1
|
Aneli S, Caldon M, Saupe T, Montinaro F, Pagani L. Through 40,000 years of human presence in Southern Europe: the Italian case study. Hum Genet 2021; 140:1417-1431. [PMID: 34410492 PMCID: PMC8460580 DOI: 10.1007/s00439-021-02328-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022]
Abstract
The Italian Peninsula, a natural pier across the Mediterranean Sea, witnessed intricate population events since the very beginning of the human occupation in Europe. In the last few years, an increasing number of modern and ancient genomes from the area have been published by the international research community. This genomic perspective started unveiling the relevance of Italy to understand the post-Last Glacial Maximum (LGM) re-peopling of Europe, the earlier phase of the Neolithic westward migrations, and its linking role between Eastern and Western Mediterranean areas after the Iron Age. However, many open questions are still waiting for more data to be addressed in full. With this review, we summarize the current knowledge emerging from the available ancient Italian individuals and, by re-analysing them all at once, we try to shed light on the avenues future research in the area should cover. In particular, open questions concern (1) the fate of pre-Villabruna Europeans and to what extent their genomic components were absorbed by the post-LGM hunter-gatherers; (2) the role of Sicily and Sardinia before LGM; (3) to what degree the documented genetic structure within the Early Neolithic settlers can be described as two separate migrations; (4) what are the population events behind the marked presence of an Iranian Neolithic-like component in Bronze Age and Iron Age Italian and Southern European samples.
Collapse
Affiliation(s)
- Serena Aneli
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy.
| | - Matteo Caldon
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy
| | - Tina Saupe
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia.,Department of Biology-Genetics, University of Bari, Via Edoardo Orabona 4, 70125, Bari, Italy
| | - Luca Pagani
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy.,Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| |
Collapse
|
2
|
Ghiani ME, Mameli A, Vecchio C, Francalacci P, Robledo R, Calò CM. Estimating population genetics and forensic efficiency of the GlobalFiler PCR amplification kit in the population of Sardinia (Italy). Gene 2021; 794:145775. [PMID: 34126198 DOI: 10.1016/j.gene.2021.145775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/16/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
GlobalFiler is a new PCR amplification kit that includes 21 autosomal short tandem repeats and three sex-determining loci. In the present research, for the first time, the GlobalFiler kit was tested to analyze a sample of 500 unrelated individuals from 18 villages encompassing the entire area of Sardinia (Italy). We tested if the kit, which is a powerful tool in forensic studies, may also find application in the field of population genetics. In agreement with data from the literature on forensic parameters values, marker SE33 showed the highest degree of polymorphism, whereas TPOX was the least informative locus. Seventeen out of twenty-one autosomal markers included in the kit resulted highly polymorphic, and therefore Globalfiler turned out to be highly useful for forensic analysis in the Sardinian population. Moreover, our data suggest developing different STR databases in different populations, like Sardinians, to increase the statistical power of autosomal STR profiling. On the other hand, due to the presence of some very highly polymorphic markers, the efficiency of Globalfiler in detecting geographical variability is affected. Indeed, the differentiation previously observed between the Sardinian and Italian populations appeared greatly reduced and even the presence of genetic isolates, previously recorded when uniparental markers was not revealed.
Collapse
Affiliation(s)
- Maria Elena Ghiani
- Reparto Investigazioni Scientifiche Carabinieri di Cagliari, 09100 Cagliari, Italy
| | - Alessandro Mameli
- Reparto Investigazioni Scientifiche Carabinieri di Cagliari, 09100 Cagliari, Italy
| | - Cesare Vecchio
- Reparto Investigazioni Scientifiche Carabinieri di Cagliari, 09100 Cagliari, Italy
| | - Paolo Francalacci
- Dept. of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato (Ca), Italy
| | - Renato Robledo
- Dept. of Biomedical Sciences, University of Cagliari, 09042 Monserrato (Ca), Italy.
| | - Carla Maria Calò
- Dept. of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato (Ca), Italy
| |
Collapse
|
3
|
Sarno S, Boscolo Agostini R, De Fanti S, Ferri G, Ghirotto S, Modenini G, Pettener D, Boattini A. Y-chromosome variability and genetic history of Commons from Northern Italy. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 175:665-679. [PMID: 33969895 PMCID: PMC8360088 DOI: 10.1002/ajpa.24302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/19/2021] [Accepted: 04/17/2021] [Indexed: 12/31/2022]
Abstract
Objectives Genetic drift and admixture are driving forces in human evolution, but their concerted impact to population evolution in historical times and at a micro‐geographic scale is poorly assessed. In this study we test a demographic model encompassing both admixture and drift to the case of social‐cultural isolates such as the so‐called “Commons.” Materials and methods Commons are peculiar institutions of medieval origins whose key feature is the tight relationship between population and territory, mediated by the collective property of shared resources. Here, we analyze the Y‐chromosomal genetic structure of four Commons (for a total of 366 samples) from the Central and Eastern Padana plain in Northern Italy. Results Our results reveal that all these groups exhibit patterns of significant diversity reduction, peripheral/outlier position within the Italian/European genetic space and high frequency of Common‐specific haplogroups. By explicitly testing different drift‐admixture models, we show that a drift‐only model is more probable for Central Padana Commons, while additional admixture (~20%) from external population around the same time of their foundation cannot be excluded for the Eastern ones. Discussion Building on these results, we suggest central Middle Ages as the most probable age of foundation for three of the considered Commons, the remaining one pointing to late antiquity. We conclude that an admixture‐drift model is particularly useful for interpreting the genetic structure and recent demographic history of small‐scale populations in which social‐cultural features play a significant role.
Collapse
Affiliation(s)
- Stefania Sarno
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | | | - Sara De Fanti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.,Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy
| | - Gianmarco Ferri
- Department of Diagnostic and Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Ghirotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giorgia Modenini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Davide Pettener
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Alessio Boattini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Flores-Bello A, Bauduer F, Salaberria J, Oyharçabal B, Calafell F, Bertranpetit J, Quintana-Murci L, Comas D. Genetic origins, singularity, and heterogeneity of Basques. Curr Biol 2021; 31:2167-2177.e4. [DOI: 10.1016/j.cub.2021.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 02/09/2023]
|
5
|
Calò CM, Onali F, Robledo R, Flore L, Massidda M, Francalacci P. Worldwide variation of the COL14A1 gene is shaped by genetic drift rather than selective pressure. Mol Genet Genomic Med 2021; 9:e1629. [PMID: 33650783 PMCID: PMC8123734 DOI: 10.1002/mgg3.1629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/30/2020] [Accepted: 02/10/2021] [Indexed: 11/17/2022] Open
Abstract
Background The aim of this study is to analyze the worldwide distribution of SNP rs4870723 in COL14A1 gene to check if there are significant genetic differences among different populations and to test if the gene is a trait under selection. Methods Genomic DNA was extracted from 69 unrelated individuals from Sardinia and genotyped for SNP rs4870723. Data were compared with 26 different populations, clustered in 5 super‐populations, from the public 1000 genomes database. Allele frequency and heterozygosity were calculated with Genepop. The Hardy–Weinberg equilibrium and pairwise population differentiation through analysis of molecular variance (AMOVA FST) were determined with Arlequin. Results Allele frequencies of COL14A1 rs4870723 were compared in 27 populations clustered in 5 super‐populations. All populations were in the Hardy–Weinberg equilibrium. In almost all populations, allele C was the most frequent allele, reaching the highest values in East Asia. The 27 populations showed an appreciable structure, with significant differences observed between European, African, and Asian populations. Conclusion Significant differences were observed in the rs4870723 SNP distribution among the populations studied. However, we found no evidence for a selective pressure. Rather, the differentiation among the populations is likely the result of founder effect, genetic drift, and cultural factors, all events known to establish and maintain genetic diversity between populations.
Collapse
Affiliation(s)
- Carla M Calò
- Department of Life and Environment Sciences, University of Cagliari, Cagliari, Italy
| | - Federico Onali
- Department of Life and Environment Sciences, University of Cagliari, Cagliari, Italy
| | - Renato Robledo
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Laura Flore
- Department of Life and Environment Sciences, University of Cagliari, Cagliari, Italy
| | - Myosotis Massidda
- Department of Life and Environment Sciences, University of Cagliari, Cagliari, Italy
| | - Paolo Francalacci
- Department of Life and Environment Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
6
|
Sarno S, Petrilli R, Abondio P, De Giovanni A, Boattini A, Sazzini M, De Fanti S, Cilli E, Ciani G, Gentilini D, Pettener D, Romeo G, Giuliani C, Luiselli D. Genetic history of Calabrian Greeks reveals ancient events and long term isolation in the Aspromonte area of Southern Italy. Sci Rep 2021; 11:3045. [PMID: 33542324 PMCID: PMC7862261 DOI: 10.1038/s41598-021-82591-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/15/2021] [Indexed: 01/30/2023] Open
Abstract
Calabrian Greeks are an enigmatic population that have preserved and evolved a unique variety of language, Greco, survived in the isolated Aspromonte mountain area of Southern Italy. To understand their genetic ancestry and explore possible effects of geographic and cultural isolation, we genome-wide genotyped a large set of South Italian samples including both communities that still speak Greco nowadays and those that lost the use of this language earlier in time. Comparisons with modern and ancient populations highlighted ancient, long-lasting genetic links with Eastern Mediterranean and Caucasian/Near-Eastern groups as ancestral sources of Southern Italians. Our results suggest that the Aspromonte communities might be interpreted as genetically drifted remnants that departed from such ancient genetic background as a consequence of long-term isolation. Specific patterns of population structuring and higher levels of genetic drift were indeed observed in these populations, reflecting geographic isolation amplified by cultural differences in the groups that still conserve the Greco language. Isolation and drift also affected the current genetic differentiation at specific gene pathways, prompting for future genome-wide association studies aimed at exploring trait-related loci that have drifted up in frequency in these isolated groups.
Collapse
Affiliation(s)
- Stefania Sarno
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Rosalba Petrilli
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Paolo Abondio
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Andrea De Giovanni
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy ,grid.6292.f0000 0004 1757 1758Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Alessio Boattini
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marco Sazzini
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy ,grid.6292.f0000 0004 1757 1758Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy
| | - Sara De Fanti
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy ,grid.6292.f0000 0004 1757 1758Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy
| | - Elisabetta Cilli
- grid.6292.f0000 0004 1757 1758Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Graziella Ciani
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Davide Gentilini
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy ,Italian Auxologic Institute IRCCS, Cusano Milanino, Milan, Italy
| | - Davide Pettener
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Romeo
- grid.412311.4Medical Genetics Unit, Sant’Orsola-Malpighi University Hospital, Bologna, Italy ,European School of Genetic Medicine, Bologna, Italy
| | - Cristina Giuliani
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy ,grid.6292.f0000 0004 1757 1758Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy
| | - Donata Luiselli
- grid.6292.f0000 0004 1757 1758Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| |
Collapse
|
7
|
Anagnostou P, Dominici V, Battaggia C, Boukhchim N, Ben Nasr J, Boussoffara R, Cancellieri E, Marnaoui M, Marzouki M, Bel Haj Brahim H, Bou Rass M, di Lernia S, Destro Bisol G. Berbers and Arabs: Tracing the genetic diversity and history of Southern Tunisia through genome wide analysis. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:697-708. [PMID: 32936953 DOI: 10.1002/ajpa.24139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/11/2020] [Accepted: 08/02/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Tunisia has been a crossroads for people from Africa, Europe, and the Middle East since prehistoric times. At present, it is inhabited by two main ethnic groups, Arabs and Berbers, and several minorities. This study aims to advance knowledge regarding their genetic structure using new population samplings and a genome-wide approach. MATERIALS AND METHODS We investigated genomic variation, estimated ancestry components and dated admixture events in three Berber and two Arab populations from Southern Tunisia, mining a dataset including Middle Eastern, sub-Saharan, and European populations. RESULTS Differences in the proportion of North African, Arabian, and European ancestries and the varying impact of admixture and isolation determined significant heterogeneity in the genetic structure of Southern Tunisian populations. Admixture time estimates show a multilayer pattern of admixture events, involving both ethno-linguistic groups, which started around the mid XI century and lasted for nearly five centuries. DISCUSSION Our study provides evidence that the relationships between genetic and cultural diversity of old and new inhabitants of North Africa in southern Tunisia follow different patterns. The Berbers seem to have preserved a significant part of their common genomic heritage despite Islamization, Arab cultural influence, and linguistic diversity. Compared to Morocco and Algeria, southern Tunisian Arabs have retained a higher level of Arabian ancestry. This is more evident in the semi-nomad R'Baya, who have kept their original Bedouin lifestyle, than in the population from Douz, who have undergone multiple events of stratification and admixture.
Collapse
Affiliation(s)
- Paolo Anagnostou
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Italy.,Istituto Italiano di Antropologia, Italy
| | - Valentina Dominici
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Italy
| | - Cinzia Battaggia
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Italy
| | - Nouri Boukhchim
- Faculté des Lettres et Sciences Humaines, Université de Kairouan, Kairouan, Tunisia.,Laboratoire LMAIM, LR99ES01, Université de Tunis, Tunisia
| | - Jaâfar Ben Nasr
- Département d'Archéologie (FLSHK), LR 13 ES 11/ UR 16 ES 01, Université de Kairouan, Tunisia
| | | | | | - Marwa Marnaoui
- Dipartimento di Scienze dell'Antichità, Università di Roma "La Sapienza", Italy
| | - Meriem Marzouki
- Higher institute of fine arts, Department of Space Design, University of Sousse, Sousse, Tunisia
| | | | | | - Savino di Lernia
- Dipartimento di Scienze dell'Antichità, Università di Roma "La Sapienza", Italy.,GAES, University of Witwatersrand, Johannesburg, South Africa
| | - Giovanni Destro Bisol
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Italy.,Istituto Italiano di Antropologia, Italy
| |
Collapse
|
8
|
Sazzini M, Abondio P, Sarno S, Gnecchi-Ruscone GA, Ragno M, Giuliani C, De Fanti S, Ojeda-Granados C, Boattini A, Marquis J, Valsesia A, Carayol J, Raymond F, Pirazzini C, Marasco E, Ferrarini A, Xumerle L, Collino S, Mari D, Arosio B, Monti D, Passarino G, D'Aquila P, Pettener D, Luiselli D, Castellani G, Delledonne M, Descombes P, Franceschi C, Garagnani P. Genomic history of the Italian population recapitulates key evolutionary dynamics of both Continental and Southern Europeans. BMC Biol 2020; 18:51. [PMID: 32438927 PMCID: PMC7243322 DOI: 10.1186/s12915-020-00778-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/01/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The cline of human genetic diversity observable across Europe is recapitulated at a micro-geographic scale by variation within the Italian population. Besides resulting from extensive gene flow, this might be ascribable also to local adaptations to diverse ecological contexts evolved by people who anciently spread along the Italian Peninsula. Dissecting the evolutionary history of the ancestors of present-day Italians may thus improve the understanding of demographic and biological processes that contributed to shape the gene pool of European populations. However, previous SNP array-based studies failed to investigate the full spectrum of Italian variation, generally neglecting low-frequency genetic variants and examining a limited set of small effect size alleles, which may represent important determinants of population structure and complex adaptive traits. To overcome these issues, we analyzed 38 high-coverage whole-genome sequences representative of population clusters at the opposite ends of the cline of Italian variation, along with a large panel of modern and ancient Euro-Mediterranean genomes. RESULTS We provided evidence for the early divergence of Italian groups dating back to the Late Glacial and for Neolithic and distinct Bronze Age migrations having further differentiated their gene pools. We inferred adaptive evolution at insulin-related loci in people from Italian regions with a temperate climate, while possible adaptations to pathogens and ultraviolet radiation were observed in Mediterranean Italians. Some of these adaptive events may also have secondarily modulated population disease or longevity predisposition. CONCLUSIONS We disentangled the contribution of multiple migratory and adaptive events in shaping the heterogeneous Italian genomic background, which exemplify population dynamics and gene-environment interactions that played significant roles also in the formation of the Continental and Southern European genomic landscapes.
Collapse
Affiliation(s)
- Marco Sazzini
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.
- Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy.
| | - Paolo Abondio
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Stefania Sarno
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | | | - Matteo Ragno
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Sara De Fanti
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Claudia Ojeda-Granados
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara "Fray Antonio Alcalde" and Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Alessio Boattini
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Julien Marquis
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
- Current Address: Lausanne Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland
| | - Armand Valsesia
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Jerome Carayol
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | | | - Chiara Pirazzini
- IRCCS Bologna Institute of Neurological Sciences, Bologna, Italy
| | - Elena Marasco
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
- Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, Bologna, Italy
| | - Alberto Ferrarini
- Functional Genomics Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
- Current Address: Menarini Silicon Biosystems SpA, Castel Maggiore, Bologna, Italy
| | - Luciano Xumerle
- Functional Genomics Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Daniela Mari
- Geriatric Unit, Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Beatrice Arosio
- Geriatric Unit, Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Patrizia D'Aquila
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Davide Pettener
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Gastone Castellani
- Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Massimo Delledonne
- Functional Genomics Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Claudio Franceschi
- Department of Applied Mathematics, Institute of Information Technology, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Paolo Garagnani
- Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy.
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden.
| |
Collapse
|
9
|
Inter-individual genomic heterogeneity within European population isolates. PLoS One 2019; 14:e0214564. [PMID: 31596857 PMCID: PMC6785074 DOI: 10.1371/journal.pone.0214564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
A number of studies carried out since the early ‘70s has investigated the effects of isolation on genetic variation within and among human populations in diverse geographical contexts. However, no extensive analysis has been carried out on the heterogeneity among genomes within isolated populations. This issue is worth exploring since events of recent admixture and/or subdivision could potentially disrupt the genetic homogeneity which is to be expected when isolation is prolonged and constant over time. Here, we analyze literature data relative to 87,815 autosomal single-nucleotide polymorphisms, which were obtained from a total of 28 European populations. Our results challenge the traditional paradigm of population isolates as structured as genetically (and genomically) uniform entities. In fact, focusing on the distribution of variance of intra-population diversity measures across individuals, we show that the inter-individual heterogeneity of isolated populations is at least comparable to the open ones. More in particular, three small and highly inbred isolates (Sappada, Sauris and Timau in Northeastern Italy) were found to be characterized by levels of inter-individual heterogeneity largely exceeding that of all other populations, possibly due to relatively recent events of genetic introgression. Finally, we propose a way to monitor the effects of inter-individual heterogeneity in disease-gene association studies.
Collapse
|
10
|
Gnecchi-Ruscone GA, Sarno S, De Fanti S, Gianvincenzo L, Giuliani C, Boattini A, Bortolini E, Di Corcia T, Sanchez Mellado C, Dàvila Francia TJ, Gentilini D, Di Blasio AM, Di Cosimo P, Cilli E, Gonzalez-Martin A, Franceschi C, Franceschi ZA, Rickards O, Sazzini M, Luiselli D, Pettener D. Dissecting the Pre-Columbian Genomic Ancestry of Native Americans along the Andes-Amazonia Divide. Mol Biol Evol 2019; 36:1254-1269. [PMID: 30895292 PMCID: PMC6526910 DOI: 10.1093/molbev/msz066] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Extensive European and African admixture coupled with loss of Amerindian lineages makes the reconstruction of pre-Columbian history of Native Americans based on present-day genomes extremely challenging. Still open questions remain about the dispersals that occurred throughout the continent after the initial peopling from the Beringia, especially concerning the number and dynamics of diffusions into South America. Indeed, if environmental and historical factors contributed to shape distinct gene pools in the Andes and Amazonia, the origins of this East-West genetic structure and the extension of further interactions between populations residing along this divide are still not well understood. To this end, we generated new high-resolution genome-wide data for 229 individuals representative of one Central and ten South Amerindian ethnic groups from Mexico, Peru, Bolivia, and Argentina. Low levels of European and African admixture in the sampled individuals allowed the application of fine-scale haplotype-based methods and demographic modeling approaches. These analyses revealed highly specific Native American genetic ancestries and great intragroup homogeneity, along with limited traces of gene flow mainly from the Andes into Peruvian Amazonians. Substantial amount of genetic drift differentially experienced by the considered populations underlined distinct patterns of recent inbreeding or prolonged isolation. Overall, our results support the hypothesis that all non-Andean South Americans are compatible with descending from a common lineage, while we found low support for common Mesoamerican ancestors of both Andeans and other South American groups. These findings suggest extensive back-migrations into Central America from non-Andean sources or conceal distinct peopling events into the Southern Continent.
Collapse
Affiliation(s)
- Guido Alberto Gnecchi-Ruscone
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.,Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Stefania Sarno
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Sara De Fanti
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Laura Gianvincenzo
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Alessio Boattini
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Tullia Di Corcia
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Cesar Sanchez Mellado
- Faculty of Intercultural Education and Humanity, National Intercultural University of Amazon, Ucayali, Peru
| | | | - Davide Gentilini
- Center for Biomedical Research and Technologies, Italian Auxologic Institute IRCCS, Milan, Italy
| | - Anna Maria Di Blasio
- Center for Biomedical Research and Technologies, Italian Auxologic Institute IRCCS, Milan, Italy
| | | | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Antonio Gonzalez-Martin
- Department of Zoology and Physical Anthropology, Complutense University of Madrid, Madrid, Spain
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Olga Rickards
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Marco Sazzini
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Davide Pettener
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Ghiani ME, Mameli A, Robledo R, Calò CM. Allele frequency and forensic efficiency of 15 autosomal STR loci in the Sardinian population (Italy). Forensic Sci Int Genet 2019; 41:e26-e29. [DOI: 10.1016/j.fsigen.2019.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/13/2019] [Accepted: 04/14/2019] [Indexed: 10/27/2022]
|
12
|
Begliuomini C, Magli G, Di Rocco M, Santorelli FM, Cassandrini D, Nesti C, Deodato F, Diodato D, Casellato S, Simula DM, Dessì V, Eusebi A, Carta A, Sotgiu S. VARS2-linked mitochondrial encephalopathy: two case reports enlarging the clinical phenotype. BMC MEDICAL GENETICS 2019; 20:77. [PMID: 31064326 PMCID: PMC6505124 DOI: 10.1186/s12881-019-0798-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/03/2019] [Indexed: 12/19/2022]
Abstract
Background Mitochondrial respiratory chain consists of five complexes encoded by nuclear and mitochondrial genomes. Mitochondrial aminoacyl-tRNA synthetases are key enzymes in the synthesis of such complexes. Bi-allelic variants of VARS2, a nuclear gene encoding for valyl-tRNA (Val-tRNA) synthetase, are associated to several forms of mitochondrial encephalopathies or cardiomyoencephalopathies. Among these, the rare homozygous c.1100C > T (p.Thr367Ile) mutation variably presents with progressive developmental delay, axial hypotonia, limbs spasticity, drug-resistant epilepsy leading, in some cases, to premature death. Yet only six cases, of which three are siblings, harbouring this homozygous mutation have been described worldwide. Case presentation Hereby, we report two additional cases of two non-related young girls from Sardinia, born from non-consanguineous and healthy parents, carrying the aforesaid homozygous VARS2 variant. At onset both the patients presented with worsening psychomotor delay, muscle hypotonia and brisk tendon reflexes. Standard genetic tests were normal, as well as metabolic investigations. Brain MRI showed unspecific progressive abnormalities, such as corpus callosum hypoplasia (patient A) and cerebellar atrophy (patient A and B). Diagnosis was reached by adopting massive parallel next generation sequencing. Notably clinical phenotype of the first patient appears to be milder compared to previous known cases. The second patient eventually developed refractory epilepsy and currently presents with severe global impairment. Because no specific treatment is available as yet, both patients are treated with supporting antioxidant compounds along with symptomatic therapies. Conclusions Given the paucity of clinical data about this very rare mitochondrial encephalopathy, our report might contribute to broaden the phenotypic spectrum of the disorder. Moreover, noteworthy, three out of five pedigrees so far described belong to the Northern Sardinia ethnicity.
Collapse
Affiliation(s)
- Chiara Begliuomini
- Unit of Child Neuropsychiatry Residency Program, University Hospital of Sassari, Viale San Pietro 43/B, I-07100, Sassari, Italy.
| | - Giorgio Magli
- Unit of Child Neuropsychiatry Residency Program, University Hospital of Sassari, Viale San Pietro 43/B, I-07100, Sassari, Italy
| | - Maja Di Rocco
- Department of Pediatrics, Unit of Rare Diseases, Giannina Gaslini Institute, Via Gerolamo Gaslini, 5, 16147, Genoa, Italy
| | - Filippo M Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Viale del Tirreno, 331 56018 Calambrone, Pisa, Italy
| | - Denise Cassandrini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Viale del Tirreno, 331 56018 Calambrone, Pisa, Italy
| | - Claudia Nesti
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Viale del Tirreno, 331 56018 Calambrone, Pisa, Italy
| | - Federica Deodato
- Metabolic Division, 'Bambino Gesu' Children's Research Hospital, Piazza di Sant'Onofrio4, 00165, Rome, Italy
| | - Daria Diodato
- Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, 'Bambino Gesu' Children's Research Hospital, Piazza di Sant'Onofrio, 4, 00165, Rome, Italy
| | - Susanna Casellato
- Unit of Child Neuropsychiatry Residency Program, University Hospital of Sassari, Viale San Pietro 43/B, I-07100, Sassari, Italy
| | - Delia M Simula
- Unit of Child Neuropsychiatry Residency Program, University Hospital of Sassari, Viale San Pietro 43/B, I-07100, Sassari, Italy
| | - Veronica Dessì
- Unit of Child Neuropsychiatry Residency Program, University Hospital of Sassari, Viale San Pietro 43/B, I-07100, Sassari, Italy
| | - Anna Eusebi
- Unit of Child Neuropsychiatry Residency Program, University Hospital of Sassari, Viale San Pietro 43/B, I-07100, Sassari, Italy
| | - Alessandra Carta
- Unit of Child Neuropsychiatry Residency Program, University Hospital of Sassari, Viale San Pietro 43/B, I-07100, Sassari, Italy.,Child Psychiatry Unit, Department of Neuroscience, 'Bambino Gesù' Children's Research Hospital, Piazza di Sant'Onofrio, 4, 00165, Rome, Italy
| | - Stefano Sotgiu
- Unit of Child Neuropsychiatry Residency Program, University Hospital of Sassari, Viale San Pietro 43/B, I-07100, Sassari, Italy
| |
Collapse
|
13
|
Robledo R, Vona G, Sanna E, Bachis V, Calò CM. Analysis of uniparental markers reveals a complex pattern of migration within Sardinia. Ann Hum Biol 2018; 45:354-358. [DOI: 10.1080/03014460.2018.1489559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Renato Robledo
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Giuseppe Vona
- Department of Life and Environment Sciences, University of Cagliari, Monserrato, Italy
| | - Emanuele Sanna
- Department of Life and Environment Sciences, University of Cagliari, Monserrato, Italy
| | - Valeria Bachis
- Department of Life and Environment Sciences, University of Cagliari, Monserrato, Italy
| | - Carla Maria Calò
- Department of Life and Environment Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|