1
|
Vanderelst D, Peremans H. How swarming bats can use the collective soundscape for obstacle avoidance. PLoS Comput Biol 2025; 21:e1013013. [PMID: 40373075 DOI: 10.1371/journal.pcbi.1013013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/31/2025] [Indexed: 05/17/2025] Open
Abstract
Some echolocating bats, such as Tadarida brasiliensis, fly in groups when emerging from or entering caves. In large, dense swarms, distinguishing self-generated echoes from the multitude of calls and echoes produced by others presents a significant challenge - akin to a cocktail party nightmare. While spectral jamming responses have been proposed as a solution, this mechanism is unlikely to be effective in such conditions. Here, we propose an alternative hypothesis: rather than isolating their own echoes, bats might navigate by relying on the local amplitude gradient of the collective soundscape. To test this, we developed an agent-based simulation of bats flying through corridors, demonstrating that they can avoid obstacles, including other bats and corridor walls, without distinguishing individual echoes. Our findings suggest that in dense swarms, bats can exploit the emergent acoustic environment to maintain safe distances passively. The current paper also suggests shifting the perspective on jamming itself. Rather than framing overlapping signals solely as a source of interference, our findings highlight that these signals can also carry useful information, reframing the problem from conflict to cooperative signal processing.
Collapse
Affiliation(s)
- Dieter Vanderelst
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Herbert Peremans
- Department of Engineering Management, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Akter M, Kabir AMR, Keya JJ, Sada K, Asanuma H, Kakugo A. Localized Control of the Swarming of Kinesin-Driven Microtubules Using Light. ACS OMEGA 2024; 9:37748-37753. [PMID: 39281908 PMCID: PMC11391547 DOI: 10.1021/acsomega.4c03216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024]
Abstract
The swarming of self-propelled cytoskeletal filaments has emerged as a new aspect in the field of molecular machines or robotics, as it has overcome one of the major challenges of controlling the mutual interaction of a large number of individuals at a time. Recently, we reported on the photoregulated swarming of kinesin-driven cytoskeletal microtubule filaments in which visible (VIS) and ultraviolet (UV) light triggered the association and dissociation of the swarm, respectively. However, systematic control of this potential system has yet to be achieved to optimize swarming for further applications in molecular machines or robotics. Here, we demonstrate the precise and localized control of a biomolecular motor-based swarm system by varying different parameters related to photoirradiation. We control the reversibility of the swarming by changing the wavelength or intensity of light and the number of azobenzenes in DNA. In addition, we regulate the swarming in local regions by introducing different-sized or shaped patterns in the UV light system. Such a detailed study of the precise control of swarming would provide new perspectives for developing a molecular swarm system for further applications in engineering systems.
Collapse
Affiliation(s)
- Mousumi Akter
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, 48108, Michigan United States
| | | | - Jakia Jannat Keya
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Kazuki Sada
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Akira Kakugo
- Department of Physics, Kyoto University, Kyoto 606-8224, Japan
| |
Collapse
|
3
|
Jones TK, Allen KM, Moss CF. Communication with self, friends and foes in active-sensing animals. J Exp Biol 2021; 224:273391. [PMID: 34752625 DOI: 10.1242/jeb.242637] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Animals that rely on electrolocation and echolocation for navigation and prey detection benefit from sensory systems that can operate in the dark, allowing them to exploit sensory niches with few competitors. Active sensing has been characterized as a highly specialized form of communication, whereby an echolocating or electrolocating animal serves as both the sender and receiver of sensory information. This characterization inspires a framework to explore the functions of sensory channels that communicate information with the self and with others. Overlapping communication functions create challenges for signal privacy and fidelity by leaving active-sensing animals vulnerable to eavesdropping, jamming and masking. Here, we present an overview of active-sensing systems used by weakly electric fish, bats and odontocetes, and consider their susceptibility to heterospecific and conspecific jamming signals and eavesdropping. Susceptibility to interference from signals produced by both conspecifics and prey animals reduces the fidelity of electrolocation and echolocation for prey capture and foraging. Likewise, active-sensing signals may be eavesdropped, increasing the risk of alerting prey to the threat of predation or the risk of predation to the sender, or drawing competition to productive foraging sites. The evolutionary success of electrolocating and echolocating animals suggests that they effectively counter the costs of active sensing through rich and diverse adaptive behaviors that allow them to mitigate the effects of competition for signal space and the exploitation of their signals.
Collapse
Affiliation(s)
- Te K Jones
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kathryne M Allen
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
4
|
Huang Z, Li S, Jiang J, Wu Y, Yang L, Zhang Y. Biomimetic Flip-and-Flap Strategy of Flying Objects for Perching on Inclined Surfaces. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3070254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Hase K, Sugihara S, Oka S, Hiryu S, Graduate School of Environmental Studies, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara-miyakodani, Kyotanabe, Kyoto 610-0321, Japan, Faculty of Life and Medical Sciences, Doshisha University 1-3 Tatara-miyakodani, Kyotanabe, Kyoto 610-0321, Japan. Absence of Jamming Avoidance and Flight Path Similarity in Paired Bent-Winged Bats, Miniopterus Fuliginosus. JOURNAL OF ROBOTICS AND MECHATRONICS 2021. [DOI: 10.20965/jrm.2021.p0564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Echolocating bats perceive their surroundings by listening to the echoes of self-generated ultrasound pulses. When multiple conspecifics fly in close proximity to each other, sounds emitted from nearby individuals could mutually interfere with echo reception. Many studies suggest that bats employ frequency shifts to avoid spectral overlap of pulses with other bats. Technical constraints in recording technology have made it challenging to capture subtle changes in the pulse characteristics of bat calls. Therefore, how bats change their behavior to extract their own echoes in the context of acoustic interference remains unclear. Also, to our best knowledge, no studies have investigated whether individual flight paths change when other bats are present, although movements likely reduce acoustic masking. Here, we recorded the echolocation pulses of bats flying alone or in pairs using telemetry microphones. Flight trajectories were also reconstructed using stereo camera recordings. We found no clear tendency to broaden individual differences in the acoustic characteristics of pulses emitted by pairs of bats compared to bats flying alone. However, some bats showed changes in pulse characteristics when in pairs, which suggests that bats can recognize their own calls based on the initial differences in call characteristics between individuals. In addition, we found that the paired bats spend more time flying in the same directions than in the opposite directions. Besides, we found that the flight paths of bats were more similar in “paired flight trials” than in virtual pairs of paired flight trials. Our results suggest that the bats tend to follow the other bat in paired flight. For the following bat, acoustic interference may be reduced, while the opportunity to eavesdrop on other bats’ calls may be increased.
Collapse
|
6
|
Beetz MJ, Kössl M, Hechavarría JC. The frugivorous bat Carollia perspicillata dynamically changes echolocation parameters in response to acoustic playback. J Exp Biol 2021; 224:jeb.234245. [PMID: 33568443 DOI: 10.1242/jeb.234245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/30/2021] [Indexed: 11/20/2022]
Abstract
Animals extract behaviorally relevant signals from 'noisy' environments. Echolocation behavior provides a rich system testbed for investigating signal extraction. When echolocating in acoustically enriched environments, bats show many adaptations that are believed to facilitate signal extraction. Most studies to date focused on describing adaptations in insectivorous bats while frugivorous bats have rarely been tested. Here, we characterize how the frugivorous bat Carollia perspicillata adapts its echolocation behavior in response to acoustic playback. Since bats not only adapt their echolocation calls in response to acoustic interference but also with respect to target distances, we swung bats on a pendulum to control for distance-dependent call changes. Forward swings evoked consistent echolocation behavior similar to approach flights. By comparing the echolocation behavior recorded in the presence and absence of acoustic playback, we could precisely define the influence of the acoustic context on the bats' vocal behavior. Our results show that C. perspicillata decrease the terminal peak frequencies of their calls when echolocating in the presence of acoustic playback. When considering the results at an individual level, it became clear that each bat dynamically adjusts different echolocation parameters across and even within experimental days. Utilizing such dynamics, bats create unique echolocation streams that could facilitate signal extraction in noisy environments.
Collapse
Affiliation(s)
- M Jerome Beetz
- Institute for Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt am Main, Germany
| | - Manfred Kössl
- Institute for Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt am Main, Germany
| | - Julio C Hechavarría
- Institute for Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt am Main, Germany
| |
Collapse
|
7
|
Modeling active sensing reveals echo detection even in large groups of bats. Proc Natl Acad Sci U S A 2019; 116:26662-26668. [PMID: 31822613 DOI: 10.1073/pnas.1821722116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Active sensing animals perceive their surroundings by emitting probes of energy and analyzing how the environment modulates these probes. However, the probes of conspecifics can jam active sensing, which should cause problems for groups of active sensing animals. This problem was termed the cocktail party nightmare for echolocating bats: as bats listen for the faint returning echoes of their loud calls, these echoes will be masked by the loud calls of other close-by bats. Despite this problem, many bats echolocate in groups and roost socially. Here, we present a biologically parametrized framework to quantify echo detection in groups. Incorporating properties of echolocation, psychoacoustics, acoustics, and group flight, we quantify how well bats flying in groups can detect each other despite jamming. A focal bat in the center of a group can detect neighbors in group sizes of up to 100 bats. With increasing group size, fewer and only the closest and frontal neighbors are detected. Neighbor detection is improved by longer call intervals, shorter call durations, denser groups, and more variable flight and sonar beam directions. Our results provide a quantification of the sensory input of echolocating bats in collective group flight, such as mating swarms or emergences. Our results further generate predictions on the sensory strategies bats may use to reduce jamming in the cocktail party nightmare. Lastly, we suggest that the spatially limited sensory field of echolocators leads to limited interactions within a group, so that collective behavior is achieved by following only nearest neighbors.
Collapse
|
8
|
Adams AM, Patricio A, Manohar R, Smotherman M. Influence of signal direction on sonar interference. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Kloepper LN, Branstetter BK. The effect of jamming stimuli on the echolocation behavior of the bottlenose dolphin, Tursiops truncatus. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:1341. [PMID: 31067932 DOI: 10.1121/1.5093636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Echolocating bats and odontocetes face the potential challenge of acoustic interference from neighbors, or sonar jamming. To counter this, many bat species have adapted jamming avoidance strategies to improve signal detection, but any such avoidance strategies in dolphins is unknown. This study provides an investigation into whether dolphins modify echolocation behavior during jamming scenarios. Recorded echolocation clicks were projected at different click repetition rates and at different aspect angles relative to two dolphins' heads while each dolphin was performing a target detection task. Changes in the timing, amplitude, and frequency of structure of the dolphin's emitted signals were compared to determine if and how dolphins modify echolocation when faced with potentially interfering conspecific echolocation signals. The results indicate that both dolphins demonstrated different responses when faced with jamming scenarios, which may reflect optimal strategies according to individual auditory perception abilities.
Collapse
Affiliation(s)
- Laura N Kloepper
- Department of Biology, Saint Mary's College, Notre Dame, Indiana 46556, USA
| | - Brian K Branstetter
- National Marine Mammal Foundation, 2240 Shelter Island Drive, #200, San Diego, California 92106, USA
| |
Collapse
|
10
|
Abstract
Why do humpback whales sing? This paper considers the hypothesis that humpback whales may use song for long range sonar. Given the vocal and social behavior of humpback whales, in several cases it is not apparent how they monitor the movements of distant whales or prey concentrations. Unless distant animals produce sounds, humpback whales are unlikely to be aware of their presence or actions. Some field observations are strongly suggestive of the use of song as sonar. Humpback whales sometimes stop singing and then rapidly approach distant whales in cases where sound production by those whales is not apparent, and singers sometimes alternately sing and swim while attempting to intercept another whale that is swimming evasively. In the evolutionary development of modern cetaceans, perceptual mechanisms have shifted from reliance on visual scanning to the active generation and monitoring of echoes. It is hypothesized that as the size and distance of relevant events increased, humpback whales developed adaptive specializations for long-distance echolocation. Differences between use of songs by humpback whales and use of sonar by other echolocating species are discussed, as are similarities between bat echolocation and singing by humpback whales. Singing humpback whales are known to emit sounds intense enough to generate echoes at long ranges, and to flexibly control the timing and qualities of produced sounds. The major problem for the hypothesis is the lack of recordings of echoes from other whales arriving at singers immediately before they initiate actions related to those whales. An earlier model of echoic processing by singing humpback whales is here revised to incorporate recent discoveries. According to the revised model, both direct echoes from targets and modulations in song-generated reverberation can provide singers with information that can help them make decisions about future actions related to mating, traveling, and foraging. The model identifies acoustic and structural features produced by singing humpback whales that may facilitate a singer's ability to interpret changes in echoic scenes and suggests that interactive signal coordination by singing whales may help them to avoid mutual interference. Specific, testable predictions of the model are presented.
Collapse
Affiliation(s)
- Eduardo Mercado III
- Department of Psychology, University at Buffalo, The State University of New York, Buffalo, NY, United States
- Evolution, Ecology, and Behavior Program, University at Buffalo, The State University of New York, Buffalo, NY, United States
| |
Collapse
|
11
|
Hase K, Kadoya Y, Maitani Y, Miyamoto T, Kobayasi KI, Hiryu S. Bats enhance their call identities to solve the cocktail party problem. Commun Biol 2018; 1:39. [PMID: 30271924 PMCID: PMC6123623 DOI: 10.1038/s42003-018-0045-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 04/04/2018] [Indexed: 11/21/2022] Open
Abstract
Echolocating bats need to solve the problem of signal jamming by conspecifics when they are in a group. However, while several mechanisms have been suggested, it remains unclear how bats avoid confusion between their own echoes and interfering sounds in a complex acoustic environment. Here, we fixed on-board microphones onto individual frequency-modulating bats flying in groups. We found that group members broaden the inter-individual differences in the terminal frequencies of pulses, thereby decreasing the similarity of pulses among individuals. To understand what features most affect similarity between pulses, we calculated the similarity of signals mimicking pulses. We found that the similarity between those artificial signals was decreased most by manipulation of terminal frequency. These results demonstrate that the signal jamming problem is solved by this simple strategy, which may be universally used by animals that use active sensing, such as echolocating bats and electric fish, thereby transcending species and sensory modalities.
Collapse
Affiliation(s)
- Kazuma Hase
- Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tatara miyakodani, Kyotanabe, Kyoto, 610-0321, Japan.
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan.
| | - Yukimi Kadoya
- Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tatara miyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Yosuke Maitani
- Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tatara miyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Takara Miyamoto
- Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tatara miyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Kohta I Kobayasi
- Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tatara miyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Shizuko Hiryu
- Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tatara miyakodani, Kyotanabe, Kyoto, 610-0321, Japan.
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
12
|
Beetz MJ, García-Rosales F, Kössl M, Hechavarría JC. Robustness of cortical and subcortical processing in the presence of natural masking sounds. Sci Rep 2018; 8:6863. [PMID: 29717258 PMCID: PMC5931562 DOI: 10.1038/s41598-018-25241-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/17/2018] [Indexed: 11/17/2022] Open
Abstract
Processing of ethologically relevant stimuli could be interfered by non-relevant stimuli. Animals have behavioral adaptations to reduce signal interference. It is largely unexplored whether the behavioral adaptations facilitate neuronal processing of relevant stimuli. Here, we characterize behavioral adaptations in the presence of biotic noise in the echolocating bat Carollia perspicillata and we show that the behavioral adaptations could facilitate neuronal processing of biosonar information. According to the echolocation behavior, bats need to extract their own signals in the presence of vocalizations from conspecifics. With playback experiments, we demonstrate that C. perspicillata increases the sensory acquisition rate by emitting groups of echolocation calls when flying in noisy environments. Our neurophysiological results from the auditory midbrain and cortex show that the high sensory acquisition rate does not vastly increase neuronal suppression and that the response to an echolocation sequence is partially preserved in the presence of biosonar signals from conspecifics.
Collapse
Affiliation(s)
- M Jerome Beetz
- Institute for Cell Biology and Neuroscience, Goethe-University, 60438, Frankfurt/M., Germany. .,Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Am Hubland, Würzburg, 97074, Germany.
| | | | - Manfred Kössl
- Institute for Cell Biology and Neuroscience, Goethe-University, 60438, Frankfurt/M., Germany
| | - Julio C Hechavarría
- Institute for Cell Biology and Neuroscience, Goethe-University, 60438, Frankfurt/M., Germany
| |
Collapse
|
13
|
Acoustic Sensors for Air and Surface Navigation Applications. SENSORS 2018; 18:s18020499. [PMID: 29414894 PMCID: PMC5855873 DOI: 10.3390/s18020499] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 11/16/2022]
Abstract
This paper presents the state-of-the-art and reviews the state-of-research of acoustic sensors used for a variety of navigation and guidance applications on air and surface vehicles. In particular, this paper focuses on echolocation, which is widely utilized in nature by certain mammals (e.g., cetaceans and bats). Although acoustic sensors have been extensively adopted in various engineering applications, their use in navigation and guidance systems is yet to be fully exploited. This technology has clear potential for applications in air and surface navigation/guidance for Intelligent Transport Systems (ITS), especially considering air and surface operations indoors and in other environments where satellite positioning is not available. Propagation of sound in the atmosphere is discussed in detail, with all potential attenuation sources taken into account. The errors introduced in echolocation measurements due to Doppler, multipath and atmospheric effects are discussed, and an uncertainty analysis method is presented for ranging error budget prediction in acoustic navigation applications. Considering the design challenges associated with monostatic and multi-static sensor implementations and looking at the performance predictions for different possible configurations, acoustic sensors show clear promises in navigation, proximity sensing, as well as obstacle detection and tracking. The integration of acoustic sensors in multi-sensor navigation systems is also considered towards the end of the paper and a low Size, Weight and Power, and Cost (SWaP-C) sensor integration architecture is presented for possible introduction in air and surface navigation systems.
Collapse
|
14
|
Corcoran AJ, Moss CF. Sensing in a noisy world: lessons from auditory specialists, echolocating bats. J Exp Biol 2017; 220:4554-4566. [DOI: 10.1242/jeb.163063] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
All animals face the essential task of extracting biologically meaningful sensory information from the ‘noisy’ backdrop of their environments. Here, we examine mechanisms used by echolocating bats to localize objects, track small prey and communicate in complex and noisy acoustic environments. Bats actively control and coordinate both the emission and reception of sound stimuli through integrated sensory and motor mechanisms that have evolved together over tens of millions of years. We discuss how bats behave in different ecological scenarios, including detecting and discriminating target echoes from background objects, minimizing acoustic interference from competing conspecifics and overcoming insect noise. Bats tackle these problems by deploying a remarkable array of auditory behaviors, sometimes in combination with the use of other senses. Behavioral strategies such as ceasing sonar call production and active jamming of the signals of competitors provide further insight into the capabilities and limitations of echolocation. We relate these findings to the broader topic of how animals extract relevant sensory information in noisy environments. While bats have highly refined abilities for operating under noisy conditions, they face the same challenges encountered by many other species. We propose that the specialized sensory mechanisms identified in bats are likely to occur in analogous systems across the animal kingdom.
Collapse
Affiliation(s)
- Aaron J. Corcoran
- Department of Biology, Wake Forest University, Box 7325 Reynolda Station, Winston-Salem, NC 27109, USA
| | - Cynthia F. Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|