1
|
Marin JJG, Macias RIR, Asensio M, Romero MR, Temprano AG, Pereira OR, Jimenez S, Mauriz JL, Di Giacomo S, Avila MA, Efferth T, Briz O. Strategies to enhance the response of liver cancer to pharmacological treatments. Am J Physiol Cell Physiol 2024; 327:C11-C33. [PMID: 38708523 DOI: 10.1152/ajpcell.00176.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
In contrast to other types of cancers, there is no available efficient pharmacological treatment to improve the outcomes of patients suffering from major primary liver cancers, i.e., hepatocellular carcinoma and cholangiocarcinoma. This dismal situation is partly due to the existence in these tumors of many different and synergistic mechanisms of resistance, accounting for the lack of response of these patients, not only to classical chemotherapy but also to more modern pharmacological agents based on the inhibition of tyrosine kinase receptors (TKIs) and the stimulation of the immune response against the tumor using immune checkpoint inhibitors (ICIs). This review summarizes the efforts to develop strategies to overcome this severe limitation, including searching for novel drugs derived from synthetic, semisynthetic, or natural products with vectorial properties against therapeutic targets to increase drug uptake or reduce drug export from cancer cells. Besides, immunotherapy is a promising line of research that is already starting to be implemented in clinical practice. Although less successful than in other cancers, the foreseen future for this strategy in treating liver cancers is considerable. Similarly, the pharmacological inhibition of epigenetic targets is highly promising. Many novel "epidrugs," able to act on "writer," "reader," and "eraser" epigenetic players, are currently being evaluated in preclinical and clinical studies. Finally, gene therapy is a broad field of research in the fight against liver cancer chemoresistance, based on the impressive advances recently achieved in gene manipulation. In sum, although the present is still dismal, there is reason for hope in the non-too-distant future.
Collapse
Affiliation(s)
- Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Marta R Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Alvaro G Temprano
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Olívia R Pereira
- Centro de Investigação de Montanha (CIMO), Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
- Research Centre for Active Living and Wellbeing (LiveWell), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Silvia Jimenez
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Servicio de Farmacia Hospitalaria, Hospital de Salamanca, Salamanca, Spain
| | - Jose L Mauriz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Institute of Biomedicine (IBIOMED), University of Leon, Leon, Spain
| | - Silvia Di Giacomo
- Department of Food Safety, Nutrition and Veterinary Public Health, National Institute of Health, Rome, Italy
| | - Matias A Avila
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Hepatology Laboratory, Solid Tumors Program, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigaciones Sanitarias de Navarra (IdisNA), Pamplona, Spain
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
2
|
Guler EM, Bozali K. Synthesised thymoquinone-oxime induces cytotoxicity, genotoxicity and apoptosis in hepatocellular cancer cells: in vitro study. Nat Prod Res 2024; 38:1695-1703. [PMID: 37254835 DOI: 10.1080/14786419.2023.2217705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 06/01/2023]
Abstract
Hepatocellular carcinoma is the most common primary malignant tumor of the liver, and its incidence is increasing worldwide. There is a need to develop new therapeutic strategies to treat the disease. In this study, we synthesised the oxime derivative of thymoquinone and investigated cytotoxicity, genotoxicity, and apoptosis in hepatocellular cancer cells. The synthesised thymoquinone-oxime structure was confirmed by NMR. After incubating the hepatocellular cancer cell line for 24 h, the cytotoxicity ATP by luminometric, intracellular reactive oxygen species, and intracellular calcium by fluorometric. The mitochondrial membrane potential was determined by flow cytometry. DNA damage by alkaline single-cell gel electrophoresis, and apoptosis damage by acridine orange/ethidium bromide double dye method. Concentrations of thymoquinone-oxime statistically increased cytotoxicity, intracellular reactive oxygen species, intracellular calcium, apoptosis, and DNA damage in a concentration-dependent manner. Mitochondrial membrane potential and glutathione levels are also decreased. These findings show that thymoquinone-oxime has an anti-tumor effect on hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Eray Metin Guler
- Department of Medical Biochemistry, University of Health Sciences Turkey, Hamidiye School of Medicine, Istanbul, Turkey
- Haydarpasa Numune Health Application and Research Center, Department of Medical Biochemistry, University of Health Sciences Turkey, Istanbul, Turkey
| | - Kubra Bozali
- Department of Medical Biochemistry, University of Health Sciences Turkey, Hamidiye School of Medicine, Istanbul, Turkey
| |
Collapse
|
3
|
Fakhri S, Moradi SZ, Faraji F, Kooshki L, Webber K, Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 2024; 43:501-574. [PMID: 37792223 DOI: 10.1007/s10555-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA.
| |
Collapse
|
4
|
Kakali B. Natural Compounds as Protease Inhibitors in Therapeutic Focus on Cancer Therapy. Anticancer Agents Med Chem 2024; 24:1167-1181. [PMID: 38988167 DOI: 10.2174/0118715206303964240708095110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
Proteases are implicated in every hallmark of cancer and have complicated functions. For cancer cells to survive and thrive, the process of controlling intracellular proteins to keep the balance of the cell proteome is essential. Numerous natural compounds have been used as ligands/ small molecules to target various proteases that are found in the lysosomes, mitochondria, cytoplasm, and extracellular matrix, as possible anticancer therapeutics. Promising protease modulators have been developed for new drug discovery technology through recent breakthroughs in structural and chemical biology. The protein structure, function of significant tumor-related proteases, and their natural compound inhibitors have been briefly included in this study. This review highlights the most current frontiers and future perspectives for novel therapeutic approaches associated with the list of anticancer natural compounds targeting protease and the mode and mechanism of proteinase-mediated molecular pathways in cancer.
Collapse
Affiliation(s)
- Bhadra Kakali
- Department of Zoology, University of Kalyani, Kalyani, 741235, India
| |
Collapse
|
5
|
Wu Q, Leng X, Ma X, Xu Q, Ni R, Pan Y, Jin Z, Kalim M. Triptolide Reduces MDA-MB-231 Cell Metastasis by Attenuating Epithelial-Mesenchymal Transition through the ROCK/PTEN/Akt Axis. Chem Biodivers 2023; 20:e202300399. [PMID: 37910661 DOI: 10.1002/cbdv.202300399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/03/2023]
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous and invasive subtype of breast cancer. The prognosis of TNBC is poor because of its high distant metastasis rate. Triptolide is a type of diterpene trioxide natural compound with potential anti-tumor activities. This study explored the metastatic inhibitory effect of triptolide on MDA-MB-231 cells and its underlying mechanism. Triptolide suppressed cell proliferation and induced cell apoptosis in a time- and dose-dependent manner. Low doses of triptolide (0-8 nM) reduced the migration and invasion capabilities of MDA-MB-231 cells. Triptolide decreased ROCK1, p-Akt, N-cadherin, vimentin and MMP-9 expressions, but increased PTEN and E-cadherin expressions on protein and mRNA levels. Furthermore, the down-regulation of ROCK1 expression in MDA-MB-231 cells after being treated by triptolide could be rescued by ROCK1 specific inhibitor Y27632. Molecular docking showed that triptolide and Y27632 shared the same active center of ROCK1 protein. This article's findings taken together showed that ROCK1 is the primary target of triptolide, which can cause cell apoptosis and inhibit the epithelial-mesenchymal transition of MDA-MB-231 cells.
Collapse
Affiliation(s)
- Qinhang Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R. China
| | - Xuejiao Leng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R. China
| | - Xuelin Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R. China
| | - Qixuan Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R. China
| | - Ruijun Ni
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R. China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R. China
| | - Zhuolin Jin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R. China
| | - Muhammad Kalim
- Department of Microbiology and Immunology, Wake Forest University, Winston-Salem, NC, 27101, USA
| |
Collapse
|
6
|
Dasari S, Pathak N, Thomas A, Bitla S, Kumar R, Munirathinam G. Neferine Targets the Oncogenic Characteristics of Androgen-Dependent Prostate Cancer Cells via Inducing Reactive Oxygen Species. Int J Mol Sci 2023; 24:14242. [PMID: 37762540 PMCID: PMC10532349 DOI: 10.3390/ijms241814242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Castration resistance poses a significant challenge in the management of advanced prostate cancer (PCa), with androgen deprivation therapy (ADT) or chemotherapy being the primary treatment options. However, these approaches often lead to significant side effects and the development of therapeutic resistance. Therefore, it is crucial to explore novel treatment options that can efficiently target PCa, improve patient survival, and enhance their quality of life. Neferine (Nef), a bioactive compound derived from plants, has emerged as a promising candidate for cancer treatment due to its ability to induce apoptosis, autophagy, and cell cycle arrest. In this study, we investigated the potential anticancer effects of Nef in androgen receptor (AR)-positive LNCaP and VCaP cells, representative models of androgen-dependent PCa. Our findings demonstrate that Nef effectively inhibits cell growth, proliferation, and the tumorigenic potential of androgen-dependent PCa cells. Furthermore, Nef treatment resulted in the excessive production of reactive oxygen species (ROS), leading to the activation of key markers of autophagy and apoptosis. These results suggest that Nef has the potential to target the oncogenic characteristics of androgen-dependent PCa cells by exploiting the potency of ROS and inducing autophagy and apoptosis in AR-positive PCa cells. These findings shed light on the therapeutic potential of Nef as a novel treatment option with reduced side effects for androgen-dependent prostate cancer. Further investigations are warranted to assess its efficacy and safety in preclinical and clinical settings.
Collapse
Affiliation(s)
- Subramanyam Dasari
- School of Medicine, Indiana University Bloomington, Bloomington, IN 47405, USA;
| | - Nishtha Pathak
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL 61108, USA; (N.P.); (A.T.); (S.B.)
| | - Amy Thomas
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL 61108, USA; (N.P.); (A.T.); (S.B.)
| | - Shreeja Bitla
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL 61108, USA; (N.P.); (A.T.); (S.B.)
| | - Raj Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173234, Himachal Pradesh, India;
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL 61108, USA; (N.P.); (A.T.); (S.B.)
| |
Collapse
|
7
|
Wang X, Wei Z, Hu P, Xia W, Liao Z, Assani I, Yang G, Pan Y. Optimization of Neferine Purification Based on Response Surface Methodology and Its Anti-Metastasis Mechanism on HepG2 Cells. Molecules 2023; 28:5086. [PMID: 37446748 DOI: 10.3390/molecules28135086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Liver cancer continues to be a focus of scientific research due to its low five-year survival rate. One of its main core issues is the high metastasis of cells, for which there is no effective treatment. Neferine was originally isolated from Plumula nelumbinis and demonstrated to have a good antitumor effect. In order to extract high-purity Neferine in a more efficient and environmentally friendly manner, response surface methodology (RSM) was used to optimize the isolation and purification procedures in this study. The extract conditions of a 7:3 ratio for the eluent of dichloromethane: methanol, 1:60 for the mass ratio of the extract amount: silica gel, and 3 mL/min of the elution flow rate were shown to be the optimal conditions. These conditions resulted in the highest yield of 6.13 mg per 66.60 mg of starting material, with productivity of 8.76% and purity of 87.04%. Compared with the previous methods, this method can prepare Neferine in large quantities more quickly. We subsequently evaluated the antitumor activity of the purified Neferine against HepG2 hepatic cancer cells. The purified Neferine was found to inhibit the proliferation of HepG2 cells through the CCK-8 assay, with an IC50 of 33.80 μM in 24 h, 29.47 μM in 48 h, 24.35 μM in 72 h and 2.78 μM in 96 h of treatment. Neferine at a concentration of 3 μM could significantly inhibit the migration and invasion abilities of the HepG2 cells in vitro. We also explored the mechanism of action of Neferine via Western blot. We showed that Neferine could reduce RhoA expression by effectively inhibiting the phosphorylation of MYPT1, thereby effectively exerting anti-metastasis activity against HepG2 cells. Thus, we have optimized the isolation procedures for highly pure Neferine by response surface methodology (RSM) in this study, and purified Neferine is shown to play an essential role in the anti-metastasis process of liver cancer cells. The Neferine purification procedure may make a wide contribution to the follow-up development of other anti-metastasis lead compounds.
Collapse
Affiliation(s)
- Xinzhu Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Zhenhuan Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Po Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Weibo Xia
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Zhixin Liao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Israa Assani
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Guangming Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| |
Collapse
|
8
|
Hu P, Wan P, Xu A, Yan B, Liu C, Xu Q, Wei Z, Xu J, Liu S, Yang G, Pan Y. Neferine, a novel ROCK1-targeting inhibitor, blocks EMT process and induces apoptosis in non-small cell lung cancer. J Cancer Res Clin Oncol 2023; 149:553-566. [PMID: 35984492 DOI: 10.1007/s00432-022-04280-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022]
Abstract
The compounds derived from Traditional Chinese Medicines have shown various pharmacological activities with unique advantages, especially in the aspect of antitumor. Neferine (Nef), a natural compound, extracted from green seed embryos of Lotus (Nelumbo nucifera Gaertn.) also exerts antitumor effects on cancers. In this study, the effects and mechanisms of Nef on epithelial-to-mesenchymal transition (EMT) process in non-small cell lung cancer (NSCLC) were evaluated. The results showed that Nef had the antitumor effects in vivo and in vitro. Nef significantly suppressed cell viability and induced apoptosis in NSCLC cells, with elevated reactive oxygen species and reduced BCL2/BAX ratio. Nef was also demonstrated to inhibit the invasion, metastasis and EMT process of NSCLC cells, and attenuate EMT-related changes of E-cadherin, N-cadherin and Vimentin at both transcriptional and translational levels. Moreover, we concluded that the inhibitory effects of Nef on EMT was achieved by targeting Rho-associated protein kinase 1, a protein mediating the process of EMT in various cancers. These results showed that Nef had a significant antitumor effect on NSCLC cells by inducing apoptosis and blocking EMT, providing the therapeutical prospect on NSCLC treatment.
Collapse
Affiliation(s)
- Po Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Peng Wan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Anna Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Binghui Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chunmei Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qixuan Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenhuan Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingyi Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Siqi Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guangming Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
9
|
Li H, Ge H, Song X, Tan X, Xiong Q, Gong Y, Zhang L, He Y, Zhang W, Zhu P, Lin W, Xiao X. Neferine mitigates cisplatin-induced acute kidney injury in mice by regulating autophagy and apoptosis. Clin Exp Nephrol 2023; 27:122-131. [PMID: 36326941 DOI: 10.1007/s10157-022-02292-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE The nephrotoxicity caused by cisplatin severely limits the application and affects related platinum-based therapeutics. Neferine is a dibenzylisoquinoline alkaloid extracted from a Chinese medicinal herb (Nelumbo nucifera Gaertn), which can decrease cisplatin-induced apoptosis of NRK-52E cells by activating autophagy in vitro in our previous study. In this article, we aimed to further investigate the protective effect of neferine, against to the cispltain-induced kidney damage in mice. METHODS Six groups were designed in our study. Renal index, mice serum creatinine and blood urea nitrogen levels were detected after the mice were killed. HE staining was used to observe the pathological changes of each group. The apoptosis of mouse kidney tissue was detected by TUNEL. Immunofluorescence and Western blot were used to detect the expression of cleaved-caspase3 and LC3. The transmission electron microscope was used to reveal the changes of apoptosis and autophagy of renal tubular epithelial cells in different groups. RESULTS In our findings, the pathological changes of acute kidney injury were easily observed in cisplatin-treated mice while those in the neferine-pretreated groups were significantly alleviated. The apoptosis induced by cisplatin in mice increased evidently compared with the control group, which was decreased in the mice with neferine pretreatment. What' more, we found that autophagy increased obviously in mice pretreated by neferine contrast to the cisplatin-treated mice. CONCLUSION In our study, neferine can effectively alleviate cisplatin-induced renal injury in mice, as well act as an autophagy-regulator in kidney protection.
Collapse
Affiliation(s)
- Hui Li
- Department of Respiratory Medicine, The First Hospital of Changsha, Changsha, 410008, Hunan, China
| | - Huipeng Ge
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoyun Song
- Department of Science and Education, The First Hospital of Changsha, Changsha, 410008, Hunan, China
| | - Xin Tan
- Department of Pediatrics, The First Hospital of Changsha, Changsha, 410008, Hunan, China
| | - Qi Xiong
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yizi Gong
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Linlin Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yikai He
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Weiwei Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Peng Zhu
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Wei Lin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China. .,National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
10
|
Lee MG, Lee SG, Nam KS. Ginkgolide B Suppresses TPA-induced Metastatic Potential in MCF-7 Human Breast Cancer Cells by Inhibiting MAPK/AP-1 Signaling. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Gao S, Jiang X, Wang L, Jiang S, Luo H, Chen Y, Peng C. The pathogenesis of liver cancer and the therapeutic potential of bioactive substances. Front Pharmacol 2022; 13:1029601. [PMID: 36278230 PMCID: PMC9581229 DOI: 10.3389/fphar.2022.1029601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Liver cancer is the third most common cause of cancer-related deaths in the world and has become an urgent problem for global public health. Bioactive substances are widely used for the treatment of liver cancer due to their widespread availability and reduced side effects. This review summarizes the main pathogenic factors involved in the development of liver cancer, including metabolic fatty liver disease, viral infection, and alcoholic cirrhosis, and focuses on the mechanism of action of bioactive components such as polysaccharides, alkaloids, phenols, peptides, and active bacteria/fungi. In addition, we also summarize transformation methods, combined therapy and modification of bioactive substances to improve the treatment efficiency against liver cancer, highlighting new ideas in this field.
Collapse
Affiliation(s)
- Song Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xingyue Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liang Wang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shanshan Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hanyuan Luo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yan Chen, ; Cheng Peng,
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yan Chen, ; Cheng Peng,
| |
Collapse
|
12
|
Neferine Exerts Ferroptosis-Inducing Effect and Antitumor Effect on Thyroid Cancer through Nrf2/HO-1/NQO1 Inhibition. JOURNAL OF ONCOLOGY 2022; 2022:7933775. [PMID: 35794985 PMCID: PMC9252705 DOI: 10.1155/2022/7933775] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/17/2022]
Abstract
Thyroid cancer is the most prevalent endocrine malignancy with an increasing incidence in the past few decades. Neferine possesses various pharmacological activities, which have been applied in diverse disease models, including various tumors. However, the detailed effect and mechanism of neferine on thyroid cancer are still unclear. In the current study, the viability of IHH-4 and CAL-62 cells was examined by the CCK-8 assay. The effect of neferine on the proliferation, apoptosis, invasion, vascular endothelial growth factor (VEGF), epithelial-mesenchymal transition (EMT), and ferroptosis was evaluated by CCK-8, flow cytometry, western blot, and spectrophotometry assays. Mechanically, the expressions levels of Nrf2/HO-1/NQO1 signaling were first determined by a western blot, which was then verified by Nrf2 overexpression. In vivo validation was also conducted on BALB/c nude mice with an inoculation dose of 2 × 106 IHH-4 cells. The results showed that neferine repressed the viability of both IHH-4 and CAL-62 cells both in a dose-dependent way and in a time-dependent fashion, in which the IC50 value of neferine on IHH-4 and CAL-62 cells was 9.47 and 8.72 μM, respectively. Besides, neferine enhanced apoptosis but suppressed invasion, angiogenesis, and EMT of IHH-4 and CAL-62 cells. Moreover, neferine induced the activation of ferroptosis in thyroid cancer cells. Notably, it was revealed that the Nrf2/HO-1/NQO1 pathway was strongly associated with the effect of neferine on the modulation of thyroid cancer. Furthermore, these outcomes were validated in xenografted mice. Therefore, neferine exerted an antitumor effect and ferroptosis-inducing effect on thyroid cancer via inhibiting the Nrf2/HO-1/NQO1 pathway.
Collapse
|
13
|
Ji J, Zhang Z, Peng Q, Hao L, Guo Y, Xue Y, Liu Y, Li C, Shi X. The Effects of Qinghao-Kushen and Its Active Compounds on the Biological Characteristics of Liver Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8763510. [PMID: 35722140 PMCID: PMC9205744 DOI: 10.1155/2022/8763510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/22/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIMS Artemisia annua (Qinghao) and Sophora flavescens (Kushen) are traditional Chinese medicines (TCMs). They are widely used in disease therapy, including hepatocellular carcinoma (HCC). However, their key compounds and targets for HCC treatment are unclear. This article mainly analyzed the vital active compounds and the mechanism of Qinghao-Kushen acting on HCC. METHODS First, we chose a traditional Chinese medicine, which has an excellent clinical effect on HCC by network meta-analysis. Then, we composed the Qinghao-Kushen herb pair and prepared the medicated serum. The active compounds of Qinghao-Kushen were verified by the LC-MS method. Next, we detected key targets from PubChem, SymMap, SwissTargetPrediction, DisGeNET, and GeneCards databases. Subsequently, the mechanism of Qinghao-Kushen was predicted by network pharmacology strategy and primarily examined in HuH-7 cells, HepG2 cells, and HepG2215 cells. RESULTS The effect of the Qinghao-Kushen combination was significantly better than that of single Qinghao or single Kushen in HepG2 and HuH-7 cells. Qinghao-Kushen increased the expression of activated caspase-3 protein than Qinghao or Kushen alone in HepG2 and HepG2215 cells. Network analyses and the LC-MS method revealed that the pivotal compounds of Qinghao-Kushen were matrine and scopoletin. GSK-3β was one of the critical molecules related to Qinghao-Kushen. We confirmed that Qinghao-Kushen and matrine-scopoletin decreased the expression of GSK-3β in HepG2 cells while increased GSK-3β expression in HepG2215 cells. CONCLUSIONS This work not only illustrated that the practical components of Qinghao-Kushen on HCC were matrine and scopoletin but shed light on the inhibitory of Qinghao-Kushen and matrine-scopoletin on liver cancer cells. Moreover, Qinghao-Kushen and matrine-scopoletin had a synergistic effect over the drug alone in HuH-7, HepG2, or HepG2215 cells. GSK-3β may be a potential target for HCC therapy.
Collapse
Affiliation(s)
- Jingmin Ji
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Zhiqin Zhang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Qing Peng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Liyuan Hao
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yinglin Guo
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yu Xue
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yiwei Liu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Caige Li
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xinli Shi
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
14
|
Bishayee A, Patel PA, Sharma P, Thoutireddy S, Das N. Lotus (Nelumbo nucifera Gaertn.) and Its Bioactive Phytocopounds: A Tribute to Cancer Prevention and Intervention. Cancers (Basel) 2022; 14:cancers14030529. [PMID: 35158798 PMCID: PMC8833568 DOI: 10.3390/cancers14030529] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The plant Nelumbo nucifera (Gaertn.), commonly known as lotus, sacred lotus, Indian lotus, water lily, or Chinese water lily, is an aquatic perennial crop belonging to the family of Nelumbonaceae. N. nucifera has traditionally been used as an herbal medicine and functional food in many parts of Asia. It has been found that different parts of this plant consist of various bioactive phytocompounds. Within the past few decades, N. nucifera and its phytochemicals have been subjected to intense cancer research. In this review, we critically evaluate the potential of N. nucifera phytoconstituents in cancer prevention and therapy with related mechanisms of action. Abstract Cancer is one of the major leading causes of death worldwide. Accumulating evidence suggests a strong relationship between specific dietary habits and cancer development. In recent years, a food-based approach for cancer prevention and intervention has been gaining tremendous attention. Among diverse dietary and medicinal plants, lotus (Nelumbo nucifera Gaertn., family Nymphaeaceae), also known as Indian lotus, sacred lotus or Chinese water lily, has the ability to effectively combat this disease. Various parts of N. nucifera have been utilized as a vegetable as well as an herbal medicine for more than 2000 years in the Asian continent. The rhizome and seeds of N. nucifera represent the main edible parts. Different parts of N. nucifera have been traditionally used to manage different disorders, such as fever, inflammation, insomnia, nervous disorders, epilepsy, hypertension, cardiovascular diseases, obesity, and hyperlipidemia. It is believed that numerous bioactive components, including alkaloids, polyphenols, terpenoids, steroids, and glycosides, are responsible for its various biological and pharmacological activities, such as antioxidant, anti-inflammatory, immune-modulatory, antiviral, hepatoprotective, cardioprotective, and hypoglycemic activities. Nevertheless, there is no comprehensive review with an exclusive focus on the anticancer attributes of diverse phytochemicals from different parts of N. nucifera. In this review, we have analyzed the effects of N. nucifera extracts, fractions and pure compounds on various organ-specific cancer cells and tumor models to understand the cancer-preventive and therapeutic potential and underlying cellular and molecular mechanisms of action of this interesting medicinal and dietary plant. In addition, the bioavailability, pharmacokinetics, and possible toxicity of N. nucifera-derived phytochemicals, as well as current limitations, challenges and future research directions, are also presented.
Collapse
Affiliation(s)
- Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (P.A.P.); (P.S.); (S.T.)
- Correspondence: or
| | - Palak A. Patel
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (P.A.P.); (P.S.); (S.T.)
| | - Priya Sharma
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (P.A.P.); (P.S.); (S.T.)
| | - Shivani Thoutireddy
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (P.A.P.); (P.S.); (S.T.)
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia 799155, Tripura, India;
| |
Collapse
|
15
|
Wang Z, Li Y, Ma D, Zeng M, Wang Z, Qin F, Chen J, Christian M, He Z. Alkaloids from lotus ( Nelumbo nucifera): recent advances in biosynthesis, pharmacokinetics, bioactivity, safety, and industrial applications. Crit Rev Food Sci Nutr 2021:1-34. [PMID: 34845950 DOI: 10.1080/10408398.2021.2009436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Different parts of lotus (Nelumbo nucifera Gaertn.) including the seeds, rhizomes, leaves, and flowers, are used for medicinal purposes with health promoting and illness preventing benefits. The presence of active chemicals such as alkaloids, phenolic acids, flavonoids, and terpenoids (particularly alkaloids) may account for this plant's pharmacological effects. In this review, we provide a comprehensive overview and summarize up-to-date research on the biosynthesis, pharmacokinetics, and bioactivity of lotus alkaloids as well as their safety. Moreover, the potential uses of lotus alkaloids in the food, pharmaceutical, and cosmetic sectors are explored. Current evidence shows that alkaloids, mainly consisting of aporphines, 1-benzylisoquinolines, and bisbenzylisoquinolines, are present in different parts of lotus. The bioavailability of these alkaloids is relatively low in vivo but can be enhanced by technological modification using nanoliposomes, liposomes, microcapsules, and emulsions. Available data highlights their therapeutic and preventive effects on obesity, diabetes, neurodegeneration, cancer, cardiovascular disease, etc. Additionally, industrial applications of lotus alkaloids include their use as food, medical, and cosmetic ingredients in tea, other beverages, and healthcare products; as lipid-lowering, anticancer, and antipsychotic drugs; and in facial masks, toothpastes, and shower gels. However, their clinical efficacy and safety remains unclear; hence, larger and longer human trials are needed to achieve their safe and effective use with minimal side effects.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Yong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Dandan Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
16
|
Nguyen VK, Kou KGM. The biology and total syntheses of bisbenzylisoquinoline alkaloids. Org Biomol Chem 2021; 19:7535-7543. [PMID: 34524341 DOI: 10.1039/d1ob00812a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This mini-review provides a concise overview of the biosynthetic pathway and pharmacology of bisbenzylisoquinoline alkaloid (bisBIA) natural products. Additional emphasis is given to the methodologies in the total syntheses of both simpler acyclic diaryl ether dimers and their macrocyclic counterparts bearing two diaryl ether linkages.
Collapse
Affiliation(s)
- Viviene K Nguyen
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | - Kevin G M Kou
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| |
Collapse
|
17
|
Snail Upregulates Transcription of FN, LEF, COX2, and COL1A1 in Hepatocellular Carcinoma: A General Model Established for Snail to Transactivate Mesenchymal Genes. Cells 2021; 10:cells10092202. [PMID: 34571852 PMCID: PMC8467536 DOI: 10.3390/cells10092202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/14/2021] [Accepted: 08/22/2021] [Indexed: 12/21/2022] Open
Abstract
SNA is one of the essential EMT transcriptional factors capable of suppressing epithelial maker while upregulating mesenchymal markers. However, the mechanisms for SNA to transactivate mesenchymal markers was not well elucidated. Recently, we demonstrated that SNA collaborates with EGR1 and SP1 to directly upregulate MMP9 and ZEB1. Remarkably, a SNA-binding motif (TCACA) upstream of EGR/SP1 overlapping region on promoters was identified. Herein, we examined whether four other mesenchymal markers, lymphoid enhancer-binding factor (LEF), fibronectin (FN), cyclooxygenase 2 (COX2), and collagen type alpha I (COL1A1) are upregulated by SNA in a similar fashion. Expectedly, SNA is essential for expression of these mesenchymal genes. By deletion mapping and site directed mutagenesis coupled with dual luciferase promoter assay, SNA-binding motif and EGR1/SP1 overlapping region are required for TPA-induced transcription of LEF, FN, COX2 and COL1A1. Consistently, TPA induced binding of SNA and EGR1/SP1 on relevant promoter regions of these mesenchymal genes using ChIP and EMSA. Thus far, we found six of the mesenchymal genes are transcriptionally upregulated by SNA in the same fashion. Moreover, comprehensive screening revealed similar sequence architectures on promoter regions of other SNA-upregulated mesenchymal markers, suggesting that a general model for SNA-upregulated mesenchymal genes can be established.
Collapse
|
18
|
Xu B, Huang S, Chen Y, Wang Q, Luo S, Li Y, Wang X, Chen J, Luo X, Zhou L. Synergistic effect of combined treatment with baicalin and emodin on DSS-induced colitis in mouse. Phytother Res 2021; 35:5708-5719. [PMID: 34379340 DOI: 10.1002/ptr.7230] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/17/2021] [Accepted: 07/14/2021] [Indexed: 12/30/2022]
Abstract
The treatment of combination drugs in complex diseases has been spotlighted. Ulcerative colitis (UC) is a chronic inflammatory disease that has made progress in combination therapy. Baicalin, a flavone from Scutellaria baicalensis Georgi. (Lamiaceae), and emodin, an anthraquinone derivative from Rhei Radix et Rhizoma. (Polygonaceae), both have been reported to possess antiinflammatory activities. Our study investigated whether combined treatment with baicalin and emodin had a synergistic effect in inhibiting colitis inflammation. The results showed that baicalin combined with emodin at a lower dose had the same effect as the two drugs alone significantly alleviated the symptoms of dextran sulfate sodium (DSS)-induced colitis mice, involving the prevention of the loss of body weight and colon shortening, the decrease in the disease activity index (DAI), and intestinal damages. The combined treatment decreased the expression of CD14/TLR4/NF-κB pathway proteins and increased the expression of PPAR-γ protein in the colon of colitis mice. Further study in vitro has shown that baicalin decreased the expression of CD14, whereas emodin increased the expression of PPAR-γ, both of which inhibited the activity of NF-κB and exerted antiinflammatory effects. Furthermore, compared to the treatment using the two drugs individually, baicalin combined with emodin had more significant effects on the expression of CD14 and PPAR-γ. Therefore, emodin combined with baicalin had a synergistic effect on DSS-induced colitis.
Collapse
Affiliation(s)
- Bo Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaowei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanping Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuang Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanyang Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojing Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinyan Chen
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xia Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lian Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
19
|
Li Y, Li T, Zhou D, Wei J, Li Z, Li X, Jia S, Ouyang Q, Qi S, Chen Z, Zhang B, Yu J, Jia J, Xu A, Huang J. Role of tight junction-associated MARVEL protein marvelD3 in migration and epithelial-mesenchymal transition of hepatocellular carcinoma. Cell Adh Migr 2021; 15:249-260. [PMID: 34338154 PMCID: PMC8331009 DOI: 10.1080/19336918.2021.1958441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
MarvelD3, a recently identified tight junction membrane protein, could be associated with hepatocellular carcinoma (HCC). We aimed to investigate the role of marvelD3 in Epithelial-Mesenchymal Transition (EMT) and migration of HCC and explore the underlying molecular mechanisms. First, we assessed marvlD3 expression in HCC and normal liver tissues and found loss of marvelD3 expression was significantly correlated with the occurrence and TNM stage of HCC. Second, we detected that marvelD3 was downregulated in HCC cells with transforming growth factor β1 and snail/slug-induced EMT. Finally, we analyzed expression of marvelD3 protein was significantly associated with EMT and the NF-κB signaling pathway. Our study demonstrated that MarvelD3 inhibited EMT and migration of HCC cells along with inhibiting NF-κB signaling pathway.Abbreviations: HCC, Hepatocellular carcinoma; TJ, Tight junction; MARVEL, MAL and related proteins for vesicle trafficking and membrane link; EMT, Epithelial-mesenchymal transition; NF-κB, Nuclear factor kappa B; TAMPs, Tight junction-associated marvel proteins; TGF-β1, Transforming growth factor-β1; MMP9, matrix metallopeptidase 9; RT-PCR, Real-time PCR; IHC, Immunohistochemistry; IF, Immunofluorescence.
Collapse
Affiliation(s)
- Yanmeng Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Teng Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Donghu Zhou
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jia Wei
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenkun Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaojin Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Siyu Jia
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qin Ouyang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Saiping Qi
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhibin Chen
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bei Zhang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Yu
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Anjian Xu
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jian Huang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Luo Y, Yin S, Lu J, Zhou S, Shao Y, Bao X, Wang T, Qiu Y, Yu H. Tumor microenvironment: a prospective target of natural alkaloids for cancer treatment. Cancer Cell Int 2021; 21:386. [PMID: 34284780 PMCID: PMC8290600 DOI: 10.1186/s12935-021-02085-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022] Open
Abstract
Malignant tumor has become one of the major diseases that seriously endangers human health. Numerous studies have demonstrated that tumor microenvironment (TME) is closely associated with patient prognosis. Tumor growth and progression are strongly dependent on its surrounding tumor microenvironment, because the optimal conditions originated from stromal elements are required for cancer cell proliferation, invasion, metastasis and drug resistance. The tumor microenvironment is an environment rich in immune/inflammatory cells and accompanied by a continuous, gradient of hypoxia and pH. Overcoming immunosuppressive environment and boosting anti-tumor immunity may be the key to the prevention and treatment of cancer. Most traditional Chinese medicine have been proved to have good anti-tumor activity, and they have the advantages of better therapeutic effect and few side effects in the treatment of malignant tumors. An increasing number of studies are giving evidence that alkaloids extracted from traditional Chinese medicine possess a significant anticancer efficiency via regulating a variety of tumor-related genes, pathways and other mechanisms. This paper reviews the anti-tumor effect of alkaloids targeting tumor microenvironment, and further reveals its anti-tumor mechanism through the effects of alkaloids on different components in tumor microenvironment.
Collapse
Affiliation(s)
- Yanming Luo
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangshuang Yin
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jia Lu
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shiyue Zhou
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yingying Shao
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaomei Bao
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tao Wang
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Haiyang Yu
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
21
|
Zhou D, Luan J, Huang C, Li J. Tumor-Associated Macrophages in Hepatocellular Carcinoma: Friend or Foe? Gut Liver 2021; 15:500-516. [PMID: 33087588 PMCID: PMC8283292 DOI: 10.5009/gnl20223] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, and it has diverse etiologies with multiple mechanisms. The diagnosis of HCC typically occurs at advanced stages when there are limited therapeutic options. Hepatocarcinogenesis is considered a multistep process, and hepatic macrophages play a critical role in the inflammatory process leading to HCC. Emerging evidence has shown that tumor-associated macrophages (TAMs) are crucial components defining the HCC immune microenvironment and represent an appealing option for disrupting the formation and development of HCC. In this review, we summarize the current knowledge of the polarization and function of TAMs in the pathogenesis of HCC, as well as the mechanisms underlying TAM-related anti-HCC therapies. Eventually, novel insights into these important aspects of TAMs and their roles in the HCC microenvironment might lead to promising TAM-focused therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Dexi Zhou
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, China.,School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, China.,School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
22
|
Ashrafizadeh M, Mirzaei S, Hashemi F, Zarrabi A, Zabolian A, Saleki H, Sharifzadeh SO, Soleymani L, Daneshi S, Hushmandi K, Khan H, Kumar AP, Aref AR, Samarghandian S. New insight towards development of paclitaxel and docetaxel resistance in cancer cells: EMT as a novel molecular mechanism and therapeutic possibilities. Biomed Pharmacother 2021; 141:111824. [PMID: 34175815 DOI: 10.1016/j.biopha.2021.111824] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) mechanism is responsible for metastasis and migration of cancer cells to neighboring cells and tissues. Morphologically, epithelial cells are transformed to mesenchymal cells, and at molecular level, E-cadherin undergoes down-regulation, while an increase occurs in N-cadherin and vimentin levels. Increasing evidence demonstrates role of EMT in mediating drug resistance of cancer cells. On the other hand, paclitaxel (PTX) and docetaxel (DTX) are two chemotherapeutic agents belonging to taxene family, capable of inducing cell cycle arrest in cancer cells via preventing microtubule depolymerization. Aggressive behavior of cancer cells resulted from EMT-mediated metastasis can lead to PTX and DTX resistance. Upstream mediators of EMT such as ZEB1/2, TGF-β, microRNAs, and so on are involved in regulating response of cancer cells to PTX and DTX. Tumor-suppressing factors inhibit EMT to promote PTX and DTX sensitivity of cancer cells. Furthermore, three different strategies including using anti-tumor compounds, gene therapy and delivery systems have been developed for suppressing EMT, and enhancing cytotoxicity of PTX and DTX against cancer cells that are mechanistically discussed in the current review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Leyla Soleymani
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc. 6 Tide Street, Boston, MA 02210, USA
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
23
|
Guo C, Liu P, Deng G, Han Y, Chen Y, Cai C, Shen H, Deng G, Zeng S. Honokiol induces ferroptosis in colon cancer cells by regulating GPX4 activity. Am J Cancer Res 2021; 11:3039-3054. [PMID: 34249443 PMCID: PMC8263670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 05/14/2021] [Indexed: 06/13/2023] Open
Abstract
Colon cancer (CC) is a prevalent malignancy worldwide. Approaches to specifically induce tumor cell death have historically been a popular research topic. Honokiol (HNK), which exhibits highly efficient and specific anticancer effects, is a biphenolic compound found in Magnolia grandiflora. In the present study, we aim to study the effect of HNK on CC cells and elucidate the potential underlying mechanisms. Seven CC cell lines (RKO, HCT116, SW48, HT29, LS174T, HCT8, and SW480) were used. Cells were exposed to HNK and subjected to a series of assays to evaluate characteristics such as cellular activity, reactive oxygen species (ROS) levels and ferroptosis-related protein expression levels. Lentiviral transduction was also used to verify molecular mechanisms in vivo and in vitro. We here observed that HNK reduced the viability of CC cell lines by increasing ROS and Fe2+ levels. Transmission electron microscopy revealed HNK-induced changes in mitochondrial morphology. HNK decreased the activity of Glutathione Peroxidase 4 (GPX4) but did not affect system Xc-. Thus, our datas indicated that HNK can induce ferroptosis in CC cells by reducing the activity of GPX4. As a potential therapeutic drug, HNK showed good anticancer effects through diverse signal transduction mechanisms and multiple pathways.
Collapse
Affiliation(s)
- Cao Guo
- Department of Oncology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Ping Liu
- Department of Oncology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Ganlu Deng
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical UniversityShuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Yihong Chen
- Department of Oncology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Gongping Deng
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University19 Xiuhua Road, Haikou 570311, Hainan, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| |
Collapse
|
24
|
Zhu F, Li X, Tang X, Jiang J, Han Y, Li Y, Ma C, Liu Z, He Y. Neferine promotes the apoptosis of HNSCC through the accumulation of p62/SQSTM1 caused by autophagic flux inhibition. Int J Mol Med 2021; 48:124. [PMID: 33982791 PMCID: PMC8128420 DOI: 10.3892/ijmm.2021.4957] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 04/02/2021] [Indexed: 12/30/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), one of the most common malignancies worldwide, often has a poor prognosis due to the associated metastasis and chemoresistance. Hence, the development of more effective chemotherapeutics is critical. Neferine, a bisbenzylisoquinoline alkaloid isolated from the seed embryo of Nelumbo nucifera (common name: Lotus), exerts antitumor effects by regulating apoptosis and autophagy pathways, making it a potential therapeutic option for HNSCC. In our study, it was revealed that neferine inhibited the growth and induced the apoptosis of HNSCC cells both in vitro and in vivo. Furthermore, the results revealed that neferine activated the ASK1/JNK pathway by increasing reactive oxygen species production, resulting in the subsequent induction of apoptosis and the regulation of canonical autophagy in HNSCC cells. Moreover, a novel pro‑apoptotic mechanism was described for neferine via the activation of caspase‑8 following the accumulation of p62, which was caused by autophagic flux inhibition. These findings provided insights into the mechanisms responsible for the anticancer effect of neferine, specifically highlighting the crosstalk that occured between apoptosis and autophagy, which was mediated by p62 in HNSCC. Hence, the neferine‑induced inhibition of autophagic flux may serve as the basis for a potential adjuvant therapy for HNSCC.
Collapse
Affiliation(s)
- Fengshuo Zhu
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Xiaoguang Li
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Xiao Tang
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Junjian Jiang
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Yu Han
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Yinuo Li
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Chunyue Ma
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Zhonglong Liu
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Yue He
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| |
Collapse
|
25
|
Gigantol inhibits proliferation and enhances DDP-induced apoptosis in breast-cancer cells by downregulating the PI3K/Akt/mTOR signaling pathway. Life Sci 2021; 274:119354. [PMID: 33737087 DOI: 10.1016/j.lfs.2021.119354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/30/2022]
Abstract
AIMS Gigantol is a bibenzyl compound isolated from orchids of the genus Dendrobium. Gigantol has been demonstrated to possess various pharmacologic (including anticancer) effects. Cisplatin (DDP) has been used and studied as the first-line agent for breast cancer (BC) treatment. Often, its efficacy is jeopardized due to intolerance and organ toxicity. We investigated if gigantol could enhance the anticancer effects of DDP in BC cells and its underlying mechanism of action. MAIN METHODS The potential pathway of gigantol in BC cells was detected by network-pharmacology and molecular-docking studies. The proliferation and apoptosis of BC cell lines were measured by the MTT assay, colony formation, Hoechst-33342 staining, and flow cytometry. Protein expression was measured by western blotting. KEY FINDINGS Gigantol could inhibit proliferation of BC cells and enhance DDP-induced apoptosis. According to the results of western blotting, gigantol reinforced DDP-induced anticancer effects through downregulation of the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway in BC cells. The effects were consistent with those of the pathway inhibitor LY294002. SIGNIFICANCE Our data might provide new insights into the underlying antitumor effect of gigantol in BC cells. This enhancement effect in the combination of gigantol and DDP may provide many therapeutic benefits in clinical treatment regimens against BC.
Collapse
|
26
|
Participation of MicroRNAs in the Treatment of Cancer with Phytochemicals. Molecules 2020; 25:molecules25204701. [PMID: 33066509 PMCID: PMC7587345 DOI: 10.3390/molecules25204701] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is a global health concern and one of the main causes of disease-related death. Even with considerable progress in investigations on cancer therapy, effective anti-cancer agents and regimens have thus far been insufficient. There has been compelling evidence that natural phytochemicals and their derivatives have potent anti-cancer activities. Plant-based anti-cancer agents, such as etoposide, irinotecan, paclitaxel, and vincristine, are currently being applied in medical treatments for patients with cancer. Further, the efficacy of plenty of phytochemicals has been evaluated to discover a promising candidate for cancer therapy. For developing more effective cancer therapy, it is required to apprehend the molecular mechanism deployed by natural compounds. MicroRNAs (miRNAs) have been realized to play a pivotal role in regulating cellular signaling pathways, affecting the efficacy of therapeutic agents in cancer. This review presents a feature of phytochemicals with anti-cancer activity, focusing mainly on the relationship between phytochemicals and miRNAs, with insights into the role of miRNAs as the mediators and the regulators of anti-cancer effects of phytochemicals.
Collapse
|
27
|
Qu XH, Shi YL, Ma Y, Bao WW, Yang L, Li JC, Zhang F. LncRNA DANCR regulates the growth and metastasis of oral squamous cell carcinoma cells via altering miR-216a-5p expression. Hum Cell 2020; 33:1281-1293. [PMID: 32860589 DOI: 10.1007/s13577-020-00411-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022]
Abstract
The study aims to investigate how DANCR can alter the growth and metastasis of oral squamous cell carcinoma (OSCC) cells by regulating miR-216a-5p. The expression of DANCR and miR-216a-5p in OSCC patients and cells were measured. SCC15 and CAL-27 cells were selected to divide into Control, sh-NC, DANCR shRNA, DANCR, miR-216a-5p mimic, and DANCR + miR-216a-5p mimic groups. Dual-luciferase reporter gene assay was performed for the verification of the targeting relationship between miR-216a-5p and DANCR/Bcl-2/KLF12. We also quantified the abilities of OSCC cells regarding proliferation, invasion, migration and apoptosis, and the expression levels of apoptosis-related proteins were measured. Finally, the tumor-bearing nude mice were established to verify the effect of DANCR in vivo. Up-regulated DANCR expression and down-regulated miR-216a-5p expression were observed in both OSCC tissues and cells, and they were proven strongly correlated to the histological grade, clinical staging and lymph node metastasis of OSCC patients. Dual-luciferase reporter gene assay showed a target relationship between DANCR and miR-216a-5p, as well as between miR-216a-5p and Bcl-2/KLF12. Both DANCR shRNA and miR-216a-5p mimic decreased proliferative, migration and invasive abilities of OSCC cells with increased cell apoptosis. However, DANCR group showed completely opposite trends. Moreover, miR-216a-5p mimic could reverse the role of DANCR in promoting tumor growth. In-vivo experiment confirmed the inhibitory role of DANCR shRNA in tumor growth and metastasis. We concluded that DANCR may promote the growth and metastasis of OSCC cells and suppress OSCC cell apoptosis by sponging miR-216a-5p.
Collapse
Affiliation(s)
- Xing-Hui Qu
- Department of Orthodontics, Dongfeng Stomatological Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - You-Ling Shi
- Department of Orthodontics, Dongfeng Stomatological Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Yan Ma
- Department of Orthodontics, Dongfeng Stomatological Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Wei-Wei Bao
- Department of Orthodontics, Dongfeng Stomatological Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Lei Yang
- Department of Orthodontics, Dongfeng Stomatological Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Jin-Chao Li
- Department of Oral Surgery, Dongfeng Stomatological Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Fan Zhang
- Department of Pediatric Dentistry, Dongfeng Stomatological Hospital, Hubei University of Medicine, No. 16, Daling Road, Zhangwan District, Shiyan, 442000, Hubei Province, China.
| |
Collapse
|
28
|
Neferine sensitized Taxol-resistant nasopharygeal carcinoma to Taxol by inhibiting EMT via downregulating miR-130b-5p. Biochem Biophys Res Commun 2020; 531:573-580. [PMID: 32811645 DOI: 10.1016/j.bbrc.2020.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
Taxol resistance led to the poor survival prognosis in advanced nasopharyngeal carcinoma (NPC). Epithelial-mesenchymal transition (EMT) plays an important role in tumor chemoresistance. Neferine (NEF) is found to sensitize the cancer cells to chemotherapeutic agents, but its effects and mechanisms on NPC Taxol resistance is unclear. In this study, we discovered that Taxol-resistant cell lines 5-8F/Taxol and CNE-1/Taxol had the greater ability to metastasis and the higher expression of EMT markers. Then we found that NEF could inhibit the viability and EMT process in the Taxol-resistant cell lines. Furthermore, we confirmed that NEF could augment therapeutic efficacy of Taxol on NPC Taxol-resistant cell lines. Further through Microarray based analysis, we found that miR-130b-5p was stably down-regulated after treating 5-8F/Taxol with NEF. Later we verified that up-regulation of miR-130b-5p could not only promote the EMT-related migration/invasion, but also impair the inhibition effects of NEF on the EMT-associated metastatic ability and the chemotherapy resistance to Taxol. In conclusion, our results firstly suggested that NEF may enhanced Taxol sensitivity in NPC Taxol-resistant cell lines through inhibition of EMT which mediated by miR-130b-5p downregulation in vitro and in vivo. NEF may be used as a Taxol sensitizer in chemotherapy of NPC.
Collapse
|
29
|
An K, Zhang Y, Liu Y, Yan S, Hou Z, Cao M, Liu G, Dong C, Gao J, Liu G. Neferine induces apoptosis by modulating the ROS‑mediated JNK pathway in esophageal squamous cell carcinoma. Oncol Rep 2020; 44:1116-1126. [PMID: 32705225 PMCID: PMC7388582 DOI: 10.3892/or.2020.7675] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Current treatments for esophageal squamous cell carcinoma (ESCC) have limited efficacy. Therefore, the development of novel therapeutic targets to effectively manage the disease and boost survival rates is imperative Neferine, a natural product extracted from Nelumbo nucifera (lotus) leaves, has been revealed to inhibit the growth of hepatocarcinoma, breast cancer and lung cancer cells. However, its effect on ESCC is unknown. In the present study, it was revealed that neferine exerted anti‑proliferative effects in ESCC. It was also revealed that it triggered arrest of the G2/M phase and enhanced apoptosis of ESCC cell lines. Moreover, its ability to trigger accumulation of reactive oxygen species (ROS) and activate the c‑Jun N‑terminal kinase (JNK) pathway was demonstrated. Further study revealed how N‑acetyl cysteine (NAC), a ROS inhibitor, attenuated these effects, demonstrating that ROS and JNK inhibitors mediated a marked reversal of neferine‑triggered cell cycle arrest and apoptosis in ESCC cells. Finally, it was revealed that neferine was involved in the inhibition of Nrf2, an antioxidant factor. Collectively, these findings demonstrated the antitumor effect of neferine in ESCC, through the ROS‑mediated JNK pathway and inhibition of Nrf2, indicating its potential as a target for development of novel and effective therapeutic agents against ESCC.
Collapse
Affiliation(s)
- Kang An
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Yuehan Zhang
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Yingjiao Liu
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Shengxi Yan
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Zhaowei Hou
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Meng Cao
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Guangkuo Liu
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Congcong Dong
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Juncha Gao
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Gaifang Liu
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
30
|
Qi FF, Yang Y, Zhang H, Chen H. Long non-coding RNAs: Key regulators in oxaliplatin resistance of colorectal cancer. Biomed Pharmacother 2020; 128:110329. [PMID: 32502843 DOI: 10.1016/j.biopha.2020.110329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed malignancies in the world with high relapse and mortality rates. Although oxaliplatin (OXA), a platinum-based anticancer drug, is widely used in CRC treatment, the resulting chemoresistance dramatically attenuates the drug efficacy and increases the failure rate of this therapy. Thus, the study on OXA-induced chemoresistance is extremely urgent. In recent years, emerging evidence has shown that lncRNAs play irreplaceable roles in drug resistance. However, we only have a limited knowledge of the lncRNAs that are closely related to oxaliplatin resistance in CRC. In present study, we identify and characterize these lncRNAs, including their functions, underlying mechanisms and possible applications.
Collapse
Affiliation(s)
- Fang-Fang Qi
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yunyao Yang
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Haowen Zhang
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Experimental Animals, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
31
|
Wang J, Dong Y, Li Q. Neferine induces mitochondrial dysfunction to exert anti-proliferative and anti-invasive activities on retinoblastoma. Exp Biol Med (Maywood) 2020; 245:1385-1394. [PMID: 32460625 DOI: 10.1177/1535370220928933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Retinoblastoma is common primary intraocular malignancy of infants and childhood. Neferine is a major bisbenzylisoquinoline alkaloid derived from the lotus plumule in Nelumbo nucifera. This study evaluated the mitigation role of Neferine on retinoblastoma in vitro and in vivo. Xenotransplantation model was established by injecting WERI-Rb-1 cells subcutaneously. Upon induction of retinoblastoma , mice were intraperitoneally injected with Neferine (0, 0.5, 1, 2 mg/kg) or ethanol every 3 days for 30 days. Tumor weight and tumor volume were measured every three days and compared between four groups. Then, mice were sacrificed and immunohistochemical examination was performed to compare Ki67, VEGF content between groups. WERI-Rb-1 cells were used for in vitro experiments and the anti-angiogenic role of Neferine was assessed by analyzing nodes/HPF number. In WERI-Rb-1 xenotransplantation model, compared with control group, 1 mg/kg Neferine treatment significantly inhibited tumor weight (0.39 ± 0.04 g vs. 0.25 ± 0.03 g, P< 0.05) and tumor volume (2163 ± 165 mm3 vs. 1276 ± 108 mm3, P< 0.05) after 30 days. Compared with ethanol-injected mice, 2 μM Neferine treatment significantly enhanced apoptosis rate (2.1 ± 0.6% vs. 14.6 ± 2.6%, P< 0.05), accompany downregulation of Ki67 (0.09 ± 0.02% vs. 0.01 ± 0.004%, P< 0.05) and VEGF (0.28 ± 0.04% vs. 0.05 ± 0.03%, P< 0.05) expression. Additionally, 2 μM Neferine treatment significantly decreased JC-1 red/green percentage. High-dose Neferine could decrease retinoblastoma angiogenesis in association with a significant inhibition on tumor growth and invasion. These findings suggested that Neferine could be a new treatment or adjuvant against retinoblastoma.
Collapse
Affiliation(s)
- Jing Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Yanmin Dong
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Qiuming Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
32
|
Erdogan S, Turkekul K. Neferine inhibits proliferation and migration of human prostate cancer stem cells through p38 MAPK/JNK activation. J Food Biochem 2020; 44:e13253. [PMID: 32394497 DOI: 10.1111/jfbc.13253] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/04/2020] [Accepted: 04/04/2020] [Indexed: 12/16/2022]
Abstract
Cancer stem cells (CSCs) are one of the significant causes of cancer treatment failure and metastasis, as they have significant chemo-and radio-resistance leading to tumor recurrence. Here we investigated the possible anticancer properties of neferine, a natural alkaloid, on human prostate cancer (PCa) cells and their stem cells. CD44+ CSCs were isolated from androgen-insensitive PC3 cells by magnetic-activated cell sorting system (MACS). Neferine dose-and time-dependently inhibited the viability of PC3 and CSCs as well as androgen-sensitive LNCaP cells through inducing apoptosis and cell cycle arrest at G1 phase. Neferine was shown to downregulate the expression of Bcl-2 and CDK4, and upregulate caspase 3, clePARP, p21, p27, and p53. The treatment significantly inhibits the migration of CSCs. Neferine induces JNK and p38 MAPK phosphorylation, and downregulates PI3K and NF-ĸβ signaling. In conclusion, neferine may have a therapeutic effect inhibiting the PCa cell proliferation as well as by eliminating CSCs. PRACTICAL APPLICATIONS: Neferine is an alkaloid found in the seed embryo of Nelumbo nucifera and has recently been shown to have anticancer effects on various human cancer cells. More than 90% of cancer-related deaths develop after metastasis, and CSCs are considered to be largely responsible for the cell migration and invasion. It has been shown that treatment of neferine kills not only PCa cells but also CSCs, and may contribute to the prevention of progression of PCa and metastasis by inhibiting cell proliferation and migration.
Collapse
Affiliation(s)
- Suat Erdogan
- Department of Medical Biology, School of Medicine, Trakya University, Edirne, Turkey
| | - Kader Turkekul
- Department of Medical Biology, School of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
33
|
Dasari S, Bakthavachalam V, Chinnapaka S, Venkatesan R, Samy ALPA, Munirathinam G. Neferine, an alkaloid from lotus seed embryo targets HeLa and SiHa cervical cancer cells via pro-oxidant anticancer mechanism. Phytother Res 2020; 34:2366-2384. [PMID: 32364634 DOI: 10.1002/ptr.6687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/28/2020] [Accepted: 03/14/2020] [Indexed: 12/19/2022]
Abstract
Apoptosis and autophagy are important processes that control cellular homeostasis and have been highlighted as promising targets for novel anticancer drugs. This study aims to investigate the inhibitory effects and mechanisms of Neferine (Nef), an alkaloid from the lotus seed embryos of Nelumbo nucifera (N. nucifera), as a dual inducer of apoptosis and autophagy through the reactive oxygen species (ROS) activation in cervical cancer cells. Nef and N. nucifera extract suppressed the cell viability of HeLa and SiHa cells in a dose-dependent manner. Importantly, Nef showed minimal toxicity to normal cells. Furthermore, Nef inhibited anchorage-independent growth, colony formation and migration ability of cervical cancer cells. Nef induces mitochondrial apoptosis by increasing pro-apoptotic protein bax, cytochrome-c, cleaved caspase-3 and caspase-9, poly-ADP ribose polymerase (PARP) cleavage, DNA damage (pH2 AX) while downregulating Bcl-2, procaspase-3 and procaspase-9, and TCTP. Of note, apoptotic effect by Nef was significantly attenuated in the presence of N-acetylcysteine (NAC), suggesting pro-oxidant activity of this compound. Nef also promoted autophagy induction through increasing beclin-1, atg-4, atg-5 and atg-12, LC-3 activation, and P 62/SQSTM1 as determined by western blot analysis. Collectively, these results demonstrate that Nef is a potent anticancer compound against cervical cancer cells through inducing apoptosis and autophagic pathway involving ROS.
Collapse
Affiliation(s)
- Subramanyam Dasari
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, Illinois, USA
| | - Velavan Bakthavachalam
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, Illinois, USA
| | - Somaiah Chinnapaka
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, Illinois, USA
| | - Reshmii Venkatesan
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, Illinois, USA
| | - Angela L P A Samy
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, Illinois, USA
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, Illinois, USA
| |
Collapse
|
34
|
Paramasivan P, Kumar JD, Baskaran R, Weng CF, Padma VV. Reversal of doxorubicin resistance in lung cancer cells by neferine is explained by nuclear factor erythroid-derived 2-like 2 mediated lung resistance protein down regulation. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:647-665. [PMID: 35582448 PMCID: PMC8992493 DOI: 10.20517/cdr.2019.115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/27/2020] [Accepted: 03/16/2020] [Indexed: 05/27/2023]
Abstract
Aim: Development of multi drug resistance and dose limiting cardiotoxicity are hindering the use of Doxorubicin (Dox) in clinical settings. Augmented dox efflux induced by lung resistance protein (LRP) over expression has been related to multi drug resistance phenotype in various cancers. An alkaloid from lotus, Neferine (Nef) shows both anticancer and cardioprotective effects. Here, we have investigated the interconnection between nuclear factor erythroid-derived 2-like 2 (NRF2) and LRP in Dox resistance and how Nef can overcome Dox resistance in lung cancer cells by altering this signaling. Methods: Anti-proliferative and apoptotic-inducing effects of Nef and Dox combination in Parental and Dox resistant lung cancer cells were determined in monolayers and 3D spheroids. Intracellular Dox was analyzed using flow cytometry, siRNA knockdown and western blot analysis were used to elucidate NRF2-LRP crosstalk mechanism. Results: We observed that the Dox resistant lung cancer cells expressed higher levels of LRP, reduced glutathione (GSH) and NRF2. Combination of Dox and Nef induced apoptosis, leads to reactive oxygen species (ROS) generation, GSH depletion and reduction in LRP levels contributing to higher intracellular and intranuclear Dox accumulation. The use of N-acetylcysteine and knockdown studies confirmed an important role of ROS and NRF2 in LRP down regulation. Presence of NRF2 binding sites in LRP is support of direct interaction between LRP and NRF2. Conclusion: Nef sensitizes lung cancer cells to Dox by increasing intracellular and/or intra nuclear Dox accumulation via LRP down regulation. This is mediated by redox regulating NRF2. This decoded crosstalk mechanism reinforces the role of NRF2 and LRP in Dox resistance and as an important anticancer target.
Collapse
Affiliation(s)
- Poornima Paramasivan
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
- Laboratory of Molecular Physiology, Institute of Biotechnology, Department of Life Sciences, National Dong Hwa University, Hualien 974, Taiwan
- Division of Science, School of Applied Sciences, University of Abertay Dundee, Dundee DD1 1HG, UK
| | - Jothi Dinesh Kumar
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L3 5TR, UK
| | - Rathinasamy Baskaran
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| | - Ching Feng Weng
- Laboratory of Molecular Physiology, Institute of Biotechnology, Department of Life Sciences, National Dong Hwa University, Hualien 974, Taiwan
| | - Viswanadha Vijaya Padma
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
- Laboratory of Molecular Physiology, Institute of Biotechnology, Department of Life Sciences, National Dong Hwa University, Hualien 974, Taiwan
| |
Collapse
|
35
|
Ozal SA, Gurlu V, Turkekul K, Guclu H, Erdogan S. Neferine inhibits epidermal growth factor-induced proliferation and migration of retinal pigment epithelial cells through downregulating p38 MAPK and PI3K/AKT signalling. Cutan Ocul Toxicol 2020; 39:97-105. [DOI: 10.1080/15569527.2020.1730882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sadik Altan Ozal
- Department of Ophthalmology, School of Medicine, Trakya University, Edirne, Turkey
| | - Vuslat Gurlu
- Department of Ophthalmology, School of Medicine, Trakya University, Edirne, Turkey
| | - Kader Turkekul
- Department of Medical Biology, School of Medicine, Trakya University, Edirne, Turkey
| | - Hande Guclu
- Department of Ophthalmology, School of Medicine, Trakya University, Edirne, Turkey
| | - Suat Erdogan
- Department of Medical Biology, Trakya University, Edirne, Turkey
| |
Collapse
|
36
|
Chen J, Tang M, Liu M, Jiang Y, Liu B, Liu S. Neferine and lianzixin extracts have protective effects on undifferentiated caffeine-damaged PC12 cells. BMC Complement Med Ther 2020; 20:76. [PMID: 32143612 PMCID: PMC7076826 DOI: 10.1186/s12906-020-2872-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/27/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The embryos of Nelumbo nucifera Gaertn seeds, lianzixin, are used in China as food and traditional herbal medicine. Principal therapeutic indications are insomnia, anxiety and pyrexia. Caffeine is a psychostimulant and excessive use predisposes to cell damage and neurotoxicity. We aimed to investigate the potential protect effect of Neferine and lianzixin extracts on undifferentiated caffeine-damaged phaeochromocytoma cells (PC12 cells). METHODS A cell damage model based on undifferentiated PC12 was established with caffeine. Effect of Lianzixin extracts (total alkaloids, alcohol extract and water extract) and neferine on caffeine-damaged PC12 cells was evaluated. Cell viability was assessed using the methyl thiazolyl tetrazolium (MTT) assay, cellular morphology by inverted microscope, the nucleus by Hoechst 33342 staining and cleaved poly ADP-ribose polymerase (PARP) expression by western blot analysis. RESULTS Lianzixin extracts (total alkaloids, alcohol extract and water extract) and neferine improved the viability of PC12 cells damaged by caffeine. The morphology of PC12 cells pretreated with neferine, or alcohol or water extract of lianzixin aggregated and attached better than caffeine-damaged cells, but cells pretreated with total alkaloids of lianzixin showed abnormal morphology. Compared with caffeine-damaged cells, cells pretreated with neferine, or alcohol or water extract of lianzixin showed a notable increase in nucleus staining and an obvious decrease in cleaved PARP expression. CONCLUSIONS Lianzixin extracts and neferine have protective effects against caffeine-induced damage in PC12 cells, which laid a foundation for finding a new medicine value of Lianzixin.
Collapse
Affiliation(s)
- Jingjing Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Manhua Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Bin Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China. .,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
37
|
Chen Y, Deng G, Fu Y, Han Y, Guo C, Yin L, Cai C, Shen H, Wu S, Zeng S. FOXC2 Promotes Oxaliplatin Resistance by Inducing Epithelial-Mesenchymal Transition via MAPK/ERK Signaling in Colorectal Cancer. Onco Targets Ther 2020; 13:1625-1635. [PMID: 32110058 PMCID: PMC7041600 DOI: 10.2147/ott.s241367] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/07/2020] [Indexed: 12/27/2022] Open
Abstract
Background Chemoresistance is a major obstacle to improving the survival rate of colorectal cancer (CRC) patients. Forkhead box protein C2 (FOXC2), a member of the forkhead box (Fox) transcription factor family, is reported to be an important regulator of epithelial-to-mesenchymal transition (EMT) and plays a key role in tumor progression. However, little is known about the effects of FOXC2 on oxaliplatin (OXA) resistance in CRC. Methods OXA-resistant cells were generated from HCT116 cells. CCK-8, colony formation, flow cytometry and Transwell assays were used to compare the characteristics of OXA-resistant HCT116/OXA cells and the corresponding parental HCT116 cells. The expression of FOXC2 was confirmed by qRT-PCR and Western blotting in HCT116/OXA and HCT116 cells. Gain- and loss-of-function assays were performed to evaluate the effects of FOXC2 on OXA sensitivity and EMT in HCT116/OXA and HCT116 cells both in vitro and in vivo, and the possible molecular mechanisms were investigated. Results The relative expression of FOXC2 was significantly increased in HCT116/OXA cells compared with the parental HCT116 cells. Upregulation of FOXC2 in HCT116 cells reduced OXA sensitivity and promoted EMT. However, knockdown of FOXC2 in HCT116/OXA cells markedly increased the in vitro and in vivo sensitivity of HCT116/OXA cells to OXA by regulating EMT progression. Furthermore, FOXC2 activated MAPK/ERK signaling, and blockade of ERK attenuated FOXC2-induced EMT and FOXC2-enhanced OXA resistance. Conclusion FOXC2 induced EMT to promote oxaliplatin resistance by activating the MAPK/ERK signaling pathway. FOXC2 may be a potential therapeutic target for overcoming OXA resistance in human CRC.
Collapse
Affiliation(s)
- Yihong Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Ganlu Deng
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Yaojie Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Cao Guo
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Ling Yin
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Shaobin Wu
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
38
|
Manogaran P, Beeraka NM, Padma VV. The Cytoprotective and Anti-cancer Potential of Bisbenzylisoquinoline Alkaloids from Nelumbo nucifera. Curr Top Med Chem 2020; 19:2940-2957. [DOI: 10.2174/1568026619666191116160908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022]
Abstract
:
Natural product therapy has been gaining therapeutic importance against various diseases,
including cancer. The failure of chemotherapy due to its associated adverse effects promoted adjunct
therapy with natural products. Phytochemicals exert anti-carcinogenic activities through the regulation
of various cell signaling pathways such as cell survival, inflammation, apoptosis, autophagy and metastasis.
The ‘small molecule-chemosensitizing agents’ from plants induce apoptosis in drug-resistant and
host-immune resistant cancer cells in in vitro as well as in vivo models. For example, alkaloids from Nelumbo
nucifera, liensinine, isoliensinine and neferine exert the anticancer activity through enhanced
ROS generation, activation of MAP kinases, followed by induction of autophagy and apoptotic cell
death. Likewise, these alkaloids also exert their cytoprotective action against cerebrovascular
stroke/ischemic stroke, diabetes, and chemotherapy-induced cytotoxicity. Therefore, the present review
elucidates the pharmacological activities of these bisbenzylisoquinoline alkaloids which include the cytoprotective,
anticancer and chemosensitizing abilities against various diseases such as cardiovascular
diseases, neurological diseases and cancer.
Collapse
Affiliation(s)
- Prasath Manogaran
- Translational Research Lab, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Narasimha Murthy Beeraka
- Translational Research Lab, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Viswanadha Vijaya Padma
- Translational Research Lab, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
39
|
Kim BR, Ha J, Lee S, Park J, Cho S. Anti-cancer effects of ethanol extract of Reynoutria japonica Houtt. radix in human hepatocellular carcinoma cells via inhibition of MAPK and PI3K/Akt signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112179. [PMID: 31445130 DOI: 10.1016/j.jep.2019.112179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Reynoutria japonica Houtt. has been used as a traditional medicine of cancer in East Asia for thousands of years. However, the mechanism of the anti-cancer effect of R. japonica has not been investigated at the molecular level. The regulation of intracellular signaling pathways by the extract of R. japonica radix needs to be evaluated for a deeper understanding and application of the anti-cancer effect of R. japonica radix. AIM OF THE STUDY The purpose of this study was to evaluate the inhibitory effects of the ethanol extracts of R. japonica radix (ERJR) on cancer metastasis and the regulation mechanism of metastasis by ERJR in human hepatocellular carcinomas. MATERIALS AND METHODS Suppression of cancer metastasis by ERJR in SK-Hep1 and Huh7 cells were investigated. Prior to experiments, the cytotoxic effect of ERJR was examined by cell viability assays. To evaluate the inhibitory effects of ERJR on cancer metastasis, wound-healing assays, invasion assays, zymography, and multicellular tumor spheroids (MCTS) assays were performed. Molecular mechanisms in the suppressive regulation of metastasis by ERJR were verified by measuring the expression levels of metastatic markers, and the phosphorylation and protein levels of cancer metastasis-related signaling pathways. RESULTS In all experiments, ERJR was used at a maximum concentration of 20 μg/ml, which did not show cytotoxicity in SK-Hep1 and Huh7 cells. We examined the inhibitory effects of ERJR on cancer metastasis. In wound-healing and invasion assays, ERJR treatment effectively suppressed the wound-recovery of Huh7 cells and inhibited the invasion ability of SK-Hep1 cells. Also, ERJR treatment significantly decreased the enzymatic activity of matrix metalloproteinase-2 and -9 in SK-Hep1 cells. ERJR suppressed the growth of MCTS in SK-Hep1 cells in a dose-dependent manner. These results indicated that ERJR effectively inhibited the invasive and proliferative ability of SK-Hep1 and Huh7 cells. Moreover, ERJR treatment reduced the expression levels of Snail1, Twist1, N-cadherin, and Vimentin, which are metastatic markers, by inhibiting the activation of protein kinase B and mitogen-activated protein kinases in SK-Hep1 cells. CONCLUSIONS These results verified the molecular mechanism of ERJR that has been used in traditional anti-cancer remedy and suggest that it can be developed as a promising therapy for cancer metastasis in the future.
Collapse
Affiliation(s)
- Ba Reum Kim
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, South Korea
| | - Jain Ha
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, South Korea
| | - Sewoong Lee
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, South Korea
| | - Jiyoung Park
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, South Korea
| | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
40
|
Zhang J, Zhang Z, Sun J, Ma Q, Zhao W, Chen X, Qiao H. MiR-942 regulates the function of breast cancer cell by targeting FOXA2. Biosci Rep 2019; 39:BSR20192298. [PMID: 31701999 PMCID: PMC6879377 DOI: 10.1042/bsr20192298] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/17/2019] [Accepted: 10/25/2019] [Indexed: 01/08/2023] Open
Abstract
MicroRNA (MiR)-942 regulates the development of a variety of tumors, however, its function in breast cancer (BCa) has been less reported. Therefore, the present study investigated the regulatory effects of miR-942 on BCa cells. The expression of miR-942 in whole blood samples and BCa cell lines was detected by quantitative real-time (qRT)-PCR. Direct target gene for miR-942 was confirmed by dual-luciferase reporter assay. FOXA2 expression in adjacent tissues was detected by qRT-PCR. The effects of miR-942, or miR-942 with FOXA2, on the cell viability, proliferation, apoptosis, migration and invasion of BCa cells were determined by cell counting kit-8 (CCK-8), colony formation assay, flow cytometry, wound scratch and Transwell, respectively. The levels of N-Cadherin, E-Cadherin and Snail were determined by Western blot. Kaplan-Meier was used to explore the relationship among the expressions of miR-942 and FOXA2 and the prognosis of BCa patients. MiR-942 had high expressed in BCa, while its low expression significantly suppressed the cell viability, proliferation, migration and invasion of BCa, but increased cell apoptosis. Down-regulation of N-Cadherin and Snail and up-regulation of E-Cadherin were also induced by low-expression of miR-942. FOXA2, which was proved as the direct target gene for miR-942 and was low-expressed in BCa, partially reversed the effect of overexpressed miR-942 on promoting cell viability, proliferation, migration and invasion, and suppressed cell apoptosis. A lower survival rate was observed in BCa patients with a high expression of miR-942 and a low expression of FOXA2. MiR-942 promoted the progression of BCa by down-regulating the expression of FOXA2.
Collapse
Affiliation(s)
- Jinku Zhang
- Department of Pathology, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| | - Zhiqiang Zhang
- Department of Thoracic Surgery, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| | - Jirui Sun
- Department of Pathology, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| | - Qiushuang Ma
- Department of Pathology, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| | - Wenming Zhao
- Department of Pathology, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| | - Xue Chen
- Department of Pathology, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| | - Haizhi Qiao
- Department of Pathology, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| |
Collapse
|
41
|
Zhang Y, Ge T, Xiang P, Zhou J, Tang S, Mao H, Tang Q. Tanshinone IIA Reverses Oxaliplatin Resistance In Human Colorectal Cancer Via Inhibition Of ERK/Akt Signaling Pathway. Onco Targets Ther 2019; 12:9725-9734. [PMID: 32009805 PMCID: PMC6859961 DOI: 10.2147/ott.s217914] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Background Oxaliplatin (OXA)-based chemotherapy is generally used to treat human cancers, whereas OXA resistance is a main obstacle for the treatment of colorectal cancer (CRC). Evidence has shown that tanshinone IIA (Tan IIA) could induce apoptosis in CRC cells. However, the role of combination of OXA and Tan IIA on OXA-resistance CRC cells remains unknown. Thus, this study aimed to investigate the effects of Tan IIA in combination with OXA on OXA-resistance CRC cells. Methods MTT assay, Ki67 immunofluorescence staining and flow cytometry were used to detect viability, proliferation and apoptosis in OXA-resistant cell line SW480/OXA, respectively. The expressions of Bcl-2, Bax, active caspase 3, p-Akt and p-ERK in SW480/OXA cells were detected with Western blot. In vivo animal study was performed finally. Results In this study, the inhibitory effects of OXA on the proliferation and invasion of SW480/OXA cells were significantly enhanced by Tan IIA. In addition, Tan IIA obviously enhanced the anti-apoptosis effects of OXA on SW480/OXA cells via decreasing the levels of Bcl-2, p-Akt and p-ERK, and increasing the levels of Bax and active caspase 3. In vivo experiments confirmed that Tan IIA enhanced OXA sensitivity in SW480/OXA xenograft model. Conclusion We found that Tan IIA could reverse OXA resistance in OXA-resistance CRC cells. Therefore, OXA combined with Tan IIA might be considered as a therapeutic approach for the treatment of OXA-resistant CRC.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Tingrui Ge
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Ping Xiang
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Jingyi Zhou
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Shumin Tang
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Haibing Mao
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Qiang Tang
- Department of Gastrointestinal Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu 222061, People's Republic of China
| |
Collapse
|
42
|
Zhang L, Lin W, Chen X, Wei G, Zhu H, Xing S. Tanshinone IIA reverses EGF- and TGF-β1-mediated epithelial-mesenchymal transition in HepG2 cells via the PI3K/Akt/ERK signaling pathway. Oncol Lett 2019; 18:6554-6562. [PMID: 31807174 PMCID: PMC6876303 DOI: 10.3892/ol.2019.11032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/12/2019] [Indexed: 01/23/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is an essential phenotypic conversion involved in cancer progression. Epidermal growth factor (EGF) and transforming growth factor (TGF)-β1 are potent inducers of the EMT. Tanshinone IIA (Tan IIA) is a phenanthrenequinone extracted from the root of Salvia miltiorrhiza Bunge, and its anticancer activity has been demonstrated in numerous studies. However, the mechanisms of action underlying Tan IIA in EGF- and TGF-β1-induced EMT in HepG2 cells remain unknown. Multiple assays were utilized in the present study, including colony formation, wound healing, Transwell invasion, immunofluorescence staining and western blotting, in order to assess the influence of Tan IIA on HepG2 cells induced by 20 ng/ml EGF and 10 ng/ml TGF-β1. The present study reported that Tan IIA treatment decreased EGF- and TGF-β1-enhanced cell colony numbers, migration and invasion, and inhibited EGF- and TGF-β1-induced decreases in the expression levels of E-cadherin, and increases in the expression levels of matrix metalloproteinase-2, N-cadherin, vimentin and Snail. In addition, it was observed that Tan IIA decreased the expression levels of phosphorylated (p)-Akt and p-ERK1/2 induced by EGF and TGF-β1. Furthermore, western blot analysis confirmed that blocking the function of PI3K/Akt and ERK with LY294002 and U0126 resulted in upregulation of E-cadherin expression, and downregulation of vimentin and Snail expression in EGF- and TGF-β1-treated HepG2 cells. In conclusion, to the best of our knowledge, the results of the present study are the first to indicate that Tan IIA may suppress EGF- and TGF-β1-induced EMT in HepG2 cells by deactivating the PI3K/Akt/ERK pathway.
Collapse
Affiliation(s)
- Longkai Zhang
- Traditional Chinese Medicine Quality Evaluation and Testing Center, Hong Zheng Dao (China) Traditional Chinese Medicine Research Company Ltd., Guangzhou, Guangdong 510006, P.R. China
| | - Weibin Lin
- Traditional Chinese Medicine Quality Evaluation and Testing Center, Hong Zheng Dao (China) Traditional Chinese Medicine Research Company Ltd., Guangzhou, Guangdong 510006, P.R. China
| | - Xiaodan Chen
- Traditional Chinese Medicine Quality Evaluation and Testing Center, Hong Zheng Dao (China) Traditional Chinese Medicine Research Company Ltd., Guangzhou, Guangdong 510006, P.R. China
| | - Gang Wei
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Hailong Zhu
- Traditional Chinese Medicine Quality Evaluation and Testing Center, Hong Zheng Dao (China) Traditional Chinese Medicine Research Company Ltd., Guangzhou, Guangdong 510006, P.R. China
| | - Shangping Xing
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
43
|
Li H, Chen W, Chen Y, Zhou Q, Xiao P, Tang R, Xue J. Neferine Attenuates Acute Kidney Injury by Inhibiting NF-κB Signaling and Upregulating Klotho Expression. Front Pharmacol 2019; 10:1197. [PMID: 31680971 PMCID: PMC6804424 DOI: 10.3389/fphar.2019.01197] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/17/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose: Morbidity associated with and mortality from acute kidney injury (AKI) is gradually increasing, and no efficient drug is available. We explored whether neferine, a bisbenzylisoquinoline alkaloid, attenuated AKI, and the possible mechanisms in play in vivo and in vitro. Methods: We induced AKI using ischemia-reperfusion (I/R) or lipopolysaccharide (LPS) in vivo. C57 BL/6 male mice were randomized into two groups each containing four subgroups: control, neferine, I/R or LPS, and I/R or LPS + neferine. Mice were sacrificed 24 h after AKI induction and kidneys and sera were collected. NRK-52E cells were exposed to hypoxia/reoxygenation (H/R) or LPS in vitro. Results: Neferine pretreatment significantly alleviated kidney functional loss and pathological damage. In the AKI mouse models induced by I/R or LPS, neferine inhibited the infiltration of inflammatory cells, including granulocytes and macrophages. Both in vivo and in vitro, neferine attenuated apoptosis, suppressed inflammatory cytokine production, decreased degradation of IκB-α, and inhibited nuclear translocation of NF-κB. Furthermore, it also upregulated Klotho expression in AKI. Conclusion: Neferine mitigated renal injury in AKI models, perhaps by suppressing the activation of NF-κB and upregulating the expression of Klotho.
Collapse
Affiliation(s)
- Huihui Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenhang Chen
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Yusa Chen
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiaoling Zhou
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Ping Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Xue
- Institute of Hospital Administration, Xiangya Hospital, Central South University, Changsha, China.,Department of Scientific Research, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
44
|
Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, Chong PP, Looi CY. The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells 2019; 8:E1118. [PMID: 31547193 PMCID: PMC6830116 DOI: 10.3390/cells8101118] [Citation(s) in RCA: 829] [Impact Index Per Article: 138.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022] Open
Abstract
Epithelial-to-Mesenchymal Transition (EMT) has been shown to be crucial in tumorigenesis where the EMT program enhances metastasis, chemoresistance and tumor stemness. Due to its emerging role as a pivotal driver of tumorigenesis, targeting EMT is of great therapeutic interest in counteracting metastasis and chemoresistance in cancer patients. The hallmark of EMT is the upregulation of N-cadherin followed by the downregulation of E-cadherin, and this process is regulated by a complex network of signaling pathways and transcription factors. In this review, we summarized the recent understanding of the roles of E- and N-cadherins in cancer invasion and metastasis as well as the crosstalk with other signaling pathways involved in EMT. We also highlighted a few natural compounds with potential anti-EMT property and outlined the future directions in the development of novel intervention in human cancer treatments. We have reviewed 287 published papers related to this topic and identified some of the challenges faced in translating the discovery work from bench to bedside.
Collapse
Affiliation(s)
- Chin-Yap Loh
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Jian Yi Chai
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Muthu Kumaraswamy Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| |
Collapse
|
45
|
Chen DD, Cheng JT, Chandoo A, Sun XW, Zhang L, Lu MD, Sun WJ, Huang YP. microRNA-33a prevents epithelial-mesenchymal transition, invasion, and metastasis of gastric cancer cells through the Snail/Slug pathway. Am J Physiol Gastrointest Liver Physiol 2019; 317:G147-G160. [PMID: 30943047 DOI: 10.1152/ajpgi.00284.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Invasion and metastasis are responsible for the majority of deaths in gastric cancer (GC). microRNA-33a (miR-33a) might function as a tumor suppressor in multiple cancers. Here, we describe the regulation and function of miR-33a in GC and mechanisms involved in epithelial-mesenchymal transition (EMT) and metastasis. First, GC tissues and adjacent normal tissues were collected. miR-33a upregulation or SNAI2 depletion on GC cells were introduced to assess the detailed regulatory mechanism of them. We assessed the expression of miR-33a, SNAI2, Snail/Slug signaling pathway-related genes, and EMT-related markers in GC tissues and cells. miR-33a distribution in GC tissues and adjacent normal tissues was measured. Cell proliferation, migration and invasion, and cell cycle distribution were assessed. In nude mice, GC tumor growth and lymph node metastasis were observed. Furthermore, the predicative value of miR-33a in the prognosis of GC patients was evaluated. The obtained results indicated that lowly expressed miR-33a, highly expressed SNAI2, activated Snail/Slug, and increased EMT were identified in GC tissues. miR-33a was located mainly in the cytoplasm. miR-33a targeted and negatively regulated SNAI2. MKN-45 and MKN-28 cell lines were selected for in vitro experiments. Upregulated miR-33a expression or siRNA-mediated silencing of SNAI2 suppressed the activation of Snail/Slug, whereby GC cell proliferation, invasion and migration, EMT, tumor growth, and lymph node metastasis were inhibited. High expression of miR-33a was a protective factor influencing the prognosis of GC. This study suggests that miR-33a inhibited EMT, invasion, and metastasis of GC through the Snail/Slug signaling pathway by modulating SNAI2 expression.NEW & NOTEWORTHY miR-33a targets and inhibits the expression of SNAI2, overexpression of SNAI2 activates the Snail/Slug signaling pathway, the Snail/Slug signaling pathway promotes GC cell proliferation, invasion, and metastasis, and overexpression of miR-33a inhibits cell proliferation, invasion, and metastasis. This study provides a new therapeutic target for the treatment of GC.
Collapse
Affiliation(s)
- Di-Di Chen
- Department of Radiotherapy and Chemotherapy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | - Arvine Chandoo
- Department of General Surgery, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiang-Wei Sun
- Department of General Surgery, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Zhang
- Department of General Surgery, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming-Dong Lu
- Department of General Surgery, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei-Jian Sun
- Department of General Surgery, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying-Peng Huang
- Department of General Surgery, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
46
|
Shen Y, Chen Q, Li L. Endostar regulates EMT, migration and invasion of lung cancer cells through the HGF-Met pathway. Mol Cell Probes 2019; 45:57-64. [PMID: 31096000 DOI: 10.1016/j.mcp.2019.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/28/2019] [Accepted: 05/11/2019] [Indexed: 12/21/2022]
Abstract
AIM Though Endostar (ES) could inhibit tumor growth by inhibiting tumor angiogenesis, other possible mechanisms have been less reported. This study aims to investigate the role of ES in the treatment of lung cancer from the perspective of macrophage-mediated epithelial mesenchymal transformation (EMT). METHODS THP1 cells were induced to polarized macrophages (MΦ). A549 and H1795 cells were separately treated with MΦ conditioned medium, ES (12.5 μg/ml) and HGF (5 ng/ml) for 24 h at 37 °C. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the expression levels of CCL17, CD163, hepatocyte growth factor (HGF), Epidermal Growth Factor (EGF), transforming growth factor (TGF)-β1 and interleukin (IL)-6. Western blot was carried out to detect the p-MET, MET and EMT-related proteins (E-cadherin, N-cadherin, Snail and vimentin). Fibroblast-like A549 and H1975 cells were observed by a microscope. Cell invasion and migration were observed and analyzed by transwell and scratch assays. RESULTS The expression levels of CCL17 and CD163 were significant higher in MΦ. ES significantly inhibited the expression of HGF in MΦ. Moreover, ES could restore the abnormal expressions of EMT-related proteins and inhibit MΦ-induced and HGF-induced fibroblast-like lung cancer cells. Furthermore, ES suppressed the MΦ-induced and HGF-induced migration and invasion of lung cancer cells. ES was also found to down-regulate HGF-Met signaling in HGF-treated lung cancer cells. CONCLUSION ES suppresses lung cancer progression by down-regulating HGF-Met signaling, revealing the possible mechanism of ES in the process of treating lung cancer patients.
Collapse
Affiliation(s)
- Yuyao Shen
- Department of Respiratory Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, China
| | - Qingwen Chen
- Department of Intensive Care Unit, Chongren People's Hospital, China
| | - Lihong Li
- Department of Geriatric Respiratory, Xi'an No.1 Hospital, China.
| |
Collapse
|
47
|
Zhang Y, Xiao Y, Dong Q, Ouyang W, Qin Q. Neferine in the Lotus Plumule Potentiates the Antitumor Effect of Imatinib in Primary Chronic Myeloid Leukemia Cells In Vitro. J Food Sci 2019; 84:904-910. [PMID: 30866043 DOI: 10.1111/1750-3841.14484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/19/2022]
Abstract
Imatinib, the prototype BCR-ABL tyrosine kinase inhibitor (TKI), is the first-line treatment for Philadelphia chromosome-positive chronic myeloid leukemia (CML) in the chronic phase. However, a subgroup of patients exhibit poor response or experience relapse. This issue may be overcome by combination therapy using natural compounds. Neferine, a major bisbenzylisoquinoline alkaloid extracted from "lotus plumule" (seed embryo of lotus) commonly used in traditional Chinese medicine and tea, was used herein in the combination treatment of CML. The MTT assay showed that neferine exerted cytotoxicity in primary CML cells in a dose-dependent manner. Moreover, low concentrations of neferine (4 and 8 µM) sensitized primary CML cells to imatinib (CI < 1), and significantly decreased its IC50 from 0.70 ± 0.10 to 0.32 ± 0.06 µM and 0.16 ± 0.02 µM, respectively. Cotreatment of neferine and imatinib significantly decreased the expression of BCR-ABL protein and its molecular chaperone heat shock protein 90 (Hsp90) mRNA and protein levels, and further decreased phospho-extracellular regulated protein kinase 1/2 (p-Erk1/2) and myeloid cell leukemia (Mcl-1) expression. These results suggest that neferine might be a potential imatinib sensitizer in CML treatment. PRACTICAL APPLICATION: In China, Lotus plumule, the green embryo of lotus, is used as a tea and as a source of herbal medicine in the treatment of anxiety, insomnia, spermatorrhea, and thirst. Additional, neferine, a bisbenzylisoquinoline alkaloid extracted from lotus plumule has been shown to have antitumor potential. Herein, the effect of neferine and imatinib cotreatment on primary CML cells obtained from CML patients was assessed, with a synergistic effect being observed between the two compounds. Therefore, neferine might be a promising natural compound to potentiate imatinib in CML patients.
Collapse
Affiliation(s)
- Yalan Zhang
- Xiangya Hospital, Central South Univ., Changsha, China
| | - Yuhang Xiao
- Xiangya Hospital, Central South Univ., Changsha, China
| | - Qixing Dong
- Xiangya Hospital, Central South Univ., Changsha, China
| | | | - Qun Qin
- Xiangya Hospital, Central South Univ., Changsha, China
| |
Collapse
|
48
|
Sivalingam K, Amirthalingam V, Ganasan K, Huang CY, Viswanadha VP. Neferine suppresses diethylnitrosamine-induced lung carcinogenesis in Wistar rats. Food Chem Toxicol 2019; 123:385-398. [DOI: 10.1016/j.fct.2018.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 10/24/2018] [Accepted: 11/07/2018] [Indexed: 01/01/2023]
|
49
|
Ray B, Gupta B, Mehrotra R. Binding of platinum derivative, oxaliplatin to deoxyribonucleic acid: structural insight into antitumor action. J Biomol Struct Dyn 2018; 37:3838-3847. [PMID: 30282523 DOI: 10.1080/07391102.2018.1531059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Platinum-derived chemodrugs constitute an active class in cancer therapeutics. Besides being potent against various solid tumors, oxaliplatin has been recognized as the first platinum compound to be approved for the treatment of colorectal cancer. Structurally, oxaliplatin consists of a platinum metal complexed to oxalate and diaminocyclohexane (DACH) and exert its anticancer action by inhibiting DNA replication and transcription. The present study highlights the binding properties of oxaliplatin with calf thymus DNA using spectroscopic methods to comprehend its binding mechanism at molecular level to overcome associated cellular resistance and side effects. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopic outcomes confirm that oxaliplatin is a covalent binding agent and also provide sequence specificity in DNA molecule. Infrared spectral results further indicate that oxaliplatin alkylates purine nitrogenous bases majorly guanine residues (G) in the major groove via formation of either interstrand or intrastrand guanine-guanine d(GpG) and guanine-adenine d(GpA) (N7 position) crosslinks accompanied with a slight external binding to sugar-phosphate backbone. Again, circular dichroism (CD) spectroscopic results suggest subtle conformational changes in DNA molecule due to its complexation with oxaliplatin and duplex attains an intermediate conformational state, having characteristics of both B- and C-forms. Further, a moderate binding strength of 4.12 ± 0.2 × 104 M-1 for the interaction has been estimated via ultraviolet-visible spectroscopy. The inferences obtained from these investigations are encouraging and can form the basis for further exploration in the field of rational drug development based on platinum compounds possessing preferential binding for nucleic acid with improved competence. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bhumika Ray
- a Physico Mechanical Metrology Division, CSIR-National Physical Laboratory , New Delhi , India
| | - Bhumika Gupta
- a Physico Mechanical Metrology Division, CSIR-National Physical Laboratory , New Delhi , India
| | - Ranjana Mehrotra
- a Physico Mechanical Metrology Division, CSIR-National Physical Laboratory , New Delhi , India
| |
Collapse
|
50
|
Xue F, Liu Z, Xu J, Xu X, Chen X, Tian F. Neferine inhibits growth and migration of gastrointestinal stromal tumor cell line GIST-T1 by up-regulation of miR-449a. Biomed Pharmacother 2018; 109:1951-1959. [PMID: 30551450 DOI: 10.1016/j.biopha.2018.11.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gastrointestinal stromal tumor (GIST) threatens the health of middle-aged and older people with high recurrence rate and low survival rate. In this study, Neferin (Nef) was hoped to control growth and migration of GIST cell line GIST-T1. METHODS Cell viability, proliferation, apoptosis, and migration were determined by cell counting kit-8 (CCK-8) assay, bromodeoxyuridine (BrdU) assay, Annexin V-FITC/PI double staining method, and Transwell assay, respectively. The expression level of miR-449a was determined by qRT-PCR. Cell transfection was conducted to alter the expression level of miR-449a. Protein expression levels of key factors involved in cell cycle, cell apoptosis, cell migration, PI3K/AKT pathway and Notch pathways were analyzed by western boltting. RESULTS Nef significantly inhibited GIST-T1 cell viability, proliferation, migration, but promoted cell apoptosis. The expression level of miR-449a was up-regulated in GIST-T1 cells after Nef treatment. Suppression of miR-449a reversed the Nef-induced GIST-T1 cell proliferation and migration inhibition, as well as cell apoptosis. Importantly, Nef inactivated PI3K/AKT and Notch pathways in GIST-T1 cells by up-regulating miR-449a. Inhibitors of PI3K/AKT and Notch pathways notably reversed the effects of Nef + miR-449a inhibitor on GIST-T1 cell proliferation, apoptosis and migration. Besides, Nef also suppressed human gastric cancer SGC7901 cell migration and induced cell apoptosis. CONCLUSION Nef suppressed growth and migration of GIST-T1 cells possibly via up-regulation of miR-449a and then inactivation of PI3K/AKT and Notch pathways.
Collapse
Affiliation(s)
- Fangxi Xue
- Department of Gastroenterology, Linyi Central Hospital, Linyi, 276400, China
| | - Zhaoxia Liu
- Department of Gastroenterology, Linyi Central Hospital, Linyi, 276400, China
| | - Jian Xu
- Department of Gastroenterology, Linyi Central Hospital, Linyi, 276400, China
| | - Xiaoguang Xu
- Department of Gastroenterology, Linyi Central Hospital, Linyi, 276400, China
| | - Xingtian Chen
- Department of Gastroenterology, Linyi Central Hospital, Linyi, 276400, China
| | - Feng Tian
- Department of Gastroenterology, Linyi Central Hospital, Linyi, 276400, China.
| |
Collapse
|