achieved, and insights into the enriched functional transcripts provided novel strain development targets of F. fujikuroi, offering an efficient microbial development platform for industrial GA3 production. KEY POINTS: • Global regulatory modification was achieved in F. fujikuroi for GA3 overproduction. • Comparative transcriptome analysis revealed bottlenecks in GA specific-pathway. • A dynamically nitrogen-regulated bidirectional promoter was cloned and employed.
Collapse
Affiliation(s)
- Haonan Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xia Ke
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Rui Jia
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Lianggang Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhiqiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
8
|
Brauer VS, Pessoni AM, Freitas MS, Cavalcanti-Neto MP, Ries LNA, Almeida F. Chitin Biosynthesis in Aspergillus Species. J Fungi (Basel) 2023; 9:jof9010089. [PMID: 36675910 PMCID: PMC9865612 DOI: 10.3390/jof9010089] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 01/11/2023] Open
Abstract
The fungal cell wall (FCW) is a dynamic structure responsible for the maintenance of cellular homeostasis, and is essential for modulating the interaction of the fungus with its environment. It is composed of proteins, lipids, pigments and polysaccharides, including chitin. Chitin synthesis is catalyzed by chitin synthases (CS), and up to eight CS-encoding genes can be found in Aspergillus species. This review discusses in detail the chitin synthesis and regulation in Aspergillus species, and how manipulation of chitin synthesis pathways can modulate fungal growth, enzyme production, virulence and susceptibility to antifungal agents. More specifically, the metabolic steps involved in chitin biosynthesis are described with an emphasis on how the initiation of chitin biosynthesis remains unknown. A description of the classification, localization and transport of CS was also made. Chitin biosynthesis is shown to underlie a complex regulatory network, with extensive cross-talks existing between the different signaling pathways. Furthermore, pathways and recently identified regulators of chitin biosynthesis during the caspofungin paradoxical effect (CPE) are described. The effect of a chitin on the mammalian immune system is also discussed. Lastly, interference with chitin biosynthesis may also be beneficial for biotechnological applications. Even after more than 30 years of research, chitin biosynthesis remains a topic of current interest in mycology.
Collapse
Affiliation(s)
- Veronica S. Brauer
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
| | - André M. Pessoni
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
| | - Mateus S. Freitas
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
| | - Marinaldo P. Cavalcanti-Neto
- Integrated Laboratory of Morphofunctional Sciences, Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Rio de Janeiro 27965-045, Brazil
| | - Laure N. A. Ries
- MRC Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, UK
- Correspondence: (L.N.A.R.); (F.A.)
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
- Correspondence: (L.N.A.R.); (F.A.)
| |
Collapse
|
9
|
Cao W, Zhang L, Wu L, Zhang M, Liu J, Xie Z, Liu H. Identification and genetic characterization of mitochondrial citrate transporters in Aspergillus niger. Front Microbiol 2022; 13:1009491. [PMID: 36177470 PMCID: PMC9512666 DOI: 10.3389/fmicb.2022.1009491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Aspergillus niger is a major cell factory for citric acid production, and the process of citrate export from mitochondria to cytoplasm is predicted to be one of rate-limiting steps in citric acid accumulation. Currently, the mitochondrial citrate transporters (Ctps) in A. niger are not fully characterized. Here, six putative Ctp encoding genes (ctpA to ctpF) were identified based on their homology with a mitochondrial citrate transporter ScCtp1 from Saccharomyces cerevisiae. Disruption of individual ctpA to ctpF caused varying degrees of decline in citric acid accumulation at different fermentation stages, whereas a mutant strain S1696 with disruption of all six ctps showed complete loss of citiric acid production. S1696 also exhibited delayed growth, reduced conidia formation, and decreased pigmentogenesis. Exogenous addition of citrate partially restored the conidia formation and pigmentogenesis in S1696 mutant. Reintroduction of individual ctps (ctpA to ctpF) into S1696 at the amyA locus showed that ctpA, ctpB, and ctpD restored the citric acid titers to 88.5, 93.8, and 94.6% of the parent strain, respectively. Additionally, the formation of conidia and pigment production was partially restored after reintroduction of ctpA, ctpB, or ctpD. Overexpression of respective ctpA, ctpB, and ctpD in the parent strain resulted in increases in citric acid accumulation by 32.8, 19.3, and 24.2%, respectively. These results demonstrate that CtpA, CtpB, and CtpD play important roles in citric acid transport across the mitochondrial membrane and function in a redundant manner. Enhancement of citric acid transport process can serve as a target for boosting citric acid accumulation in A. niger.
Collapse
Affiliation(s)
- Wei Cao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Licheng Zhang
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Liu Wu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Mingyi Zhang
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jiao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, Tianjin, China
| | - Zhoujie Xie
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, Tianjin, China
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- *Correspondence: Hao Liu,
| |
Collapse
|
10
|
Ellena V, Steiger MG. The importance of complete and high-quality genome sequences in Aspergillus niger research. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:935993. [PMID: 37746178 PMCID: PMC10512394 DOI: 10.3389/ffunb.2022.935993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/27/2022] [Indexed: 09/26/2023]
Abstract
The possibility to sequence the entire genome of an organism revolutionized the fields of biology and biotechnology. The first genome sequence of the important filamentous fungus Aspergillus niger was obtained in 2007, 11 years after the release of the first eukaryotic genome sequence. From that moment, genomics of A. niger has seen major progresses, facilitated by the advances in the sequencing technologies and in the methodologies for gene function prediction. However, there are still challenges to face when trying to obtain complete genomes, equipped with all the repetitive sequences that they contain and without omitting the mitochondrial sequences. The aim of this perspective article is to discuss the current status of A. niger genomics and draw attention to the open challenges that the fungal community should address to move research of this important fungus forward.
Collapse
Affiliation(s)
- Valeria Ellena
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria
- Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology (TU Wien), Vienna, Austria
| | - Matthias G. Steiger
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria
- Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology (TU Wien), Vienna, Austria
| |
Collapse
|
11
|
Yoshimi A, Miyazawa K, Kawauchi M, Abe K. Cell Wall Integrity and Its Industrial Applications in Filamentous Fungi. J Fungi (Basel) 2022; 8:435. [PMID: 35628691 PMCID: PMC9148135 DOI: 10.3390/jof8050435] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Signal transduction pathways regulating cell wall integrity (CWI) in filamentous fungi have been studied taking into account findings in budding yeast, and much knowledge has been accumulated in recent years. Given that the cell wall is essential for viability in fungi, its architecture has been analyzed in relation to virulence, especially in filamentous fungal pathogens of plants and humans. Although research on CWI signaling in individual fungal species has progressed, an integrated understanding of CWI signaling in diverse fungi has not yet been achieved. For example, the variety of sensor proteins and their functional differences among different fungal species have been described, but the understanding of their general and species-specific biological functions is limited. Our long-term research interest is CWI signaling in filamentous fungi. Here, we outline CWI signaling in these fungi, from sensor proteins required for the recognition of environmental changes to the regulation of cell wall polysaccharide synthesis genes. We discuss the similarities and differences between the functions of CWI signaling factors in filamentous fungi and in budding yeast. We also describe the latest findings on industrial applications, including those derived from studies on CWI signaling: the development of antifungal agents and the development of highly productive strains of filamentous fungi with modified cell surface characteristics by controlling cell wall biogenesis.
Collapse
Affiliation(s)
- Akira Yoshimi
- Laboratory of Environmental Interface Technology of Filamentous Fungi, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan; (A.Y.); (M.K.)
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
| | - Ken Miyazawa
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
- Laboratory of Filamentous Mycoses, Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo 162-8640, Japan;
| | - Moriyuki Kawauchi
- Laboratory of Environmental Interface Technology of Filamentous Fungi, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan; (A.Y.); (M.K.)
| | - Keietsu Abe
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
- Laboratory of Applied Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
12
|
Xue X, Bi F, Liu B, Li J, Zhang L, Zhang J, Gao Q, Wang D. Improving citric acid production of an industrial Aspergillus niger CGMCC 10142: identification and overexpression of a high-affinity glucose transporter with different promoters. Microb Cell Fact 2021; 20:168. [PMID: 34446025 PMCID: PMC8394697 DOI: 10.1186/s12934-021-01659-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 08/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glucose transporters play an important role in the fermentation of citric acid. In this study, a high-affinity glucose transporter (HGT1) was identified and overexpressed in the industrial strain A. niger CGMCC 10142. HGT1-overexpressing strains using the PglaA and Paox1 promoters were constructed to verify the glucose transporter functions. RESULT As hypothesized, the HGT1-overexpressing strains showed higher citric acid production and lower residual sugar contents. The best-performing strain A. niger 20-15 exhibited a reduction of the total sugar content and residual reducing sugars by 16.5 and 44.7%, while the final citric acid production was significantly increased to 174.1 g/L, representing a 7.3% increase compared to A. niger CGMCC 10142. Measurement of the mRNA expression levels of relevant genes at different time-points during the fermentation indicated that in addition to HGT1, citrate synthase and glucokinase were also expressed at higher levels in the overexpression strains. CONCLUSION The results indicate that HGT1 overexpression resolved the metabolic bottleneck caused by insufficient sugar transport and thereby improved the sugar utilization rate. This study demonstrates the usefulness of the high-affinity glucose transporter HGT1 for improving the citric acid fermentation process of Aspergillus niger CGMCC 10142.
Collapse
Affiliation(s)
- Xianli Xue
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Futi Bi
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.,Tianjin Key Laboratory of Industrial Fermentation Microbiology, Tianjin, 300457, People's Republic of China
| | - Boya Liu
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.,Tianjin Key Laboratory of Industrial Fermentation Microbiology, Tianjin, 300457, People's Republic of China
| | - Jie Li
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Lan Zhang
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Jian Zhang
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Qiang Gao
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Depei Wang
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China. .,Tianjin Key Laboratory of Industrial Fermentation Microbiology, Tianjin, 300457, People's Republic of China. .,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
13
|
Potential Valorization of Organic Waste Streams to Valuable Organic Acids through Microbial Conversion: A South African Case Study. Catalysts 2021. [DOI: 10.3390/catal11080964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The notion of a “biobased economy” in the context of a developing country such as South Africa (SA) necessitates the development of technologies that utilize sustainable feedstocks, have simple and robust operations, are feasible at small scale and produce a variety of valuable bioproducts, thus fitting the biorefinery concept. This case study focuses on the microbial production of higher-value products from selected organic waste streams abundant in the South African agricultural sector using microbes adapted to utilize different parts of biomass waste streams. A ruminant-based carboxylate platform based on mixed or undefined anaerobic co-cultures of rumen microorganisms can convert the carbohydrate polymers in the lignocellulosic part of organic waste streams to carboxylic acids that can be upgraded to biofuels or green chemicals. Furthermore, yeast and fungi can convert the simpler carbohydrates (such as the sugars and malic acid in grape and apple pomace) to ethanol and high-value carboxylic acids, such as lactic, fumaric, succinic and citric acid. This review will discuss the combinational use of the ruminal carboxylate platform and native or recombinant yeasts to valorize biomass waste streams through the production of higher-value organic acids with various applications.
Collapse
|
14
|
Cairns TC, Zheng X, Zheng P, Sun J, Meyer V. Turning Inside Out: Filamentous Fungal Secretion and Its Applications in Biotechnology, Agriculture, and the Clinic. J Fungi (Basel) 2021; 7:535. [PMID: 34356914 PMCID: PMC8307877 DOI: 10.3390/jof7070535] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Filamentous fungi are found in virtually every marine and terrestrial habitat. Vital to this success is their ability to secrete a diverse range of molecules, including hydrolytic enzymes, organic acids, and small molecular weight natural products. Industrial biotechnologists have successfully harnessed and re-engineered the secretory capacity of dozens of filamentous fungal species to make a diverse portfolio of useful molecules. The study of fungal secretion outside fermenters, e.g., during host infection or in mixed microbial communities, has also led to the development of novel and emerging technological breakthroughs, ranging from ultra-sensitive biosensors of fungal disease to the efficient bioremediation of polluted environments. In this review, we consider filamentous fungal secretion across multiple disciplinary boundaries (e.g., white, green, and red biotechnology) and product classes (protein, organic acid, and secondary metabolite). We summarize the mechanistic understanding for how various molecules are secreted and present numerous applications for extracellular products. Additionally, we discuss how the control of secretory pathways and the polar growth of filamentous hyphae can be utilized in diverse settings, including industrial biotechnology, agriculture, and the clinic.
Collapse
Affiliation(s)
- Timothy C. Cairns
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
15
|
|
16
|
Laothanachareon T, Bruinsma L, Nijsse B, Schonewille T, Suarez-Diez M, Tamayo-Ramos JA, Martins dos Santos VAP, Schaap PJ. Global Transcriptional Response of Aspergillus niger to Blocked Active Citrate Export through Deletion of the Exporter Gene. J Fungi (Basel) 2021; 7:jof7060409. [PMID: 34071072 PMCID: PMC8224569 DOI: 10.3390/jof7060409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Aspergillus niger is the major industrial citrate producer worldwide. Export as well as uptake of citric acid are believed to occur by active, proton-dependent, symport systems. Both are major bottlenecks for industrial citrate production. Therefore, we assessed the consequences of deleting the citT gene encoding the A. niger citrate exporter, effectively blocking active citrate export. We followed the consumption of glucose and citrate as carbon sources, monitored the secretion of organic acids and carried out a thorough transcriptome pathway enrichment analysis. Under controlled cultivation conditions that normally promote citrate secretion, the knock-out strain secreted negligible amounts of citrate. Blocking active citrate export in this way led to a reduced glucose uptake and a reduced expression of high-affinity glucose transporter genes, mstG and mstH. The glyoxylate shunt was strongly activated and an increased expression of the OAH gene was observed, resulting in a more than two-fold higher concentration of oxalate in the medium. Deletion of citT did not affect citrate uptake suggesting that citrate export and citrate uptake are uncoupled from the system.
Collapse
Affiliation(s)
- Thanaporn Laothanachareon
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (L.B.); (B.N.); (T.S.); (M.S.-D.); (P.J.S.)
- Enzyme Technology Laboratory, Biorefinery and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Khlong Luang, Pathumthani 12120, Thailand
- Correspondence: (T.L.); (V.A.P.M.d.S.)
| | - Lyon Bruinsma
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (L.B.); (B.N.); (T.S.); (M.S.-D.); (P.J.S.)
| | - Bart Nijsse
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (L.B.); (B.N.); (T.S.); (M.S.-D.); (P.J.S.)
| | - Tom Schonewille
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (L.B.); (B.N.); (T.S.); (M.S.-D.); (P.J.S.)
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (L.B.); (B.N.); (T.S.); (M.S.-D.); (P.J.S.)
| | - Juan Antonio Tamayo-Ramos
- International Research Center in Critical Raw Materials-ICCRAM, University of Burgos, 09001 Burgos, Spain;
| | - Vitor A. P. Martins dos Santos
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (L.B.); (B.N.); (T.S.); (M.S.-D.); (P.J.S.)
- LifeGlimmer GmbH, 12163 Berlin, Germany
- Correspondence: (T.L.); (V.A.P.M.d.S.)
| | - Peter J. Schaap
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (L.B.); (B.N.); (T.S.); (M.S.-D.); (P.J.S.)
| |
Collapse
|
17
|
|
18
|
Mores S, Vandenberghe LPDS, Magalhães Júnior AI, de Carvalho JC, de Mello AFM, Pandey A, Soccol CR. Citric acid bioproduction and downstream processing: Status, opportunities, and challenges. BIORESOURCE TECHNOLOGY 2021; 320:124426. [PMID: 33249260 DOI: 10.1016/j.biortech.2020.124426] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Citric acid (CA) has been widely used in different industrial sectors, being produced through fermentation of low-cost feedstock. The development of downstream processes, easier to operate, environmentally friendly, and more economic than precipitation, is certainly a challenge in CA bioproduction. Large volumes of by-products generated in precipitation require treatment before disposal. Adsorption, extraction, and membrane separation have been shown to have a lower environmental impact than precipitation, but the technological maturity of these methods is still limited. However, reactive extraction and adsorption have great potential for industrial applications. This review shows that there is still much to be explored, both about the factors that are intrinsic to the techniques, but also in their combination for new processes' development. This review reports the most recent advances on CA bioproduction, with significant information about recovery and purification methods involving this highly industrially demanded organic acid.
Collapse
Affiliation(s)
- Sabrina Mores
- Federal University of Paraná (UFPR). Department of Bioprocess Engineering and Biotechnology. P.O. Box 19011, ZIP Code 81531-990, Curitiba, Paraná, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Federal University of Paraná (UFPR). Department of Bioprocess Engineering and Biotechnology. P.O. Box 19011, ZIP Code 81531-990, Curitiba, Paraná, Brazil.
| | - Antonio Irineudo Magalhães Júnior
- Federal University of Paraná (UFPR). Department of Bioprocess Engineering and Biotechnology. P.O. Box 19011, ZIP Code 81531-990, Curitiba, Paraná, Brazil
| | - Júlio César de Carvalho
- Federal University of Paraná (UFPR). Department of Bioprocess Engineering and Biotechnology. P.O. Box 19011, ZIP Code 81531-990, Curitiba, Paraná, Brazil
| | - Ariane Fátima Murawski de Mello
- Federal University of Paraná (UFPR). Department of Bioprocess Engineering and Biotechnology. P.O. Box 19011, ZIP Code 81531-990, Curitiba, Paraná, Brazil
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Carlos Ricardo Soccol
- Federal University of Paraná (UFPR). Department of Bioprocess Engineering and Biotechnology. P.O. Box 19011, ZIP Code 81531-990, Curitiba, Paraná, Brazil
| |
Collapse
|
19
|
Fang Q, Du M, Chen J, Liu T, Zheng Y, Liao Z, Zhong Q, Wang L, Fang X, Wang J. Degradation and Detoxification of Aflatoxin B1 by Tea-Derived Aspergillus niger RAF106. Toxins (Basel) 2020; 12:toxins12120777. [PMID: 33291337 PMCID: PMC7762301 DOI: 10.3390/toxins12120777] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022] Open
Abstract
Microbial degradation is an effective and attractive method for eliminating aflatoxin B1 (AFB1), which is severely toxic to humans and animals. In this study, Aspergillus niger RAF106 could effectively degrade AFB1 when cultivated in Sabouraud dextrose broth (SDB) with contents of AFB1 ranging from 0.1 to 4 μg/mL. Treatment with yeast extract as a nitrogen source stimulated the degradation, but treatment with NaNO3 and NaNO2 as nitrogen sources and lactose and sucrose as carbon sources suppressed the degradation. Moreover, A. niger RAF106 still degraded AFB1 at initial pH values that ranged from 4 to 10 and at cultivation temperatures that ranged from 25 to 45 °C. In addition, intracellular enzymes or proteins with excellent thermotolerance were verified as being able to degrade AFB1 into metabolites with low or no mutagenicity. Furthermore, genomic sequence analysis indicated that the fungus was considered to be safe owing to the absence of virulence genes and the gene clusters for the synthesis of mycotoxins. These results indicate that A. niger RAF106 and its intracellular enzymes or proteins have a promising potential to be applied commercially in the processing and industry of food and feed to detoxify AFB1.
Collapse
Affiliation(s)
- Qian’an Fang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Q.F.); (M.D.); (J.C.); (T.L.); (Y.Z.); (Z.L.); (Q.Z.); (L.W.)
| | - Minru Du
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Q.F.); (M.D.); (J.C.); (T.L.); (Y.Z.); (Z.L.); (Q.Z.); (L.W.)
| | - Jianwen Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Q.F.); (M.D.); (J.C.); (T.L.); (Y.Z.); (Z.L.); (Q.Z.); (L.W.)
| | - Tong Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Q.F.); (M.D.); (J.C.); (T.L.); (Y.Z.); (Z.L.); (Q.Z.); (L.W.)
| | - Yong Zheng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Q.F.); (M.D.); (J.C.); (T.L.); (Y.Z.); (Z.L.); (Q.Z.); (L.W.)
| | - Zhenlin Liao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Q.F.); (M.D.); (J.C.); (T.L.); (Y.Z.); (Z.L.); (Q.Z.); (L.W.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Q.F.); (M.D.); (J.C.); (T.L.); (Y.Z.); (Z.L.); (Q.Z.); (L.W.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Li Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Q.F.); (M.D.); (J.C.); (T.L.); (Y.Z.); (Z.L.); (Q.Z.); (L.W.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Xiang Fang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Q.F.); (M.D.); (J.C.); (T.L.); (Y.Z.); (Z.L.); (Q.Z.); (L.W.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
- Correspondence: (X.F.); (J.W.)
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Q.F.); (M.D.); (J.C.); (T.L.); (Y.Z.); (Z.L.); (Q.Z.); (L.W.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Correspondence: (X.F.); (J.W.)
| |
Collapse
|
20
|
Odoni DI, Vazquez-Vilar M, van Gaal MP, Schonewille T, Martins Dos Santos VAP, Tamayo-Ramos JA, Suarez-Diez M, Schaap PJ. Aspergillus niger citrate exporter revealed by comparison of two alternative citrate producing conditions. FEMS Microbiol Lett 2020; 366:5437674. [PMID: 31062025 PMCID: PMC6502548 DOI: 10.1093/femsle/fnz071] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/05/2019] [Indexed: 02/02/2023] Open
Abstract
Currently, there is no consensus regarding the mechanism underlying Aspergillus niger citrate biosynthesis and secretion. We hypothesise that depending on the experimental setup, extracellular citrate accumulation can have fundamentally different underlying transcriptomic landscapes. We show that varying the amount and type of supplement of an arginine auxotrophic A. niger strain results in transcriptional down-regulation of citrate metabolising enzymes in the condition in which more citrate is accumulated extracellularly. This contrasts with the transcriptional adaptations when increased citrate production is triggered by iron limitation. By combining gene expression data obtained from these two very distinct experimental setups with hidden Markov models and transporter homology approaches, we were able to compile a shortlist of the most likely citrate transporter candidates. Two candidates (An17g01710 and An09g06720m.01) were heterologously expressed in the yeast Saccharomyces cerevisiae, and one of the resultant mutants showed the ability to secrete citrate. Our findings provide steps in untangling the complex interplay of different mechanisms underlying A. niger citrate accumulation, and we demonstrate how a comparative transcriptomics approach complemented with further bioinformatics analyses can be used to pinpoint a fungal citrate exporter.
Collapse
Affiliation(s)
- Dorett I Odoni
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Marta Vazquez-Vilar
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Merlijn P van Gaal
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Tom Schonewille
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Juan Antonio Tamayo-Ramos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.,International Research Center in Critical Raw Materials-ICCRAM, Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
21
|
LaeA Controls Citric Acid Production through Regulation of the Citrate Exporter-Encoding cexA Gene in Aspergillus luchuensis mut. kawachii. Appl Environ Microbiol 2020; 86:AEM.01950-19. [PMID: 31862728 DOI: 10.1128/aem.01950-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/17/2019] [Indexed: 11/20/2022] Open
Abstract
The putative methyltransferase LaeA is a global regulator of metabolic and development processes in filamentous fungi. We characterized the homologous laeA genes of the white koji fungus Aspergillus luchuensis mut. kawachii (A. kawachii) to determine their role in citric acid hyperproduction. The ΔlaeA strain exhibited a significant reduction in citric acid production. Cap analysis gene expression (CAGE) revealed that laeA is required for the expression of a putative citrate exporter-encoding cexA gene, which is critical for citric acid production. Deficient citric acid production by a ΔlaeA strain was rescued by the overexpression of cexA to a level comparable with that of a cexA-overexpressing ΔcexA strain. In addition, chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) analysis indicated that LaeA regulates the expression of cexA via methylation levels of the histones H3K4 and H3K9. These results indicate that LaeA is involved in citric acid production through epigenetic regulation of cexA in A. kawachii IMPORTANCE A. kawachii has been traditionally used for production of the distilled spirit shochu in Japan. Citric acid produced by A. kawachii plays an important role in preventing microbial contamination during the shochu fermentation process. This study characterized homologous laeA genes; using CAGE, complementation tests, and ChIP-qPCR, it was found that laeA is required for citric acid production through the regulation of cexA in A. kawachii The epigenetic regulation of citric acid production elucidated in this study will be useful for controlling the fermentation processes of shochu.
Collapse
|
22
|
Sui YF, Ouyang LM, Schütze T, Cheng S, Meyer V, Zhuang YP. Comparative genomics of the aconidial Aspergillus niger strain LDM3 predicts genes associated with its high protein secretion capacity. Appl Microbiol Biotechnol 2020; 104:2623-2637. [DOI: 10.1007/s00253-020-10398-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/02/2020] [Accepted: 01/20/2020] [Indexed: 01/14/2023]
|
23
|
Shinkawa S, Mitsuzawa S. Feasibility study of on-site solid-state enzyme production by Aspergillus oryzae. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:31. [PMID: 32127918 PMCID: PMC7045521 DOI: 10.1186/s13068-020-1669-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/28/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND The development of biorefinery systems that use lignocellulosic biomass as a renewable carbon source to produce fuels and chemicals is attracting increasing attention. The process cost of enzymatic saccharification of biomass is a major challenge for commercialization. To decrease this cost, researchers have proposed on-site solid-state fermentation (SSF). This study investigated the feasibility of using Aspergillus oryzae as a host microorganism for SSF recombinant enzyme production with ammonia-treated rice straw as model biomass. Eight A. oryzae strains were tested, all of which are used in the food industry. We evaluated the effects of acetic acid, a fermentation inhibitor. We also developed a platform strain for targeted recombinant enzyme production by gene engineering technologies. RESULTS The SSF validation test showed variation in the visibility of mycelium growth and secreted protein in all eight A. oryzae strains. The strains used to produce shoyu and miso grew better under test conditions. The ammonia-treated rice straw contained noticeable amounts of acetic acid. This acetic acid enhanced the protein production by A. oryzae in a liquid-state fermentation test. The newly developed platform strain successfully secreted three foreign saccharifying enzymes. CONCLUSIONS A. oryzae is a promising candidate as a host microorganism for on-site SSF recombinant enzyme production, which bodes well for the future development of a more cost-efficient saccharifying enzyme production system.
Collapse
Affiliation(s)
- Satoru Shinkawa
- Fundamental Technology Center, Honda R&D Co., Ltd., 1-4-1 Chuo, Wako-shi, Saitama, 351-0113 Japan
- Present Address: Honda Research Institute Japan Co., Ltd., 8-1 Honcho, Wako-shi, Saitama, 351-0188 Japan
| | - Shigenobu Mitsuzawa
- Fundamental Technology Center, Honda R&D Co., Ltd., 1-4-1 Chuo, Wako-shi, Saitama, 351-0113 Japan
- Present Address: Honda Research Institute Japan Co., Ltd., 8-1 Honcho, Wako-shi, Saitama, 351-0188 Japan
| |
Collapse
|
24
|
Hossain AH, Hendrikx A, Punt PJ. Identification of novel citramalate biosynthesis pathways in Aspergillus niger. Fungal Biol Biotechnol 2019; 6:19. [PMID: 31827810 PMCID: PMC6862759 DOI: 10.1186/s40694-019-0084-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/04/2019] [Indexed: 11/26/2022] Open
Abstract
Background The filamentous fungus Aspergillus niger is frequently used for industrial production of fermentative products such as enzymes, proteins and biochemicals. Notable examples of industrially produced A. niger fermentation products are glucoamylase and citric acid. Most notably, the industrial production of citric acid achieves high titers, yield and productivities, a feat that has prompted researchers to propose A. niger to serve as heterologous production host for the industrial production of itaconic acid (IA), a promising sustainable chemical building-block for the fabrication of various synthetic resins, coatings, and polymers. Heterologous production of IA in A. niger has resulted in unexpected levels of metabolic rewiring that has led us to the identification of IA biodegradation pathway in A. niger. In this study we have attempted to identify the final product of the IA biodegradation pathway and analyzed the effect of metabolic rewiring on the bioproduction of 9 industrially relevant organic acids. Results IA biodegradation manifests in diminishing titers of IA and the occurrence of an unidentified compound in the HPLC profile. Based on published results on the IA biodegradation pathway, we hypothesized that the final product of IA biodegradation in A. niger may be citramalic acid (CM). Based on detailed HPLC analysis, we concluded that the unidentified compound is indeed CM. Furthermore, by transcriptome analysis we explored the effect of metabolic rewiring on the production of 9 industrially relevant organic acids by transcriptome analysis of IA producing and WT A. niger strains. Interestingly, this analysis led to the identification of a previously unknown biosynthetic cluster that is proposed to be involved in the biosynthesis of CM. Upon overexpression of the putative citramalate synthase and a genomically clustered organic acid transporter, we have observed CM bioproduction by A. niger. Conclusion In this study, we have shown that the end product of IA biodegradation pathway in A. niger is CM. Knock-out of the IA biodegradation pathway results in the cessation of CM production. Furthermore, in this study we have identified a citramalate biosynthesis pathway, which upon overexpression drives citramalate bioproduction in A. niger.
Collapse
Affiliation(s)
- Abeer H Hossain
- Dutch DNA Biotech B.V., Padualaan 8, 3584 CH Utrecht, The Netherlands.,2Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Aiko Hendrikx
- Dutch DNA Biotech B.V., Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Peter J Punt
- Dutch DNA Biotech B.V., Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
25
|
Cairns TC, Feurstein C, Zheng X, Zhang LH, Zheng P, Sun J, Meyer V. Functional exploration of co-expression networks identifies a nexus for modulating protein and citric acid titres in Aspergillus niger submerged culture. Fungal Biol Biotechnol 2019; 6:18. [PMID: 31728200 PMCID: PMC6842248 DOI: 10.1186/s40694-019-0081-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/21/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Filamentous fungal cell factories are used to produce numerous proteins, enzymes, and organic acids. Protein secretion and filamentous growth are tightly coupled at the hyphal tip. Additionally, both these processes require ATP and amino acid precursors derived from the citric acid cycle. Despite this interconnection of organic acid production and protein secretion/filamentous growth, few studies in fungi have identified genes which may concomitantly impact all three processes. RESULTS We applied a novel screen of a global co-expression network in the cell factory Aspergillus niger to identify candidate genes which may concomitantly impact macromorphology, and protein/organic acid fermentation. This identified genes predicted to encode the Golgi localized ArfA GTPase activating protein (GAP, AgeB), and ArfA guanine nucleotide exchange factors (GEFs SecG and GeaB) to be co-expressed with citric acid cycle genes. Consequently, we used CRISPR-based genome editing to place the titratable Tet-on expression system upstream of ageB, secG, and geaB in A. niger. Functional analysis revealed that ageB and geaB are essential whereas secG was dispensable for early filamentous growth. Next, gene expression was titrated during submerged cultivations under conditions for either protein or organic acid production. ArfA regulators played varied and culture-dependent roles on pellet formation. Notably, ageB or geaB expression levels had major impacts on protein secretion, whereas secG was dispensable. In contrast, reduced expression of each predicted ArfA regulator resulted in an absence of citric acid in growth media. Finally, titrated expression of either GEFs resulted in an increase in oxaloacetic acid concentrations in supernatants. CONCLUSION Our data suggest that the Golgi may play an underappreciated role in modulating organic acid titres during industrial applications, and that this is SecG, GeaB and AgeB dependent in A. niger. These data may lead to novel avenues for strain optimization in filamentous fungi for improved protein and organic acid titres.
Collapse
Affiliation(s)
- Timothy C. Cairns
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Claudia Feurstein
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Institute of Biotechnology, Chair of Applied and Molecular Microbiology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Li Hui Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457 China
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Vera Meyer
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Institute of Biotechnology, Chair of Applied and Molecular Microbiology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
26
|
Yang L, Linde T, Hossain AH, Lübeck M, Punt PJ, Lübeck PS. Disruption of a putative mitochondrial oxaloacetate shuttle protein in Aspergillus carbonarius results in secretion of malic acid at the expense of citric acid production. BMC Biotechnol 2019; 19:72. [PMID: 31684928 PMCID: PMC6829807 DOI: 10.1186/s12896-019-0572-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In filamentous fungi, transport of organic acids across the mitochondrial membrane is facilitated by active transport via shuttle proteins. These transporters may transfer different organic acids across the membrane while taking others the opposite direction. In Aspergillus niger, accumulation of malate in the cytosol can trigger production of citric acid via the exchange of malate and citrate across the mitochondrial membrane. Several mitochondrial organic acid transporters were recently studied in A. niger showing their effects on organic acid production. RESULTS In this work, we studied another citric acid producing fungus, Aspergillus carbonarius, and identified by genome-mining a putative mitochondrial transporter MtpA, which was not previously studied, that might be involved in production of citric acid. This gene named mtpA encoding a putative oxaloacetate transport protein was expressed constitutively in A. carbonarius based on transcription analysis. To study its role in organic acid production, we disrupted the gene and analyzed its effects on production of citric acid and other organic acids, such as malic acid. In total, 6 transformants with gene mtpA disrupted were obtained and they showed secretion of malic acid at the expense of citric acid production. CONCLUSION A putative oxaloacetate transporter gene which is potentially involved in organic acid production by A. carbonarius was identified and further investigated on its effects on production of citric acid and malic acid. The mtpA knockout strains obtained produced less citric acid and more malic acid than the wild type, in agreement with our original hypothesis. More extensive studies should be conducted in order to further reveal the mechanism of organic acid transport as mediated by the MtpA transporter.
Collapse
Affiliation(s)
- Lei Yang
- Department of Chemistry and Bioscience, Section for Sustainable Biotechnology, Aalborg University, A.C. Meyers Vaenge 15, DK-2450, Copenhagen, SV, Denmark
| | - Tore Linde
- Department of Chemistry and Bioscience, Section for Sustainable Biotechnology, Aalborg University, A.C. Meyers Vaenge 15, DK-2450, Copenhagen, SV, Denmark.,Present address: AGC Biologics, Vandtaarnsvej 83B, DK-2860, Soeborg, Copenhagen, Denmark
| | - Abeer H Hossain
- Dutch DNA Biotech BV, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Mette Lübeck
- Department of Chemistry and Bioscience, Section for Sustainable Biotechnology, Aalborg University, A.C. Meyers Vaenge 15, DK-2450, Copenhagen, SV, Denmark
| | - Peter J Punt
- Dutch DNA Biotech BV, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Peter S Lübeck
- Department of Chemistry and Bioscience, Section for Sustainable Biotechnology, Aalborg University, A.C. Meyers Vaenge 15, DK-2450, Copenhagen, SV, Denmark.
| |
Collapse
|
27
|
Kaur B, Punekar NS. Autophagy is important to the acidogenic metabolism of Aspergillus niger. PLoS One 2019; 14:e0223895. [PMID: 31603923 PMCID: PMC6788731 DOI: 10.1371/journal.pone.0223895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/01/2019] [Indexed: 11/24/2022] Open
Abstract
Significant phenotypic overlaps exist between autophagy and acidogenesis in Aspergillus niger. The possible role of autophagy in the acidogenic growth and metabolism of this fungus was therefore examined and the movement of cytosolic EGFP to vacuoles served to monitor this phenomenon. An autophagy response to typical as well as a metabolic inhibitor-induced nitrogen starvation was observed in A. niger mycelia. The vacuolar re-localization of cytosolic EGFP was not observed upon nitrogen starvation in the A. niger Δatg1 strain. The acidogenic growth of the fungus consisted of a brief log phase followed by an extended autophagy-like state throughout the idiophase of fermentation. Mycelia in the idiophase were highly vacuolated and EGFP was localized to the vacuoles but no autolysis was observed. Both autophagy and acidogenesis are compromised in Δatg1 and Δatg8 strains of A. niger. The acidogenic growth of the fungus thus appears to mimic a condition of nutrient limitation and is associated with an extended autophagy-like state. This crucial role of autophagy in acidogenic A. niger physiology could be of value in improving citric acid fermentation.
Collapse
Affiliation(s)
- Baljinder Kaur
- Metabolism and Enzymology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Narayan S. Punekar
- Metabolism and Enzymology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- * E-mail:
| |
Collapse
|
28
|
Hossain AH, van Gerven R, Overkamp KM, Lübeck PS, Taşpınar H, Türker M, Punt PJ. Metabolic engineering with ATP-citrate lyase and nitrogen source supplementation improves itaconic acid production in Aspergillus niger. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:233. [PMID: 31583019 PMCID: PMC6767652 DOI: 10.1186/s13068-019-1577-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/21/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Bio-based production of organic acids promises to be an attractive alternative for the chemicals industry to substitute petrochemicals as building-block chemicals. In recent years, itaconic acid (IA, methylenesuccinic acid) has been established as a sustainable building-block chemical for the manufacture of various products such as synthetic resins, coatings, and biofuels. The natural IA producer Aspergillus terreus is currently used for industrial IA production; however, the filamentous fungus Aspergillus niger has been suggested to be a more suitable host for this purpose. In our previous report, we communicated the overexpression of a putative cytosolic citrate synthase citB in an A. niger strain carrying the full IA biosynthesis gene cluster from A. terreus, which resulted in the highest final titer reported for A. niger (26.2 g/L IA). In this research, we have attempted to improve this pathway by increasing the cytosolic acetyl-CoA pool. Additionally, we have also performed fermentation optimization by varying the nitrogen source and concentration. RESULTS To increase the cytosolic acetyl-CoA pool, we have overexpressed genes acl1 and acl2 that together encode for ATP-citrate lyase (ACL). Metabolic engineering of ACL resulted in improved IA production through an apparent increase in glycolytic flux. Strains that overexpress acl12 show an increased yield, titer and productivity in comparison with parental strain CitB#99. Furthermore, IA fermentation conditions were improved by nitrogen supplementation, which resulted in alkalization of the medium and thereby reducing IA-induced weak-acid stress. In turn, the alkalizing effect of nitrogen supplementation enabled an elongated idiophase and allowed final titers up to 42.7 g/L to be reached at a productivity of 0.18 g/L/h and yield of 0.26 g/g in 10-L bioreactors. CONCLUSION Ultimately, this study shows that metabolic engineering of ACL in our rewired IA biosynthesis pathway leads to improved IA production in A. niger due to an increase in glycolytic flux. Furthermore, IA fermentation conditions were improved by nitrogen supplementation that alleviates IA induced weak-acid stress and extends the idiophase.
Collapse
Affiliation(s)
- Abeer H. Hossain
- Dutch DNA Biotech B.V., Padualaan 8, 3584 CH Utrecht, The Netherlands
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Roy van Gerven
- Dutch DNA Biotech B.V., Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Karin M. Overkamp
- Dutch DNA Biotech B.V., Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Peter S. Lübeck
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University, A.C. Meyers Vaenge 15, 2450 Copenhagen SV, Denmark
| | - Hatice Taşpınar
- Pakmaya, Kosekoy Mah. Ankara Cad. No:277, 41310 Kartepe, Kocaeli Turkey
| | - Mustafa Türker
- Pakmaya, Kosekoy Mah. Ankara Cad. No:277, 41310 Kartepe, Kocaeli Turkey
| | - Peter J. Punt
- Dutch DNA Biotech B.V., Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
29
|
Schäpe P, Kwon MJ, Baumann B, Gutschmann B, Jung S, Lenz S, Nitsche B, Paege N, Schütze T, Cairns TC, Meyer V. Updating genome annotation for the microbial cell factory Aspergillus niger using gene co-expression networks. Nucleic Acids Res 2019; 47:559-569. [PMID: 30496528 PMCID: PMC6344863 DOI: 10.1093/nar/gky1183] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022] Open
Abstract
A significant challenge in our understanding of biological systems is the high number of genes with unknown function in many genomes. The fungal genus Aspergillus contains important pathogens of humans, model organisms, and microbial cell factories. Aspergillus niger is used to produce organic acids, proteins, and is a promising source of new bioactive secondary metabolites. Out of the 14,165 open reading frames predicted in the A. niger genome only 2% have been experimentally verified and over 6,000 are hypothetical. Here, we show that gene co-expression network analysis can be used to overcome this limitation. A meta-analysis of 155 transcriptomics experiments generated co-expression networks for 9,579 genes (∼65%) of the A. niger genome. By populating this dataset with over 1,200 gene functional experiments from the genus Aspergillus and performing gene ontology enrichment, we could infer biological processes for 9,263 of A. niger genes, including 2,970 hypothetical genes. Experimental validation of selected co-expression sub-networks uncovered four transcription factors involved in secondary metabolite synthesis, which were used to activate production of multiple natural products. This study constitutes a significant step towards systems-level understanding of A. niger, and the datasets can be used to fuel discoveries of model systems, fungal pathogens, and biotechnology.
Collapse
Affiliation(s)
- P Schäpe
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - M J Kwon
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - B Baumann
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - B Gutschmann
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - S Jung
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - S Lenz
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - B Nitsche
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - N Paege
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - T Schütze
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - T C Cairns
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - V Meyer
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
30
|
Presnell KV, Alper HS. Systems Metabolic Engineering Meets Machine Learning: A New Era for Data-Driven Metabolic Engineering. Biotechnol J 2019; 14:e1800416. [PMID: 30927499 DOI: 10.1002/biot.201800416] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/20/2019] [Indexed: 12/30/2022]
Abstract
The recent increase in high-throughput capacity of 'omics datasets combined with advances and interest in machine learning (ML) have created great opportunities for systems metabolic engineering. In this regard, data-driven modeling methods have become increasingly valuable to metabolic strain design. In this review, the nature of 'omics is discussed and a broad introduction to the ML algorithms combining these datasets into predictive models of metabolism and metabolic rewiring is provided. Next, this review highlights recent work in the literature that utilizes such data-driven methods to inform various metabolic engineering efforts for different classes of application including product maximization, understanding and profiling phenotypes, de novo metabolic pathway design, and creation of robust system-scale models for biotechnology. Overall, this review aims to highlight the potential and promise of using ML algorithms with metabolic engineering and systems biology related datasets.
Collapse
Affiliation(s)
- Kristin V Presnell
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, 100 E 24 St., Austin, TX, 78712, USA
| |
Collapse
|
31
|
Cairns TC, Zheng X, Zheng P, Sun J, Meyer V. Moulding the mould: understanding and reprogramming filamentous fungal growth and morphogenesis for next generation cell factories. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:77. [PMID: 30988699 PMCID: PMC6446404 DOI: 10.1186/s13068-019-1400-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/09/2019] [Indexed: 05/21/2023]
Abstract
Filamentous fungi are harnessed as cell factories for the production of a diverse range of organic acids, proteins, and secondary metabolites. Growth and morphology have critical implications for product titres in both submerged and solid-state fermentations. Recent advances in systems-level understanding of the filamentous lifestyle and development of sophisticated synthetic biological tools for controlled manipulation of fungal genomes now allow rational strain development programs based on data-driven decision making. In this review, we focus on Aspergillus spp. and other industrially utilised fungi to summarise recent insights into the multifaceted and dynamic relationship between filamentous growth and product titres from genetic, metabolic, modelling, subcellular, macromorphological and process engineering perspectives. Current progress and knowledge gaps with regard to mechanistic understanding of product secretion and export from the fungal cell are discussed. We highlight possible strategies for unlocking lead genes for rational strain optimizations based on omics data, and discuss how targeted genetic manipulation of these candidates can be used to optimise fungal morphology for improved performance. Additionally, fungal signalling cascades are introduced as critical processes that can be genetically targeted to control growth and morphology during biotechnological applications. Finally, we review progress in the field of synthetic biology towards chassis cells and minimal genomes, which will eventually enable highly programmable filamentous growth and diversified production capabilities. Ultimately, these advances will not only expand the fungal biotechnology portfolio but will also significantly contribute to a sustainable bio-economy.
Collapse
Affiliation(s)
- Timothy C. Cairns
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Vera Meyer
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| |
Collapse
|
32
|
Karaffa L, Kubicek CP. Citric acid and itaconic acid accumulation: variations of the same story? Appl Microbiol Biotechnol 2019; 103:2889-2902. [PMID: 30758523 PMCID: PMC6447509 DOI: 10.1007/s00253-018-09607-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 01/15/2023]
Abstract
Citric acid production by Aspergillus niger and itaconic acid production by Aspergillus terreus are two major examples of technical scale fungal fermentations based on metabolic overflow of primary metabolism. Both organic acids are formed by the same metabolic pathway, but whereas citric acid is the end product in A. niger, A. terreus performs two additional enzymatic steps leading to itaconic acid. Despite of this high similarity, the optimization of the production process and the mechanism and regulation of overflow of these two acids has mostly been investigated independently, thereby ignoring respective knowledge from the other. In this review, we will highlight where the similarities and the real differences of these two processes occur, which involves various aspects of medium composition, metabolic regulation and compartmentation, transcriptional regulation, and gene evolution. These comparative data may facilitate further investigations of citric acid and itaconic acid accumulation and may contribute to improvements in their industrial production.
Collapse
Affiliation(s)
- Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary.
| | - Christian P Kubicek
- Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria.,, 1100, Vienna, Austria
| |
Collapse
|
33
|
Tong Z, Zheng X, Tong Y, Shi YC, Sun J. Systems metabolic engineering for citric acid production by Aspergillus niger in the post-genomic era. Microb Cell Fact 2019; 18:28. [PMID: 30717739 PMCID: PMC6362574 DOI: 10.1186/s12934-019-1064-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/16/2019] [Indexed: 11/11/2022] Open
Abstract
Citric acid is the world’s largest consumed organic acid and is widely used in beverage, food and pharmaceutical industries. Aspergillus niger is the main industrial workhorse for citric acid production. Since the release of the genome sequence, extensive multi-omic data are being rapidly obtained, which greatly boost our understanding of the citric acid accumulation mechanism in A. niger to a molecular and system level. Most recently, the rapid development of CRISPR/Cas9 system facilitates highly efficient genome-scale genetic perturbation in A. niger. In this review, we summarize the impact of systems biology on the citric acid molecular regulatory mechanisms, the advances in metabolic engineering strategies for enhancing citric acid production and discuss the development and application of CRISPR/Cas9 systems for genome editing in A. niger. We believe that future systems metabolic engineering efforts will redesign and engineer A. niger as a highly optimized cell factory for industrial citric acid production.
Collapse
Affiliation(s)
- Zhenyu Tong
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, 66506, USA
| | - Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Yi Tong
- COFCO Biochemical (Anhui) Co. Ltd, Bengbu, 233000, People's Republic of China
| | - Yong-Cheng Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, 66506, USA
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
| |
Collapse
|
34
|
Characterization of Aspergillus niger Isolated from the International Space Station. mSystems 2018; 3:mSystems00112-18. [PMID: 30246146 PMCID: PMC6143729 DOI: 10.1128/msystems.00112-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/20/2018] [Indexed: 11/20/2022] Open
Abstract
The initial characterization of the Aspergillus niger isolate JSC-093350089, collected from U.S. segment surfaces of the International Space Station (ISS), is reported, along with a comparison to the extensively studied strain ATCC 1015. Whole-genome sequencing of the ISS isolate enabled its phylogenetic placement within the A. niger/welwitschiae/lacticoffeatus clade and revealed that the genome of JSC-093350089 is within the observed genetic variance of other sequenced A. niger strains. The ISS isolate exhibited an increased rate of growth and pigment distribution compared to a terrestrial strain. Analysis of the isolate's proteome revealed significant differences in the molecular phenotype of JSC-093350089, including increased abundance of proteins involved in the A. niger starvation response, oxidative stress resistance, cell wall modulation, and nutrient acquisition. Together, these data reveal the existence of a distinct strain of A. niger on board the ISS and provide insight into the characteristics of melanized fungal species inhabiting spacecraft environments. IMPORTANCE A thorough understanding of how fungi respond and adapt to the various stimuli encountered during spaceflight presents many economic benefits and is imperative for the health of crew. As A. niger is a predominant ISS isolate frequently detected in built environments, studies of A. niger strains inhabiting closed systems may reveal information fundamental to the success of long-duration space missions. This investigation provides valuable insights into the adaptive mechanisms of fungi in extreme environments as well as countermeasures to eradicate unfavorable microbes. Further, it enhances understanding of host-microbe interactions in closed systems, which can help NASA's Human Research Program maintain a habitat healthy for crew during long-term manned space missions.
Collapse
|
35
|
Kallscheuer N. Engineered Microorganisms for the Production of Food Additives Approved by the European Union-A Systematic Analysis. Front Microbiol 2018; 9:1746. [PMID: 30123195 PMCID: PMC6085563 DOI: 10.3389/fmicb.2018.01746] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/12/2018] [Indexed: 01/16/2023] Open
Abstract
In the 1950s, the idea of a single harmonized list of food additives for the European Union arose. Already in 1962, the E-classification system, a robust food safety system intended to protect consumers from possible food-related risks, was introduced. Initially, it was restricted to colorants, but at later stages also preservatives, antioxidants, emulsifiers, stabilizers, thickeners, gelling agents, sweeteners, and flavorings were included. Currently, the list of substances authorized by the European Food Safety Authority (EFSA) (referred to as "E numbers") comprises 316 natural or artificial substances including small organic molecules, metals, salts, but also more complex compounds such as plant extracts and polymers. Low overall concentrations of such compounds in natural producers due to inherent regulation mechanisms or production processes based on non-regenerative carbon sources led to an increasing interest in establishing more reliable and sustainable production platforms. In this context, microorganisms have received significant attention as alternative sources providing access to these compounds. Scientific advancements in the fields of molecular biology and genetic engineering opened the door toward using engineered microorganisms for overproduction of metabolites of their carbon metabolism such as carboxylic acids and amino acids. In addition, entire pathways, e.g., of plant origin, were functionally introduced into microorganisms, which holds the promise to get access to an even broader range of accessible products. The aim of this review article is to give a systematic overview on current efforts during construction and application of microbial cell factories for the production of food additives listed in the EU "E numbers" catalog. The review is focused on metabolic engineering strategies of industrially relevant production hosts also discussing current bottlenecks in the underlying metabolic pathways and how they can be addressed in the future.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
36
|
Song P, Yuan K, Qin T, Zhang K, Ji XJ, Ren L, Guan R, Wen J, Huang H. Metabolomics profiling reveals the mechanism of increased pneumocandin B 0 production by comparing mutant and parent strains. J Ind Microbiol Biotechnol 2018; 45:767-780. [PMID: 29948195 DOI: 10.1007/s10295-018-2047-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/18/2018] [Indexed: 11/26/2022]
Abstract
Metabolic profiling was used to discover mechanisms of increased pneumocandin B0 production in a high-yield strain by comparing it with its parent strain. Initially, 79 intracellular metabolites were identified, and the levels of 15 metabolites involved in six pathways were found to be directly correlated with pneumocandin B0 biosynthesis. Then by combining the analysis of key enzymes, acetyl-CoA and NADPH were identified as the main factors limiting pneumocandin B0 biosynthesis. Other metabolites, such as pyruvate, α-ketoglutaric acid, lactate, unsaturated fatty acids and previously unreported metabolite γ-aminobutyric acid were shown to play important roles in pneumocandin B0 biosynthesis and cell growth. Finally, the overall metabolic mechanism hypothesis was formulated and a rational feeding strategy was implemented that increased the pneumocandin B0 yield from 1821 to 2768 mg/L. These results provide practical and theoretical guidance for strain selection, medium optimization, and genetic engineering for pneumocandin B0 production.
Collapse
Affiliation(s)
- Ping Song
- Department Biochemical Engineering, School Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Kai Yuan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Tingting Qin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ke Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Lujing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Rongfeng Guan
- Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jianping Wen
- Department Biochemical Engineering, School Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
37
|
Kim M, Park BG, Kim J, Kim JY, Kim BG. Exploiting transcriptomic data for metabolic engineering: toward a systematic strain design. Curr Opin Biotechnol 2018; 54:26-32. [PMID: 29432941 DOI: 10.1016/j.copbio.2018.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/10/2018] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Abstract
Transcriptomics is now recognized as a primary tool for metabolic engineering as it can be used for identifying new strain designs by diagnosing current states of microbial cells. This review summarizes current application of transcriptomic data for strain design. Along with a few successful examples, limitations of conventionally used differentially expressed gene-based strain design approaches have been discussed, which have been major reasons why transcriptomic data are considerably underutilized. Recently, integrative network-based approaches interpreting transcriptomic data in the context of biological networks were invented to provide complimentary solutions for metabolic engineering by overcoming the limitations of conventional approaches. Here, we highlight recent pioneering studies in which integrative network-based methods have been used for providing novel strain designs.
Collapse
Affiliation(s)
- Minsuk Kim
- Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Beom Gi Park
- School of Chemical and Biological Engineering, Institute of Molecular Biology and Genetics, and Bioengineering Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Joonwon Kim
- School of Chemical and Biological Engineering, Institute of Molecular Biology and Genetics, and Bioengineering Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Young Kim
- School of Chemical and Biological Engineering, Institute of Molecular Biology and Genetics, and Bioengineering Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Institute of Molecular Biology and Genetics, and Bioengineering Institute, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
38
|
Odoni DI, van Gaal MP, Schonewille T, Tamayo-Ramos JA, Martins Dos Santos VAP, Suarez-Diez M, Schaap PJ. Aspergillus niger Secretes Citrate to Increase Iron Bioavailability. Front Microbiol 2017; 8:1424. [PMID: 28824560 PMCID: PMC5539119 DOI: 10.3389/fmicb.2017.01424] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/13/2017] [Indexed: 11/13/2022] Open
Abstract
Aspergillus niger has an innate ability to secrete various organic acids, including citrate. The conditions required for A. niger citrate overproduction are well described, but the physiological reasons underlying extracellular citrate accumulation are not yet fully understood. One of the less understood culture conditions is the requirement of growth-limiting iron concentrations. While this has been attributed to iron-dependent citrate metabolizing enzymes, this straightforward relationship does not always hold true. Here, we show that an increase in citrate secretion under iron limited conditions is a physiological response consistent with a role of citrate as A. niger iron siderophore. We found that A. niger citrate secretion increases with decreasing amounts of iron added to the culture medium and, in contrast to previous findings, this response is independent of the nitrogen source. Differential transcriptomics analyses of the two A. niger mutants NW305 (gluconate non-producer) and NW186 (gluconate and oxalate non-producer) revealed up-regulation of the citrate biosynthesis gene citA under iron limited conditions compared to iron replete conditions. In addition, we show that A. niger can utilize Fe(III) citrate as iron source. Finally, we discuss our findings in the general context of the pH-dependency of A. niger organic acid production, offering an explanation, besides competition, for why A. niger organic acid production is a sequential process influenced by the external pH of the culture medium.
Collapse
Affiliation(s)
- Dorett I Odoni
- Laboratory of System and Synthetic Biology, Wageningen University & ResearchWageningen, Netherlands
| | - Merlijn P van Gaal
- Laboratory of System and Synthetic Biology, Wageningen University & ResearchWageningen, Netherlands.,Laboratory of Microbiology, Wageningen University & ResearchWageningen, Netherlands
| | - Tom Schonewille
- Laboratory of System and Synthetic Biology, Wageningen University & ResearchWageningen, Netherlands
| | - Juan A Tamayo-Ramos
- Laboratory of System and Synthetic Biology, Wageningen University & ResearchWageningen, Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of System and Synthetic Biology, Wageningen University & ResearchWageningen, Netherlands.,LifeGlimmer GmBHBerlin, Germany
| | - Maria Suarez-Diez
- Laboratory of System and Synthetic Biology, Wageningen University & ResearchWageningen, Netherlands
| | - Peter J Schaap
- Laboratory of System and Synthetic Biology, Wageningen University & ResearchWageningen, Netherlands
| |
Collapse
|