1
|
Delgado DR, Castro-Camacho JK, Ortiz CP, Caviedes-Rubio DI, Martinez F. Dissolution Thermodynamics of the Solubility of Sulfamethazine in (Acetonitrile + 1-Propanol) Mixtures. Pharmaceuticals (Basel) 2024; 17:1594. [PMID: 39770436 PMCID: PMC11677806 DOI: 10.3390/ph17121594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Solubility is one of the most important parameters in the research and development processes of the pharmaceutical industry. In this context, cosolubility is one of the most used strategies to improve the solubility of poorly soluble drugs, besides allowing to identify some factors involved in the dissolution process. The aim of this research is to evaluate the solubility of sulfamethazine in acetotinitrile + 1-propanol cosolvent mixtures at 9 temperatures (278.15, 283.15, 288.15, 293.15, 298.15, 303.15, 308.15, 313.15, and 318.15 K); a drug used in human and veterinary therapy and two solvents of great chemical-pharmaceutical interest. Methods: The determination was carried out by the shaking flask method and the drug was quantified by UV/Vis spectrophotometry. Results: The solubility of sulfamethazine increases from pure 1-propanol (solvent in which it reaches its lowest solubility at 278.15 K) to pure acetonitrile (solvent in which it reaches its maximum solubility at 318.15 K), behaving in a logarithmic-linear fashion. Conclusions: The increase in solubility is related to the acid/base character of the cosolvent mixtures and not to the solubility parameter of the mixtures. The dissolution process is endothermic and favored by the solution entropy, and also shows a strong entropic compensation.
Collapse
Affiliation(s)
- Daniel Ricardo Delgado
- Programa de Ingeniería Civil, Grupo de Investigación de Ingenierías UCC-Neiva, Facultad de Ingeniería, Universidad Cooperativa de Colombia, Sede Neiva, Calle 11 No. 1-51, Neiva 410001, Huila, Colombia;
| | - Jennifer Katiusca Castro-Camacho
- Programa de Ingeniería Agroindustrial, Hidroingeniería y Desarrollo Agropecuario, Facultad de Ingeniería, Universidad Surcolombiana, Neiva 410001, Huila, Colombia;
| | - Claudia Patricia Ortiz
- Programa de Administración en Seguridad y Salud en el Trabajo, Grupo de Investigación en Seguridad y Salud en el Trabajo, Corporación Universitaria Minuto de Dios-UNIMINUTO, Neiva 410001, Huila, Colombia;
| | - Diego Ivan Caviedes-Rubio
- Programa de Ingeniería Civil, Grupo de Investigación de Ingenierías UCC-Neiva, Facultad de Ingeniería, Universidad Cooperativa de Colombia, Sede Neiva, Calle 11 No. 1-51, Neiva 410001, Huila, Colombia;
| | - Fleming Martinez
- Grupo de Investigaciones Farmacéutico-Fisicoquímicas, Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 110321, Cundinamarca, Colombia
| |
Collapse
|
2
|
Mi K, Sun L, Zhang L, Tang A, Tian X, Hou Y, Sun L, Huang L. A physiologically based pharmacokinetic/pharmacodynamic model to determine dosage regimens and withdrawal intervals of aditoprim against Streptococcus suis. Front Pharmacol 2024; 15:1378034. [PMID: 38694922 PMCID: PMC11061430 DOI: 10.3389/fphar.2024.1378034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/26/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction: Streptococcus suis (S. suis) is a zoonotic pathogen threatening public health. Aditoprim (ADP), a novel veterinary medicine, exhibits an antibacterial effect against S. suis. In this study, a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model was used to determine the dosage regimens of ADP against S. suis and withdrawal intervals. Methods: The PBPK model of ADP injection can predict drug concentrations in plasma, liver, kidney, muscle, and fat. A semi-mechanistic pharmacodynamic (PD) model, including susceptible subpopulation and resistant subpopulation, is successfully developed by a nonlinear mixed-effect model to evaluate antibacterial effects. An integrated PBPK/PD model is conducted to predict the time-course of bacterial count change and resistance development under different ADP dosages. Results: ADP injection, administrated at 20 mg/kg with 12 intervals for 3 consecutive days, can exert an excellent antibacterial effect while avoiding resistance emergence. The withdrawal interval at the recommended dosage regimen is determined as 18 days to ensure food safety. Discussion: This study suggests that the PBPK/PD model can be applied as an effective tool for the antibacterial effect and safety evaluation of novel veterinary drugs.
Collapse
Affiliation(s)
- Kun Mi
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Lei Sun
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Lan Zhang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aoran Tang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyuan Tian
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yixuan Hou
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lingling Sun
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lingli Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Dosing Regimen of Aditoprim and Sulfamethoxazole Combination for the Glaesserella parasuis Containing Resistance and Virulence Genes. Pharmaceutics 2022; 14:pharmaceutics14102058. [PMID: 36297496 PMCID: PMC9607282 DOI: 10.3390/pharmaceutics14102058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Glaesserella parasuis (G. parasuis) causes Glasser’s disease in pigs and causes high mortality in piglets. The new drug Aditoprim (ADP) alone or combined with Sulfamethoxazole (SMZ) is one of the good choices for treating respiratory infections. The objective of this study was to recommend the optimal dosing regimen for the treatment of G. parasuis infection which contains resistance and virulence genes by ADP/SMZ compound through pharmacokinetics–pharmacodynamics (PK-PD) modeling. The whole genome of the virulent strain G. parasuis H78 was obtained and annotated by whole genome sequencing. The results show that G. parasuis H78 consists of a unilateral circular chromosome with prophages in the genome. The annotation results of G. parasuis H78 showed that the genome contained a large number of virulence-related genes and drug resistance-related genes. The in vitro PD study showed that the antibacterial effect of ADP/SMZ compound against G. parasuis was time-dependent, and AUC/MIC was selected as the PK-PD modeling parameter. The PK study showed that the content of ADP/SMZ compound in pulmonary epithelial lining fluid (PELF) was higher than plasma, and there were no significant differences in ADP and SMZ PK parameters between the healthy and infected group. The dose equation to calculate the optimal dosing regimen of ADP/SMZ compound administration for control of G. parasuis infection was 5/25 mg/kg b.w., intramuscular injection once a day for 3~5 consecutive days. The results of this study provide novel therapeutic options for the treatment of G. parasuis infection to decrease the prevalence and disease burden caused by G. parasuis.
Collapse
|
4
|
Qu W, Dong M, Pan Y, Xie S, Yuan Z, Huang L. Preparation of Aditoprim Injection against Streptococcus suis in Pigs and a Dose Regimen Based on Pharmacokinetic-Pharmacodynamic Modeling. Pharmaceutics 2022; 14:pharmaceutics14040730. [PMID: 35456564 PMCID: PMC9028088 DOI: 10.3390/pharmaceutics14040730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
In order to effectively treat the infection of Streptococcus suis and reduce the emergence of drug-resistant bacteria, an aditoprim (ADP) injection was developed in this study. The pharmaceutical property investigation results demonstrated that ADP injection was a clear yellow liquid with 10 g ADP distributing in every 100 mL solution uniformly. Its pH value and drug content were around 6.20 and 99.35~100.40%, respectively. And quality assessment preliminarily indicated its reliable quality and stability. Additionally, the bronchoalveolar lavage fluid method was first applied to evaluate accurate ADP concentration at infection site in this study. Through pharmacodynamic assay, the MIC, MBC and MPC of ADP against Streptococcus suis CVCC 607 was 2 μg/mL, 4 μg/mL and 12.8 μg/mL, respectively. The bacteria growth inhibition curves showed that ADP was a concentration-dependent antibacterial drug, and the PK-PD model parameter of AUC/MIC was selected. The pharmacokinetic parameters of alveolar fluid evaluated by WinNonlin software revealed similar pharmacokinetic process of ADP in healthy pigs and infected pigs. Combined with pharmacokinetics-pharmacodynamics (PK-PD) modeling, the dosage regimen of 3~5 days with an interval of 12 h at 4.10 mg/kg or 5.91 mg/kg could be adopted to treat the infection of Streptococcus suis. Consequently, this ADP injection with a multi-dose protocol would be a promising antimicrobial product for efficient treatment of S. suis infection of pigs.
Collapse
Affiliation(s)
- Wei Qu
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (W.Q.); (M.D.); (Y.P.); (S.X.); (Z.Y.)
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengxiao Dong
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (W.Q.); (M.D.); (Y.P.); (S.X.); (Z.Y.)
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (W.Q.); (M.D.); (Y.P.); (S.X.); (Z.Y.)
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (W.Q.); (M.D.); (Y.P.); (S.X.); (Z.Y.)
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (W.Q.); (M.D.); (Y.P.); (S.X.); (Z.Y.)
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (W.Q.); (M.D.); (Y.P.); (S.X.); (Z.Y.)
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-87287140-8108
| |
Collapse
|
5
|
Maan MK, Chaudhry TH, Sattar A, Shabbir MAB, Ahmed S, Mi K, Ahmed W, Xie S, Xin L, Huang L. Dose Optimization of Aditoprim-Sulfamethoxazole Combinations Against Trueperella pyogenes From Patients With Clinical Endometritis by Using Semi-mechanistic PK/PD Model. Front Pharmacol 2021; 12:753359. [PMID: 34867364 PMCID: PMC8635024 DOI: 10.3389/fphar.2021.753359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Combinations of two and more drugs with different target sites are being used as a new treatment regimen for resistant clones of bacteria. Though, achieving the right combination of the drugs for optimal dosage regimen is challenging. In our study, we studied the antimicrobial effect of aditoprim, a novel dihydrofolate reductase inhibitor, and its synergistic effect with sulfamethoxazole. Synergy testing was performed by checkerboard micro dilution method and validation of different checkerboard ratios by static and dynamic time-kill analysis and in vitro pharmacokinetic/pharmacodynamics (PK/PD) model, and semi mechanistic PK/PD modeling was used to calculate and validate the synergistic effect of drug combination. Both checkerboard and static time-kill assays demonstrated the greater synergistic effect [fractional inhibitory concentration index (FICI) = 0.37] of the aditoprim [minimum inhibitory concentration (MIC) = 0.25 µg/ml]-sulfamethoxazole (MIC=>64 µg/ml) combination against all T. Pyogenes isolates. In the in vitro PK/PD model, the dosage proportion of sulfamethoxazole 4 mg/ml twice a day in combination with steady-state aditoprim 1 mg/ml efficiently repressed the growth of bacteria in 24 h with the ratio of 2-log10 decrease, related to the early inoculum against three T. Pyogenes isolates. The semi mechanistic PK/PD model projected that a combination of a high dose of aditoprim (2 mg/ml) with sulfamethoxazole (2 mg/day) was necessary to attain the killing of bacteria below the detection limit (limit of detection (LOD); i.e., 1 log10 CFU/ml) at 24 h with an MIC sulfamethoxazole (SMZ) of 64 µg/ml. However, it is anticipated that a combination of high dose of aditoprim with sulfamethoxazole is critical to attain the suppressed bacterial growth to < LOD. This study represents essential PK/PD modeling for optimization of combination of aditoprim and sulfamethoxazole to suppress growth of T. Pyogenens.
Collapse
Affiliation(s)
- Muhammad Kashif Maan
- National Reference Laboratory of Veterinary Drug Residues/MAO Key Laboratory for the Detection of Veterinary Drug Residues, Wuhan, China.,Departement of Veterinary Surgery and Pet Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Tamoor Hamid Chaudhry
- Public Health Laboratory Division, National Institute of Health, Islamabad, Pakistan
| | - Adeel Sattar
- Department of Pharmacology and Toxicology, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Abu Bakr Shabbir
- Department of Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Saeed Ahmed
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Kun Mi
- National Reference Laboratory of Veterinary Drug Residues/MAO Key Laboratory for the Detection of Veterinary Drug Residues, Wuhan, China
| | - Waqas Ahmed
- Department of Biomedical and Diagnostic Science, University of Tennessee, Knoxville, TN, United States
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues/MAO Key Laboratory for the Detection of Veterinary Drug Residues, Wuhan, China
| | - Li Xin
- National Reference Laboratory of Veterinary Drug Residues/MAO Key Laboratory for the Detection of Veterinary Drug Residues, Wuhan, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues/MAO Key Laboratory for the Detection of Veterinary Drug Residues, Wuhan, China.,MOA Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Wang F, Luo W, Pan Y, Qu W, Xie S, Huang L, Wang Y. Antibacterial activity of combined aditoprim and sulfamethoxazole against Escherichia coli from swine and a dose regimen based on pharmacokinetic-pharmacodynamic modeling. J Vet Pharmacol Ther 2021; 45:133-145. [PMID: 34435681 DOI: 10.1111/jvp.13006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 11/26/2022]
Abstract
The mortality of livestock caused by pathogenic Escherichia coli (E. coli) still accounts for a large proportion of deaths in large-scale production and reproduction, which causes devastating economic losses to the pig breeding industry. The aims of this study were to investigate the antibacterial activity of combined aditoprim (ADP) and sulfamethoxazole (SMZ) against clinical isolates of E. coli from pigs and to develop a pharmacokinetic-pharmacodynamic (PK-PD) model to formulate the optimal dose of ADP/SMZ for the treatment of pig colibacillosis. Blood and ileum fluid samples were collected at different times after single intramuscular injection of ADP/SMZ (5/25 mg/kg b.w.) to healthy pigs and E. coli-infected pigs. Concentrations of ADP and SMZ in plasma and ileum fluid were analyzed by HPLC. The peak concentration (Cmax ) and the area under the concentration-time curve (AUC0-24h ) in ileum fluid of healthy pigs were 1.76 ± 0.27 µg/ml and 18.92 ± 2.87 µg·h/ml for ADP and 19.15 ± 2.63 µg/ml and 125.70 ± 11.86 µg·h/ml for SMZ, respectively. Cmax and AUC0-24h in ileum fluid of infected pigs were 1.88 ± 0.13 µg/ml and 15.12 ± 0.75 µg·h/ml for ADP and 19.71 ± 3.68 µg/ml and 133.92 ± 17.14 µg·h/ml for SMZ, respectively. The minimum inhibitory concentrations (MICs) of combined ADP and SMZ (ADP/SMZ) against 185 strains of E. coli from pigs were determined. The MIC50 and MIC90 of ADP/SMZ were 0.5/2.5 and 4/20 µg/ml, respectively. The MIC of the selected pathogenic E. coli SHC28 was 0.5/2.5 µg/ml in Mueller-Hinton broth and 0.25/1.25 µg/ml in ileum fluid, respectively. In vitro, the mutant prevention concentration, the post-antibiotic effect, growth, and time-killing curves in vitro and ex vivo of ADP/SMZ against the isolate SHC28 were assayed for PD studies. The results showed that ADP/SMZ exhibited strong concentration-dependent antimicrobial activity against E. coli. After integrating the in vivo pharmacokinetic parameters of infected pigs and ex vivo PD data using the sigmoid Emax (Hill) equation, the AUC24h /MIC values in ileum fluid for bacteriostatic, bactericidal, and bacterial eradication were 18.84, 65.39, and 110.68 h, respectively. In conclusion, a dosage of 3.45/17.25 mg/kg ADP/SMZ by intramuscular injection daily for 3 consecutive days may be sufficient to treat swine colibacillosis due to E. coli with a MIC of 0.5/2.5 µg/ml.
Collapse
Affiliation(s)
- Fang Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wanhe Luo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wei Qu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yulian Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Khorrami S, Zarrabi A, Khaleghi M, Danaei M, Mozafari MR. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int J Nanomedicine 2018; 13:8013-8024. [PMID: 30568442 PMCID: PMC6267361 DOI: 10.2147/ijn.s189295] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction Silver nanoparticles (AgNPs) are of great interest due to their unique and controllable characteristics. Different synthesis methods have been proposed to produce these nanoparticles, which often require elevated temperatures/pressures or toxic solvents. Thus, green synthesis could be a replacement option as a simple, economically viable and environmentally friendly alternative approach for the synthesis of silver nanoparticles. Methods Here, the potential of the walnut green husk was investigated in the production of silver nanoparticles. An aqueous solution extracted from walnut green husk was used as a reducing agent as well as a stabilizing agent. Then, the synthesized nanoparticles were characterized with respect of their anticancer, antioxidant, and antimicrobial properties. Results Results showed that the synthesized nanoparticles possessed an average size of 31.4 nm with a Zeta potential of -33.8 mV, indicating high stability. A significant improvement in the cytotoxicity and antioxidant characteristics of the green synthesized Ag nanoparticles against a cancerous cell line was observed in comparison with the walnut green husk extract and a commercial silver nanoparticle (CSN). This could be due to a synergistic effect of the synthesized silver nanoparticles and their biological coating. AgNPs and the extract exhibited 70% and 40% cytotoxicity against MCF-7 cancerous cells, respectively, while CSN caused 56% cell death (at the concentration of 60 µg/mL). It was observed that AgNPs were much less cytotoxic when tested against a noncancerous cell line (L-929) in comparison with the control material (CSN). The free radical scavenging analysis demonstrated profound anti-oxidant activity for the synthesized nanoparticles in comparison with the extract and CSN. It was also detected that the synthesized AgNPs possess antibacterial activity against nosocomial and standard strains of both Gram-positive and Gram-negative bacteria (minimum inhibitory concentration =5-30 µg/mL). Conclusion These findings imply that the synthesized nanoparticles using green nanotechnology could be an ideal strategy to combat cancer and infectious diseases.
Collapse
Affiliation(s)
- Sadegh Khorrami
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran,
| | - Ali Zarrabi
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran,
| | - Moj Khaleghi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran
| | - Marziyeh Danaei
- Australasian Nanoscience and Nanotechnology Initiative, Monash University, Clayton, VIC, Australia
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative, Monash University, Clayton, VIC, Australia
| |
Collapse
|
8
|
Rebello S, Anoopkumar A, Puthur S, Sindhu R, Binod P, Pandey A, Aneesh EM. Zinc oxide phytase nanocomposites as contributory tools to improved thermostability and shelflife. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Hrynets Y, Martinez DJH, Ndagijimana M, Betti M. Inhibitory activity of a Concanavalin-isolated fraction from a glucosamine-peptides reaction system against heat resistant E. coli. Heliyon 2017; 3:e00348. [PMID: 28736752 PMCID: PMC5508475 DOI: 10.1016/j.heliyon.2017.e00348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/02/2017] [Accepted: 07/04/2017] [Indexed: 11/27/2022] Open
Abstract
Alcalase-derived gelatin hydrolysates were glycated with glucosamine in the presence (+) or absence (−) of transglutaminase (TGase), and their antimicrobial activities toward Escherichia coli AW 1.7 were studied. Glycation treatments were subjected to concanavalin A affinity chromatography to selectively collect the glycopeptide-enriched fractions and the changes in antimicrobial activity were determined. The minimum inhibitory concentration of glycated hydrolysates decreased by 1.2 times compared to the native hydrolysate, with no differences between (+) or (−) TGase treatments. No difference was observed in the dicarbonyl compound concentration between the two glycation methods except that 3-deoxyglucosone was greater in the TGase-mediated reaction. Concanavalin A-retentate, but not the flow-through fractions, significantly improved the antimicrobial activity, however there was no difference between +TGase and −TGase glycated treatments. Purification of the retentate fraction from fluorescent compounds did not improve its antimicrobial activity.
Collapse
Affiliation(s)
- Yuliya Hrynets
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB T6G 2P5 Canada
| | - Daylin Johana Hincapie Martinez
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB T6G 2P5 Canada
| | - Maurice Ndagijimana
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB T6G 2P5 Canada
| | - Mirko Betti
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB T6G 2P5 Canada
| |
Collapse
|
10
|
Lei Z, Liu Q, Yang B, Xiong J, Li K, Ahmed S, Hong L, Chen P, He Q, Cao J. Clinical Efficacy and Residue Depletion of 10% Enrofloxacin Enteric-Coated Granules in Pigs. Front Pharmacol 2017; 8:294. [PMID: 28588496 PMCID: PMC5440587 DOI: 10.3389/fphar.2017.00294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/08/2017] [Indexed: 12/11/2022] Open
Abstract
A new, more palatable formulation of 10% enrofloxacin enteric-coated granules was investigated to evaluate the pharmacokinetic effect in plasma, the residue elimination in tissues and the clinical efficacy against Actinobacillus pleuropneumonia (APP) and Mycoplasam suis (MS) in pigs. In this study, the enrofloxacin concentrations in plasma and tissues were detected using high-performance liquid chromatography with phosphate buffer (pH = 3) and acetonitrile. The pharmacokinetics and elimination of enrofloxacin enteric-coated granules were performed after oral administration at a single dose of 10 mg/kg body weight (bw) and 5 mg/kg twice per day for 5 consecutive days, respectively. The in vivo antibacterial efficacy and clinical effectiveness of enrofloxacin enteric-coated granules against APP and MS were assayed at 2.5, 5, 10 mg/kg, compared with tiamulin (8 mg/kg) based on establishment of APP and MS infection models. 56 APP strains were selected and tested for in vitro antibacterial activity of enrofloxacin enteric-coated granules. The main parameters of elimination half-life (t1/2β), Tmax, and area under the curve (AUC) were 14.99 ± 4.19, 3.99 ± 0.10, and 38.93 ± 1.52 μg h/ml, respectively, revealing that the enrofloxacin concentration remained high and with a sustainable distribution in plasma. Moreover, the analysis on the evaluation of enrofloxacin and ciprofloxacin in muscle, fat, liver and kidney showed that the recovery were more than 84% recovery in accordance with the veterinary drug residue guidelines of United States pharmacopeia, and the withdrawal periods were 4.28, 3.81, 4.84, and 3.51 days, respectively, suggesting that the withdrawal period was 5 d after oral administration of 5 mg/kg twice per day. The optimal dosage of enrofloxacin enteric-coated granules against APP and MS was 5 mg/kg, with over 90% efficacy, which was significantly different (p < 0.05) to the 2.5 mg/kg group, but not to the 10 mg/kg group or the positive control group (tiamulin). In conclusion, 10% enrofloxacin enteric-coated granules had significant potential for treating APP and MS, and it provided an alternative enrofloxacin palatability formulation.
Collapse
Affiliation(s)
- Zhixin Lei
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agriculture UniversityWuhan, China
| | - Qianying Liu
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agriculture UniversityWuhan, China
| | - Bing Yang
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agriculture UniversityWuhan, China
| | - Jincheng Xiong
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agriculture UniversityWuhan, China
| | - Kun Li
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Saeed Ahmed
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agriculture UniversityWuhan, China
| | - Liping Hong
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Pin Chen
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Qigai He
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agriculture UniversityWuhan, China
| | - Jiyue Cao
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agriculture UniversityWuhan, China
| |
Collapse
|