1
|
Xu H, Chi Y, Yin C, Li C, Chen Y, Liu Z, Liu X, Xie H, Chen ZJ, Zhao H, Wu K, Zhao S, Xing D. Three-dimensional genome structures of single mammalian sperm. Nat Commun 2025; 16:3805. [PMID: 40268951 PMCID: PMC12019598 DOI: 10.1038/s41467-025-59055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
The three-dimensional (3D) organization of chromosomes is crucial for packaging a large mammalian genome into a confined nucleus and ensuring proper nuclear functions in somatic cells. However, the packaging of the much more condensed sperm genome is challenging to study with traditional imaging or sequencing approaches. In this study, we develop an enhanced chromosome conformation capture assay, and resolve the 3D whole-genome structures of single mammalian sperm. The reconstructed genome structures accurately delineate the species-specific nuclear morphologies for both human and mouse sperm. We discover that sperm genomes are divided into chromosomal territories and A/B compartments, similarly to somatic cells. However, neither human nor mouse sperm chromosomes contain topologically associating domains or chromatin loops. These results suggest that the fine-scale chromosomal organization of mammalian sperm fundamentally differs from that of somatic cells. The discoveries and methods established in this work will be valuable for future studies of sperm related infertility.
Collapse
Affiliation(s)
- Heming Xu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Yi Chi
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Changjian Yin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, China
| | - Cheng Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, China
| | - Yujie Chen
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Zhiyuan Liu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Xiaowen Liu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Peking University, Beijing, China
| | - Hao Xie
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, China
| | - Keliang Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, China
| | - Shigang Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, China.
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China.
| |
Collapse
|
2
|
Shibuta MK, Aso T, Okawa Y. Dynamic changes in chromatin structure and transcriptional activity in the generative cells of Lilium longiflorum. JOURNAL OF PLANT RESEARCH 2025:10.1007/s10265-025-01637-5. [PMID: 40232571 DOI: 10.1007/s10265-025-01637-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
Pollen is required for fertilization and the associated production of seeds and fruits, which are important for human nutrition. Research on the tricellular pollen of Arabidopsis thaliana revealed that chromatin is highly condensed and transcriptional activity is suppressed in sperm cells. However, comprehensive structural investigations involving generative cells of bicellular pollen have not been conducted. In this study, we provide relevant insights into other angiosperms that produce bicellular pollen. Lilium longiflorum, which has large and easily observable nuclei, was used for a detailed analysis of the chromatin structure and transcriptionally active regions in pollen and pollen tubes. Chromatin was condensed, resulting in a ribbon-like structure that was clearly visible in mature generative cell nuclei. Additionally, transcriptionally active regions were restricted to the intersections of chromatin as pollen desiccated. Although de novo transcription was revealed to be unnecessary for pollen tube growth, transcriptional activity temporarily resumed before generative cell division during pollen tube growth. Moreover, the inhibition of de novo transcription influenced changes in nuclear morphology. In this study, the distinctive chromatin structures and transcriptional activity states in generative cell nuclei of bicellular pollen were elucidated, with the generated data contributing to a deeper understanding of transcription and other regulatory mechanisms involved in pollen maturation and pollen tube growth.
Collapse
Affiliation(s)
- Mio K Shibuta
- Academic Assembly (Faculty of Science), Yamagata University, 1-4-12 Kojirakawa, Yamagata-City, Yamagata, 990-8560, Japan.
| | - Tsugumi Aso
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata-City, Yamagata, 990-8560, Japan
| | - Yutsuki Okawa
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata-City, Yamagata, 990-8560, Japan
| |
Collapse
|
3
|
Córdova-Oriz I, Cuadrado-Torroglosa I, Madero-Molina M, Rodriguez-García A, Balmori C, Medrano M, Polonio AM, Chico-Sordo L, Pacheco A, García-Velasco JA, Varela E. Telomeric RNAs, TERRA, as a Potential Biomarker for Spermatozoa Quality. Reprod Sci 2024; 31:3475-3484. [PMID: 39269661 DOI: 10.1007/s43032-024-01690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Abstract
Characterization of long non-coding telomeric repeat-containing RNAs in sperm of normozoospermic and oligoasthenozoospermic men as new biomarker of idiopathic male infertility. We conducted an observational prospective study with two groups of men with normal or orligoasthenozoospermic spermiogram, aged 40 and above. Fertility parameters were analyzed in men undergoing intracytoplasmic sperm injection with donor oocytes, to avoid the female factor. Telomeric RNAs and telomere length were measured by quantitative fluorescent in situ hybridization. Data from seminal parameters and in-vitro fertilization were assessed according to IVIRMA protocols. Patients with oligoasthenozoospermia, who had worse seminal parameters, also obtained embryos with lower inner-cell-mass quality (p = 0.04), despite using donor oocytes. While mean levels of telomeric RNAs were similar for both groups, the percentage of spermatozoa with more than 3 foci was higher in oligoasthenozoospermic men (p = 0.02). Regarding telomere length, oligoasthenozoospermic men had shorter mean, a higher accumulation of short telomeres (15th percentile; p = 0.03) and a lower percentage of very-long telomeres (85th percentile; p = 0.01). Finally, a positive correlation was found between telomeric-RNAs intensity and total progressive motility in the spermatozoa of normozoospermic patients (r = 0.5; p = 0.03). Telomeric parameters were altered in the spermatozoa of the oligoasthenozoospermic group, which also showed lower quality embryos. Interestingly, in the normozoospermic group, a correlation was found between progressive motility and telomeric RNA levels, suggesting that they could be a good biomarker of sperm quality. Further studies are required to confirm these results and translate them into the clinical practice.Trial registration number: 1711-MAD-109-CB, 07/07/2021.
Collapse
Affiliation(s)
- Isabel Córdova-Oriz
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Isabel Cuadrado-Torroglosa
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Maria Madero-Molina
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Angela Rodriguez-García
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Carlos Balmori
- IVIRMA Global Research Alliance, IVIRMA Madrid, Madrid, Spain
| | - Marta Medrano
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Alba M Polonio
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Lucía Chico-Sordo
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Alberto Pacheco
- IVIRMA Global Research Alliance, IVIRMA Madrid, Madrid, Spain
- Alfonso X El Sabio University, Madrid, Spain
| | - Juan A García-Velasco
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- IVIRMA Global Research Alliance, IVIRMA Madrid, Madrid, Spain
- Department of Medical Specialties and Public Health, Rey Juan Carlos University, Edificio Departamental II. Av. de Atenas, s/n, 28922, Alcorcón, Madrid, Spain
| | - Elisa Varela
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.
- Department of Medical Specialties and Public Health, Rey Juan Carlos University, Edificio Departamental II. Av. de Atenas, s/n, 28922, Alcorcón, Madrid, Spain.
| |
Collapse
|
4
|
Balder P, Jones C, Coward K, Yeste M. Sperm chromatin: Evaluation, epigenetic signatures and relevance for embryo development and assisted reproductive technology outcomes. Eur J Cell Biol 2024; 103:151429. [PMID: 38905808 DOI: 10.1016/j.ejcb.2024.151429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024] Open
Abstract
Sperm chromatin is distinct from somatic cell chromatin, as a result of extensive remodeling during the final stages of spermatogenesis. In this process, the majority of histones is replaced with protamines. The chromatin is consequently highly condensed and inert, which facilitates protection of the DNA. The sperm epigenomic landscape is shaped by histone retention, histone and protamine modification, DNA methylation, and RNAs. In recent years, sperm chromatin integrity and its epigenetic marks have been increasingly studied, and the constitution of sperm chromatin is steadily being uncovered. This growing body of research prompts assessment of the frequently overlooked involvement of sperm in fertility and embryonic development. Moreover, numerous endogenous and exogenous factors are known to affect sperm chromatin, which may in turn impact the reproductive success. Concerns have been raised about the effects of assisted reproductive technology (ART) on the sperm epigenome, embryonic development and offspring health. This review examines the structure and epigenetic signatures of sperm chromatin in the context of fertility and early embryonic development. Additionally, sperm chromatin evaluation and causes of aberrant integrity are outlined. Building on the knowledge discussed in the current review, future research should aim to elucidate the intricate relationship between all aspects of sperm chromatin and embryo development. This could lead to the uncovering of new targets for treating infertility, as well as the acquisition of much needed insights into the possible reciprocal association between ART and sperm chromatin integrity.
Collapse
Affiliation(s)
- Pauline Balder
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona ES-17003, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona ES-17003, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona ES-08010, Spain.
| |
Collapse
|
5
|
Kramer EM, Enelamah J, Fang H, Tayjasanant PA. Karyotype depends on sperm head morphology in some amniote groups. Front Genet 2024; 15:1396530. [PMID: 38903758 PMCID: PMC11186999 DOI: 10.3389/fgene.2024.1396530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
The karyotype of an organism is the set of gross features that characterize the way the genome is packaged into separate chromosomes. It has been known for decades that different taxonomic groups often have distinct karyotypic features, but whether selective forces act to maintain these differences over evolutionary timescales is an open question. In this paper we analyze a database of karyotype features and sperm head morphology in 103 mammal species with spatulate sperm heads and 90 sauropsid species (birds and non-avian reptiles) with vermiform heads. We find that mammal species with a larger head area have more chromosomes, while sauropsid species with longer heads have a wider range of chromosome lengths. These results remain significant after controlling for genome size, so sperm head morphology is the relevant variable. This suggest that post-copulatory sexual selection, by acting on sperm head shape, can influence genome architecture.
Collapse
Affiliation(s)
- Eric M. Kramer
- Department of Physics, Bard College at Simon’s Rock, Great Barrington, MA, United States
- Department of Biology, Bard College at Simon’s Rock, Great Barrington, MA, United States
| | - Joshua Enelamah
- Department of Physics, Bard College at Simon’s Rock, Great Barrington, MA, United States
| | - Hao Fang
- Department of Physics, Bard College at Simon’s Rock, Great Barrington, MA, United States
| | - P. A. Tayjasanant
- Department of Physics, Bard College at Simon’s Rock, Great Barrington, MA, United States
| |
Collapse
|
6
|
Paturej J, Erbaş A. Cyclic-polymer grafted colloids in spherical confinement: insights for interphase chromosome organization. Phys Biol 2023; 20:056004. [PMID: 37442118 DOI: 10.1088/1478-3975/ace750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/13/2023] [Indexed: 07/15/2023]
Abstract
Interphase chromosomes are known to organize non-randomly in the micron-sized eukaryotic cell nucleus and occupy certain fraction of nuclear volume, often without mixing. Using extensive coarse-grained simulations, we model such chromosome structures as colloidal particles whose surfaces are grafted by cyclic polymers. This model system is known as Rosetta. The cyclic polymers, with varying polymerization degrees, mimic chromatin loops present in interphase chromosomes, while the rigid core models the chromocenter section of the chromosome. Our simulations show that the colloidal chromosome model provides a well-separated particle distribution without specific attraction between the chain monomers. As the polymerization degree of the grafted cyclic chains decreases while maintaining the total chromosomal length (e.g. the more potent activity of condensin-family proteins), the average chromosomal volume becomes smaller, inter-chromosomal contacts decrease, and chromocenters organize in a quasi-crystalline order reminiscent of a glassy state. This order weakens for polymer chains with a characteristic size on the order of the confinement radius. Notably, linear-polymer grafted particles also provide the same chromocenter organization scheme. However, unlike linear chains, cyclic chains result in less contact between the polymer layers of neighboring chromosome particles, demonstrating the effect of DNA breaks in altering genome-wide contacts. Our simulations show that polymer-grafted colloidal systems could help decipher 3D genome architecture along with the fractal globular and loop-extrusion models.
Collapse
Affiliation(s)
| | - Aykut Erbaş
- Institute of Physics, University of Silesia, Katowice, Poland
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
7
|
Okada Y. Sperm chromatin structure: Insights from in vitro to in situ experiments. Curr Opin Cell Biol 2022; 75:102075. [PMID: 35344802 DOI: 10.1016/j.ceb.2022.102075] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 11/25/2022]
Abstract
The sperm genome is tightly packed into a minimal volume of sperm nuclei. Sperm chromatin is highly condensed by protamines (PRMs) after histone-protamine replacement, and the majority of the sperm genome forms a nucleo-protamine structure, namely, the PRM-DNA complex. The outline of sperm chromatin structure was proposed 30 years ago, and the details have been explored by approaches from several independent research fields including male reproduction and infertility, DNA biopolymer, and most recently, genome-wide sequence-based approaches. In this review, the history of research on sperm chromatin structure is briefly described, and the progress of recent related studies is summarized to obtain a more integrated view for the sperm chromatin, an extremely compacted "black box."
Collapse
Affiliation(s)
- Yuki Okada
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
8
|
Balmori C, Cordova-Oriz I, De Alba G, Medrano M, Jiménez-Tormo L, Polonio AM, Chico-Sordo L, Pacheco A, García-Velasco JA, Varela E. Effects of age and oligosthenozoospermia on telomeres of sperm and blood cells. Reprod Biomed Online 2021; 44:1090-1100. [DOI: 10.1016/j.rbmo.2021.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/10/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022]
|
9
|
Bergero R, Ellis P, Haerty W, Larcombe L, Macaulay I, Mehta T, Mogensen M, Murray D, Nash W, Neale MJ, O'Connor R, Ottolini C, Peel N, Ramsey L, Skinner B, Suh A, Summers M, Sun Y, Tidy A, Rahbari R, Rathje C, Immler S. Meiosis and beyond - understanding the mechanistic and evolutionary processes shaping the germline genome. Biol Rev Camb Philos Soc 2021; 96:822-841. [PMID: 33615674 PMCID: PMC8246768 DOI: 10.1111/brv.12680] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022]
Abstract
The separation of germ cell populations from the soma is part of the evolutionary transition to multicellularity. Only genetic information present in the germ cells will be inherited by future generations, and any molecular processes affecting the germline genome are therefore likely to be passed on. Despite its prevalence across taxonomic kingdoms, we are only starting to understand details of the underlying micro-evolutionary processes occurring at the germline genome level. These include segregation, recombination, mutation and selection and can occur at any stage during germline differentiation and mitotic germline proliferation to meiosis and post-meiotic gamete maturation. Selection acting on germ cells at any stage from the diploid germ cell to the haploid gametes may cause significant deviations from Mendelian inheritance and may be more widespread than previously assumed. The mechanisms that affect and potentially alter the genomic sequence and allele frequencies in the germline are pivotal to our understanding of heritability. With the rise of new sequencing technologies, we are now able to address some of these unanswered questions. In this review, we comment on the most recent developments in this field and identify current gaps in our knowledge.
Collapse
Affiliation(s)
- Roberta Bergero
- Institute of Evolutionary BiologyUniversity of EdinburghEdinburghEH9 3JTU.K.
| | - Peter Ellis
- School of BiosciencesUniversity of KentCanterburyCT2 7NJU.K.
| | | | - Lee Larcombe
- Applied Exomics LtdStevenage Bioscience CatalystStevenageSG1 2FXU.K.
| | - Iain Macaulay
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Tarang Mehta
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Mette Mogensen
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
| | - David Murray
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
| | - Will Nash
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Matthew J. Neale
- Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexBrightonBN1 9RHU.K.
| | | | | | - Ned Peel
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Luke Ramsey
- The James Hutton InstituteInvergowrieDundeeDD2 5DAU.K.
| | - Ben Skinner
- School of Life SciencesUniversity of EssexColchesterCO4 3SQU.K.
| | - Alexander Suh
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
- Department of Organismal BiologyUppsala UniversityNorbyvägen 18DUppsala752 36Sweden
| | - Michael Summers
- School of BiosciencesUniversity of KentCanterburyCT2 7NJU.K.
- The Bridge Centre1 St Thomas Street, London BridgeLondonSE1 9RYU.K.
| | - Yu Sun
- Norwich Medical SchoolUniversity of East AngliaNorwich Research Park, Colney LnNorwichNR4 7UGU.K.
| | - Alison Tidy
- School of BiosciencesUniversity of Nottingham, Plant Science, Sutton Bonington CampusSutton BoningtonLE12 5RDU.K.
| | | | - Claudia Rathje
- School of BiosciencesUniversity of KentCanterburyCT2 7NJU.K.
| | - Simone Immler
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
| |
Collapse
|
10
|
Berby B, Bichara C, Rives-Feraille A, Jumeau F, Pizio PD, Sétif V, Sibert L, Dumont L, Rondanino C, Rives N. Oxidative Stress Is Associated with Telomere Interaction Impairment and Chromatin Condensation Defects in Spermatozoa of Infertile Males. Antioxidants (Basel) 2021; 10:antiox10040593. [PMID: 33921485 PMCID: PMC8069055 DOI: 10.3390/antiox10040593] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Telomere length can be influenced by reactive oxygen species (ROS) generated by lifestyle factors or environmental exposure. We sought to determine whether oxidative stress has an impact on sperm nuclear alterations, especially on chromatin organization and telomere interactions in the spermatozoa of infertile males. We performed an observational and prospective study including fifty-two males, allocated in the "case group" (30 infertile males presenting conventional semen parameter alterations) and the "control group" (22 males with normal conventional semen parameters). ROS detection was determined on spermatozoa using CellROX© probes. Sperm nuclear damage was assessed using quantitative fluorescence in situ hybridization (Q-FISH) for relative telomere length and telomere number, aniline blue staining for chromatin condensation, terminal deoxynucleotidyl transferase dUTP nick-end labeling for DNA fragmentation, and FISH for aneuploidy and 8-hydroxy-2'-deoxyguanosine immunostaining for oxidative DNA damages. Infertile males had significantly increased levels of cytoplasmic ROS and chromatin condensation defects as well as a higher mean number of telomere signals per spermatozoon in comparison with controls. In addition, the mean number of sperm telomere signals were positively correlated with the percentage of spermatozoa with chromatin condensation defect. In infertile males with conventional semen parameter alterations, oxidative stress is associated with telomere interaction impairment and chromatin condensation defects.
Collapse
Affiliation(s)
- Benoit Berby
- Biology of Reproduction—CECOS Laboratory, Rouen University Hospital, Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France; (B.B.); (C.B.); (A.R.-F.); (F.J.); (P.D.P.); (V.S.)
| | - Cynthia Bichara
- Biology of Reproduction—CECOS Laboratory, Rouen University Hospital, Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France; (B.B.); (C.B.); (A.R.-F.); (F.J.); (P.D.P.); (V.S.)
| | - Aurélie Rives-Feraille
- Biology of Reproduction—CECOS Laboratory, Rouen University Hospital, Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France; (B.B.); (C.B.); (A.R.-F.); (F.J.); (P.D.P.); (V.S.)
| | - Fanny Jumeau
- Biology of Reproduction—CECOS Laboratory, Rouen University Hospital, Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France; (B.B.); (C.B.); (A.R.-F.); (F.J.); (P.D.P.); (V.S.)
| | - Pierre Di Pizio
- Biology of Reproduction—CECOS Laboratory, Rouen University Hospital, Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France; (B.B.); (C.B.); (A.R.-F.); (F.J.); (P.D.P.); (V.S.)
| | - Véronique Sétif
- Biology of Reproduction—CECOS Laboratory, Rouen University Hospital, Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France; (B.B.); (C.B.); (A.R.-F.); (F.J.); (P.D.P.); (V.S.)
| | - Louis Sibert
- Department of Urology—Andrology, Rouen University Hospital, Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France;
| | - Ludovic Dumont
- Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France; (L.D.); (C.R.)
| | - Chistine Rondanino
- Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France; (L.D.); (C.R.)
| | - Nathalie Rives
- Biology of Reproduction—CECOS Laboratory, Rouen University Hospital, Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France; (B.B.); (C.B.); (A.R.-F.); (F.J.); (P.D.P.); (V.S.)
- Correspondence: ; Tel.: +33-2-3288-8225
| |
Collapse
|
11
|
Dissanayake DMIH, Perera DDBD, Keerthirathna LR, Heendeniya S, Anderson RJ, Williams DE, Peiris LDC. Antimicrobial activity of Plumbago indica and ligand screening of plumbagin against methicillin-resistant Staphylococcus aureus. J Biomol Struct Dyn 2020; 40:3273-3284. [PMID: 33213303 DOI: 10.1080/07391102.2020.1846622] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this study, the antimicrobial properties of Plumbago indica root bark against bacterial strains and a fungal strain were investigatedusing the disc diffusion and minimum inhibitory concentration assays. Gas chromatography/mass spectrometry, nuclear magnetic resonance spectrometry, and column chromatography analyses were conducted to identify and isolate the active compounds. A docking study was performed to identify possible interactions between the active compound and DNA gyrase using the Schrödinger Glide docking program. Both methanol extract and the ethyl acetate fraction of the root bark showed significant antimicrobial activity against the gram-positive bacteria than against the gram-negative bacteria and the fungal strain. The active compound was identified as plumbagin. A disc diffusion assay of plumbagin revealed potent antimicrobial activity against methicillin-resistant Staphylococcus aureus. Molecular docking of plumbagin revealed high specificity towards the DNA gyrase binding site with a high fitness score and a minimum energy barrier of -7.651 kcal/mol. These findings indicate that P. indica exhibits significant antimicrobial activity, primarily due to the presence of plumbagin. The specificity of plumbagin toward DNA gyrase in S. aureus indicates the feasibility of utilizing P. indica for developing new drug leads against drug resistant microbial strain. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- D M I H Dissanayake
- Department of Zoology, Faculty of Applied Sciences (Center for Biotechnology), University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - D D B D Perera
- Department of Zoology, Faculty of Applied Sciences (Center for Biotechnology), University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - L R Keerthirathna
- Department of Zoology, Faculty of Applied Sciences (Center for Biotechnology), University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Saumya Heendeniya
- British College of Applied Studies, BCAS City Campus, Colombo, Sri Lanka
| | - Raymond J Anderson
- Department of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver, Canada
| | - David E Williams
- Department of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver, Canada
| | - L Dinithi C Peiris
- Department of Zoology, Faculty of Applied Sciences (Center for Biotechnology), University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
12
|
Lopes AC, Oliveira PF, Pinto S, Almeida C, Pinho MJ, Sá R, Rocha E, Barros A, Sousa M. Discordance between human sperm quality and telomere length following differential gradient separation/swim-up. J Assist Reprod Genet 2020; 37:2581-2603. [PMID: 32767207 DOI: 10.1007/s10815-020-01897-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/20/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Strong evidence has suggested an important role of telomeres in meiosis, fertilization, and embryo development. PURPOSE To determine if sperm telomere length (STL) in sperm purified by differential gradient centrifugation followed by swim-up (selected STL) is correlated with sperm quality and clinical outcomes. METHODS Relative selected STL was assessed by quantitative polymerase chain reaction (Q-PCR) in 78 consecutive assisted reproductive technology (ART) treatments during 2017. Statistical analyses were performed in the totality of patients, and in normozoospermic and non-normozoospermic patients. These included correlations between selected STL and sperm quality parameters, embryological parameters (multivariable linear regression), and clinical parameters (multivariable logistic regression). RESULTS No significant correlations were found between selected STL and sperm quality in the total population. However, selected STL was significantly correlated with total sperm count (r = 0.361; P = 0.039) and sperm DNA fragmentation-post-acrosomal region pattern (r = - 0.464; P = 0.030) in normozoospermic patients. No relation was observed between selected STL and clinical outcomes in any clinical group. CONCLUSIONS As the correlations observed in normozoospermic patients were not representative of the whole heterogeneous population, differences in the sperm characteristics of the study population may lead to discrepant results when evaluating the association of STL with sperm quality. Since the total population selected STL was not related with sperm quality and with clinical outcomes, results do not support the use of selected STL measurement to evaluate the reproductive potential of the male patient or to predict the success rates of ART treatments.
Collapse
Affiliation(s)
- Ana Catarina Lopes
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,Department of Life Sciences, Faculty of Science and Technology, New University of Lisbon, Campus Caparica, 2829-516, Caparica, Portugal
| | - Pedro Fontes Oliveira
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,Department of Genetics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.,Institute of Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal
| | - Soraia Pinto
- Centre for Reproductive Genetics Prof. Alberto Barros, 4100-009, Porto, Portugal
| | - Carolina Almeida
- Department of Genetics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Maria João Pinho
- Department of Genetics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Rosália Sá
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,Multidisciplinary Unit for Biomedical Research, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313, Porto, Portugal
| | - Eduardo Rocha
- Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313, Porto, Portugal
| | - Alberto Barros
- Department of Genetics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.,Institute of Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal.,Centre for Reproductive Genetics Prof. Alberto Barros, 4100-009, Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal. .,Multidisciplinary Unit for Biomedical Research, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
13
|
Dissanayake DMIH, Keerthirathna WLR, Peiris LDC. Male Infertility Problem: A Contemporary Review on Present Status and Future Perspective. GENDER AND THE GENOME 2019. [DOI: 10.1177/2470289719868240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Semen quality plays a pivotal role in maintaining healthy fertilizing ability of spermatozoa. Male infertility is a rising global problem with an increasing declining in male semen quality among men living in Africa, Europe, North American, and Asia. Though the sperm acquire proactive mechanisms during spermatogenesis and their epididymal maturation, they still remain viable for toxic insult. Declining semen quality is a major contributor to infertility. Studies have postulated that different factors, such as exposure to pesticides, industrial chemicals, heavy metals, obesity, alcoholism, tobacco smoking, sedentary lifestyles, poor nutrient intake, oxidative stress, physiological factors, genetic factors can influence male fertility. Routine semen analysis and assays for sperm chromatin integrity are the most widely utilized and best studied adjunctive diagnostics in male infertility. Over the years, scientists have developed different treatment options for male infertility. Male infertility with known etiology can be treated successfully, but other causes like genetic factors require pragmatic approaches. This article summarizes protective mechanisms of spermatogenesis, causes, diagnosis, and both modern and traditional treatment approaches of male infertility. Further, this article highlights present issues and direction for future exploration of the male infertility problem.
Collapse
Affiliation(s)
- D. M. I. H. Dissanayake
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - W. L. R. Keerthirathna
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - L. Dinithi C. Peiris
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
14
|
Ioannou D, Tempest HG. Human Sperm Chromosomes: To Form Hairpin-Loops, Or Not to Form Hairpin-Loops, That Is the Question. Genes (Basel) 2019; 10:genes10070504. [PMID: 31277336 PMCID: PMC6678829 DOI: 10.3390/genes10070504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Genomes are non-randomly organized within the interphase nucleus; and spermatozoa are proposed to have a unique hairpin-loop configuration, which has been hypothesized to be critical for the ordered exodus of the paternal genome following fertilization. Recent studies suggest that the hairpin-loop model of sperm chromatin organization is more segmentally organized. The purpose of this study is to examine the 3D organization and hairpin-loop configurations of chromosomes in human spermatozoa. METHODS Three-color sperm-fluorescence in-situ hybridization was utilized against the centromeres, and chromosome p- and q-arms of eight chromosomes from five normozoospermic donors. Wide-field fluorescence microscopy and 3D modelling established the radial organization and hairpin-loop chromosome configurations in spermatozoa. RESULTS All chromosomes possessed reproducible non-random radial organization (p < 0.05) and formed discrete hairpin-loop configurations. However, chromosomes preferentially formed narrow or wide hairpin-loops. We did not find evidence to support the existence of a centralized chromocenter(s) with centromeres being more peripherally localized than one or both of their respective chromosome arms. CONCLUSION This provides further evidence to support a more segmental organization of chromatin in the human sperm nucleus. This may be of significance for fertilization and early embryogenesis as specific genomic regions are likely to be exposed, remodeled, and activated first, following fertilization.
Collapse
Affiliation(s)
- Dimitrios Ioannou
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Helen G Tempest
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
15
|
The Impact of Centromeres on Spatial Genome Architecture. Trends Genet 2019; 35:565-578. [PMID: 31200946 DOI: 10.1016/j.tig.2019.05.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 01/01/2023]
Abstract
The development of new technologies and experimental techniques is enabling researchers to see what was once unable to be seen. For example, the centromere was first seen as the mediator between spindle fiber and chromosome during mitosis and meiosis. Although this continues to be its most prominent role, we now know that the centromere functions beyond cellular division with important roles in genome organization and chromatin regulation. Here we aim to share the structures and functions of centromeres in various organisms beginning with the diversity of their DNA sequence anatomies. We zoom out to describe their position in the nucleus and ultimately detail the different ways they contribute to genome organization and regulation at the spatial level.
Collapse
|
16
|
Estill MS, Hauser R, Krawetz SA. RNA element discovery from germ cell to blastocyst. Nucleic Acids Res 2019; 47:2263-2275. [PMID: 30576549 PMCID: PMC6411832 DOI: 10.1093/nar/gky1223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/31/2018] [Accepted: 11/24/2018] [Indexed: 12/19/2022] Open
Abstract
Recent studies have shown that tissue-specific transcriptomes contain multiple types of RNAs that are transcribed from intronic and intergenic sequences. The current study presents a tool for the discovery of transcribed, unannotated sequence elements from RNA-seq libraries. This RNA Element (RE) discovery algorithm (REDa) was applied to a spectrum of tissues and cells representing germline, embryonic, and somatic tissues and examined as a function of differentiation through the first set of cell divisions of human development. This highlighted extensive transcription throughout the genome, yielding previously unidentified human spermatogenic RNAs. Both exonic and novel X-chromosome REs were subject to robust meiotic sex chromosome inactivation, although an extensive de-repression occurred in the post-meiotic stages of spermatogenesis. Surprisingly, 2.4% of the 10,395 X chromosome exonic REs were present in mature sperm. Transcribed genomic repetitive sequences, including simple centromeric repeats, HERVE and HSAT1, were also shown to be associated with RE expression during spermatogenesis. These results suggest that pervasive intergenic repetitive sequence expression during human spermatogenesis may play a role in regulating chromatin dynamics. Repetitive REs switching repeat classes during differentiation upon fertilization and embryonic genome activation was evident.
Collapse
MESH Headings
- Algorithms
- Blastocyst/cytology
- Blastocyst/metabolism
- Cell Differentiation
- Cell Line
- Chromatin/genetics
- Chromatin/metabolism
- Chromosomes, Human, X/genetics
- Embryonic Development/genetics
- Exons/genetics
- Female
- Fertilization
- Gene Expression Regulation, Developmental
- Genomics
- Humans
- Liver/cytology
- Liver/metabolism
- Male
- Meiosis/genetics
- Oocytes/cytology
- Oocytes/metabolism
- Poly A/analysis
- Poly A/genetics
- Poly A/isolation & purification
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- Regulatory Sequences, Ribonucleic Acid/genetics
- Repetitive Sequences, Nucleic Acid
- Sequence Analysis, RNA
- Spermatogenesis/genetics
- Spermatozoa/cytology
- Spermatozoa/metabolism
- Transcription, Genetic
- X Chromosome Inactivation
Collapse
Affiliation(s)
- Molly S Estill
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Russ Hauser
- Vincent Memorial Obstetrics and Gynecology Service, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Stephen A Krawetz
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
17
|
Fowler KE, Mandawala AA, Griffin DK. The role of chromosome segregation and nuclear organisation in human subfertility. Biochem Soc Trans 2019; 47:425-432. [DOI: 10.1042/bst20180231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Spermatogenesis is central to successful sexual reproduction, producing large numbers of haploid motile male gametes. Throughout this process, a series of equational and reductional chromosome segregation precedes radical repackaging of the haploid genome. Faithful chromosome segregation is thus crucial, as is an ordered spatio-temporal ‘dance’ of packing a large amount of chromatin into a very small space. Ergo, when the process goes wrong, this is associated with an improper chromosome number, nuclear position and/or chromatin damage in the sperm head. Generally, screening for overall DNA damage is relatively commonplace in clinics, but aneuploidy assessment is less so and nuclear organisation studies form the basis of academic research. Several studies have focussed on the role of chromosome segregation, nuclear organisation and analysis of sperm morphometry in human subfertility observing significant alterations in some cases, especially of the sex chromosomes. Importantly, sperm DNA damage has been associated with infertility and both extrinsic (e.g. lifestyle) and intrinsic (e.g. reactive oxygen species levels) factors, and while some DNA-strand breaks are repaired, unexpected breaks can cause differential chromatin packaging and further breakage. A ‘healthy’ sperm nucleus (with the right number of chromosomes, nuclear organisation and minimal DNA damage) is thus an essential part of reproduction. The purpose of this review is to summarise state of the art in the fields of sperm aneuploidy assessment, nuclear organisation and DNA damage studies.
Collapse
Affiliation(s)
- Katie E. Fowler
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, U.K
| | - Anjali A. Mandawala
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, U.K
| | | |
Collapse
|
18
|
Wiland E, Olszewska M, Huleyuk N, Chernykh VB, Kurpisz M. The effect of Robertsonian translocations on the intranuclear positioning of NORs (nucleolar organizing regions) in human sperm cells. Sci Rep 2019; 9:2213. [PMID: 30778082 PMCID: PMC6379386 DOI: 10.1038/s41598-019-38478-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/27/2018] [Indexed: 01/26/2023] Open
Abstract
Only a few studies have described sperm chromosome intranuclear positioning changes in men with reproductive failure and an incorrect somatic karyotype. We studied the influence of Robertsonian translocations on the acrocentric chromosome positioning in human sperm cells. The basis of the analysis was the localization of NORs (nucleolar organizing regions) in sperm nuclei from three Robertsonian translocation carriers, namely, rob(13;22), rob(13;15) and rob(13;14), with a known meiotic segregation pattern. All three carriers presented with a similar percentage of genetically normal sperm cells (i.e., approximately 40%). To visualize NORs, we performed 2D-FISH with directly labelled probes. We used the linear and radial topologies of the nucleus to analyse the NORs distribution. We found an affected positioning of NORs in each case of the Robertsonian translocations. Moreover, the NORs tended to group, most often in two clusters. Both in Robertsonian carriers and control sperm cells, NORs mostly colocalized in the medial areas of the nuclei. In the case of the Roberstonian carriers, NORs were mostly concentrated in the peripheral part of the medial area, in contrast to control sperm cells in which the distribution was more dispersed towards the internal area.
Collapse
Affiliation(s)
- Ewa Wiland
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Nataliya Huleyuk
- Institute of Hereditary Pathology, Ukrainian Academy of Medical Sciences, Lviv, Ukraine
| | - Vyacheslav B Chernykh
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
19
|
Olszewska M, Wiland E, Huleyuk N, Fraczek M, Midro AT, Zastavna D, Kurpisz M. Chromosome (re)positioning in spermatozoa of fathers and sons - carriers of reciprocal chromosome translocation (RCT). BMC Med Genomics 2019; 12:30. [PMID: 30709354 PMCID: PMC6359769 DOI: 10.1186/s12920-018-0470-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/28/2018] [Indexed: 01/05/2023] Open
Abstract
Background Non-random chromosome positioning has been observed in the nuclei of several different tissue types, including human spermatozoa. The nuclear arrangement of chromosomes can be altered in men with decreased semen parameters or increased DNA fragmentation and in males with chromosomal numerical or structural aberrations. An aim of this study was to determine whether and how the positioning of nine chromosome centromeres was (re)arranged in the spermatozoa of fathers and sons – carriers of the same reciprocal chromosome translocation (RCT). Methods Fluorescence in situ hybridization (FISH) was applied to analyse the positioning of sperm chromosomes in a group of 13 carriers of 11 RCTs, including two familial RCT cases: t(4;5) and t(7;10), followed by analysis of eight control individuals. Additionally, sperm chromatin integrity was evaluated using TUNEL and Aniline Blue techniques. Results In the analysed familial RCT cases, repositioning of the chromosomes occurred in a similar way when compared to the data generated in healthy controls, even if some differences between father and son were further observed. These differences might have arisen from various statuses of sperm chromatin disintegration. Conclusions Nuclear topology appears as another aspect of epigenetic genomic regulation that may influence DNA functioning. We have re-documented that chromosomal positioning is defined in control males and that a particular RCT is reflected in the individual pattern of chromosomal topology. The present study examining the collected RCT group, including two familial cases, additionally showed that chromosomal factors (karyotype and hyperhaploidy) have superior effects, strongly influencing the chromosomal topology, when confronted with sperm chromatin integrity components (DNA fragmentation or chromatin deprotamination). Electronic supplementary material The online version of this article (10.1186/s12920-018-0470-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Ewa Wiland
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Nataliya Huleyuk
- National Academy of Medical Sciences of Ukraine, Institute of Hereditary Pathology, Lysenko Str. 31a, Lviv, 79000, Ukraine
| | - Monika Fraczek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Alina T Midro
- Department of Clinical Genetics, Medical University of Bialystok, Waszyngtona 13, PO Box 22, 15-089, Bialystok, Poland
| | - Danuta Zastavna
- National Academy of Medical Sciences of Ukraine, Institute of Hereditary Pathology, Lysenko Str. 31a, Lviv, 79000, Ukraine.,Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959, Rzeszow, Poland
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland.
| |
Collapse
|
20
|
Skinner BM, Bacon J, Rathje CC, Larson EL, Kopania EEK, Good JM, Affara NA, Ellis PJI. Automated Nuclear Cartography Reveals Conserved Sperm Chromosome Territory Localization across 2 Million Years of Mouse Evolution. Genes (Basel) 2019; 10:genes10020109. [PMID: 30717218 PMCID: PMC6409866 DOI: 10.3390/genes10020109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 12/15/2022] Open
Abstract
Measurements of nuclear organization in asymmetric nuclei in 2D images have traditionally been manual. This is exemplified by attempts to measure chromosome position in sperm samples, typically by dividing the nucleus into zones, and manually scoring which zone a fluorescence in-situ hybridisation (FISH) signal lies in. This is time consuming, limiting the number of nuclei that can be analyzed, and prone to subjectivity. We have developed a new approach for automated mapping of FISH signals in asymmetric nuclei, integrated into an existing image analysis tool for nuclear morphology. Automatic landmark detection defines equivalent structural regions in each nucleus, then dynamic warping of the FISH images to a common shape allows us to generate a composite of the signal within the entire cell population. Using this approach, we mapped the positions of the sex chromosomes and two autosomes in three mouse lineages (Mus musculus domesticus, Mus musculus musculus and Mus spretus). We found that in all three, chromosomes 11 and 19 tend to interact with each other, but are shielded from interactions with the sex chromosomes. This organization is conserved across 2 million years of mouse evolution.
Collapse
Affiliation(s)
| | - Joanne Bacon
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK.
| | | | - Erica Lee Larson
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.
- Division of Biological Sciences, University of Montana, MT 59812, USA.
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Champroux A, Damon-Soubeyrand C, Goubely C, Bravard S, Henry-Berger J, Guiton R, Saez F, Drevet J, Kocer A. Nuclear Integrity but Not Topology of Mouse Sperm Chromosome is Affected by Oxidative DNA Damage. Genes (Basel) 2018; 9:genes9100501. [PMID: 30336622 PMCID: PMC6210505 DOI: 10.3390/genes9100501] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 01/15/2023] Open
Abstract
Recent studies have revealed a well-defined higher order of chromosome architecture, named chromosome territories, in the human sperm nuclei. The purpose of this work was, first, to investigate the topology of a selected number of chromosomes in murine sperm; second, to evaluate whether sperm DNA damage has any consequence on chromosome architecture. Using fluorescence in situ hybridization, confocal microscopy, and 3D-reconstruction approaches we demonstrate that chromosome positioning in the mouse sperm nucleus is not random. Some chromosomes tend to occupy preferentially discrete positions, while others, such as chromosome 2 in the mouse sperm nucleus are less defined. Using a mouse transgenic model (Gpx5−/−) of sperm nuclear oxidation, we show that oxidative DNA damage does not disrupt chromosome organization. However, when looking at specific nuclear 3D-parameters, we observed that they were significantly affected in the transgenic sperm, compared to the wild-type. Mild reductive DNA challenge confirmed the fragility of the organization of the oxidized sperm nucleus, which may have unforeseen consequences during post-fertilization events. These data suggest that in addition to the sperm DNA fragmentation, which is already known to modify sperm nucleus organization, the more frequent and, to date, the less highly-regarded phenomenon of sperm DNA oxidation also affects sperm chromatin packaging.
Collapse
Affiliation(s)
- Alexandre Champroux
- GReD "Genetics, Reproduction & Development" Laboratory, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - Christelle Damon-Soubeyrand
- GReD "Genetics, Reproduction & Development" Laboratory, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - Chantal Goubely
- GReD "Genetics, Reproduction & Development" Laboratory, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - Stephanie Bravard
- GReD "Genetics, Reproduction & Development" Laboratory, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - Joelle Henry-Berger
- GReD "Genetics, Reproduction & Development" Laboratory, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - Rachel Guiton
- GReD "Genetics, Reproduction & Development" Laboratory, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - Fabrice Saez
- GReD "Genetics, Reproduction & Development" Laboratory, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - Joel Drevet
- GReD "Genetics, Reproduction & Development" Laboratory, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - Ayhan Kocer
- GReD "Genetics, Reproduction & Development" Laboratory, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| |
Collapse
|
23
|
Lopes AC, Oliveira PF, Sousa M. Shedding light into the relevance of telomeres in human reproduction and male factor infertility†. Biol Reprod 2018; 100:318-330. [DOI: 10.1093/biolre/ioy215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/05/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ana Catarina Lopes
- Laboratory of Cell Biology, Department of Microscopy, and Multidisciplinary Unit for Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, New University of Lisbon (FCT-UNL), Campus Caparica, Caparica, Portugal
| | - Pedro F Oliveira
- Laboratory of Cell Biology, Department of Microscopy, and Multidisciplinary Unit for Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
- i3S- Institute of Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, and Multidisciplinary Unit for Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Centre for Reproductive Genetics Professor Alberto Barros, Porto, Portugal
| |
Collapse
|
24
|
Chromosome positioning and male infertility: it comes with the territory. J Assist Reprod Genet 2018; 35:1929-1938. [PMID: 30229502 DOI: 10.1007/s10815-018-1313-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/11/2018] [Indexed: 01/30/2023] Open
Abstract
The production of functional spermatozoa through spermatogenesis requires a spatially and temporally highly regulated gene expression pattern, which in case of alterations, leads to male infertility. Changes of gene expression by chromosome anomalies, gene variants, and epigenetic alterations have been described as the main genetic causes of male infertility. Recent molecular and cytogenetic approaches have revealed that higher order chromosome positioning is essential for basic genome functions, including gene expression. This review addresses this issue by exposing well-founded evidences which support that alterations on the chromosome topology in spermatogenetic cells leads to defective sperm function and could be considered as an additional genetic cause of male infertility.
Collapse
|
25
|
Ioannou D, Tempest HG. Does genome organization matter in spermatozoa? A refined hypothesis to awaken the silent vessel. Syst Biol Reprod Med 2018; 64:518-534. [DOI: 10.1080/19396368.2017.1421278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dimitrios Ioannou
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- IVF Florida Reproductive Associates, Margate, FL, USA
| | - Helen G. Tempest
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| |
Collapse
|