1
|
Tang B, Luo S, Wang Q, Gao P, Duan L. Advanced molecular mechanisms of modified DRV compounds in targeting HIV-1 protease mutations and interrupting monomer dimerization. Phys Chem Chem Phys 2024; 26:4989-5001. [PMID: 38258432 DOI: 10.1039/d3cp05702j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
HIV-1 protease (PR) plays a crucial role in the treatment of HIV as a key target. The global issue of emerging drug resistance is escalating, and PR mutations pose a substantial challenge to the effectiveness of inhibitors. HIV-1 PR is an ideal model for studying drug resistance to inhibitors. The inhibitor, darunavir (DRV), exhibits a high genetic barrier to viral resistance, but with mutations of residues in the PR, there is also some resistance to DRV. Inhibitors can impede PR in two ways: one involves binding to the active site of the dimerization protease, and the other involves binding to the PR monomer, thereby preventing dimerization. In this study, we aimed to investigate the inhibitory effect of DRV with a modified inhibitor on PR, comparing the differences between wild-type and mutated PR, using molecular dynamics simulations. The inhibitory effect of the inhibitors on PR monomers was subsequently investigated. And molecular mechanics Poisson-Boltzmann surface area evaluated the binding free energy. The energy contribution of individual residues in the complex was accurately calculated by the alanine scanning binding interaction entropy method. The results showed that these inhibitors had strong inhibitory effects against PR mutations, with GRL-142 exhibiting potent inhibition of both the PR monomer and dimer. Improved inhibitors could strengthen hydrogen bonds and interactions with PR, thereby boosting inhibition efficacy. The binding of the inhibitor and mutation of the PR affected the distance between D25 and I50, preventing their dimerization and the development of drug resistance. This study could accelerate research targeting HIV-1 PR inhibitors and help to further facilitate drug design targeting both mechanisms.
Collapse
Affiliation(s)
- Bolin Tang
- School of Physics and Electronics, Shandogfng Normal University, Jinan, 250014, China.
| | - Song Luo
- School of Physics and Electronics, Shandogfng Normal University, Jinan, 250014, China.
| | - Qihang Wang
- School of Physics and Electronics, Shandogfng Normal University, Jinan, 250014, China.
| | - Pengfei Gao
- School of Physics and Electronics, Shandogfng Normal University, Jinan, 250014, China.
| | - Lili Duan
- School of Physics and Electronics, Shandogfng Normal University, Jinan, 250014, China.
| |
Collapse
|
2
|
Yu YX, Liu WT, Li HY, Wang W, Sun HB, Zhang LL, Wu SL. Decoding molecular mechanism underlying binding of drugs to HIV-1 protease with molecular dynamics simulations and MM-GBSA calculations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:889-915. [PMID: 34551634 DOI: 10.1080/1062936x.2021.1979647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
HIV-1 protease (PR) is thought to be efficient targets of anti-AIDS drug design. Molecular dynamics (MD) simulations and multiple post-processing analysis technologies were applied to decipher molecular mechanism underlying binding of three drugs Lopinavir (LPV), Nelfinavir (NFV) and Atazanavir (ATV) to the PR. Binding free energies calculated by molecular mechanics generalized Born surface area (MM-GBSA) suggest that compensation between binding enthalpy and entropy plays a vital role in binding of drugs to PR. Dynamics analyses show that binding of LPV, NFV and ATV highly affects structural flexibility, motion modes and dynamics behaviour of the PR, especially for two flaps. Computational alanine scanning and interaction network analysis verify that although three drugs have structural difference, they share similar binding modes to the PR and common interaction clusters with the PR. The current findings also confirm that residues located interaction clusters, such as Asp25/Asp25', Gly27/Gly27', Ala28/Ala28', Asp29, Ile47/Ile47', Gly49/Gly49', Ile50/Ile50', Val82/Val82' and Ile84/Ile84, can be used as efficient targets of clinically available inhibitors towards the PR.
Collapse
Affiliation(s)
- Y X Yu
- School of Science, Shandong Jiaotong University, Jinan, China
| | - W T Liu
- Shuifa Qilu Cultural Tourism Development Co., Ltd, Shuifa Ecological Industry Group, Jinan, China
| | - H Y Li
- School of Science, Shandong Jiaotong University, Jinan, China
| | - W Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - H B Sun
- School of Science, Shandong Jiaotong University, Jinan, China
| | - L L Zhang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - S L Wu
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
3
|
Yu YX, Wang W, Sun HB, Zhang LL, Wu SL, Liu WT. Insights into effect of the Asp25/Asp25' protonation states on binding of inhibitors Amprenavir and MKP97 to HIV-1 protease using molecular dynamics simulations and MM-GBSA calculations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:615-641. [PMID: 34157882 DOI: 10.1080/1062936x.2021.1939149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
The protonation states of two aspartic acids in the catalytic strands of HIV-1 protease (PR) remarkably affect bindings of inhibitors to PR. It is requisite for the design of potent inhibitors towards PR to investigate the influences of Asp25/Asp25' protonated states on dynamics behaviour of PR and binding mechanism of inhibitors to PR. In this work, molecular dynamics (MD) simulations, MM-GBSA method and principal component (PC) analysis were coupled to explore the effect of Asp25/Asp25' protonation states on conformational changes of PR and bindings of Amprenavir and MKP97 to PR. The results show that the Asp25/Asp25' protonation states exert different impacts on structural fluctuations, flexibility and motion modes of PR. Dynamics analysis verifies that Asp25/Asp25' protonated states highly affect conformational dynamics of two flaps in PR. The binding free energy calculations results suggest that the Asp25/Asp25' protonated states obviously strengthen bindings of inhibitors to PR compared to the non-protonation state. Calculations of residue-based free energy decomposition indicate that the Asp25/Asp25' protonation not only disturbs the interaction network of inhibitors with PR but also stabilizes bindings of inhibitors to PR by cancelling the electrostatic repulsive interaction. Therefore, special attentions should be paid to the Asp25/Asp25' protonation in the design of potent inhibitors towards PR.
Collapse
Affiliation(s)
- Y X Yu
- School of Science, Shandong Jiaotong University, Jinan, China
| | - W Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - H B Sun
- School of Science, Shandong Jiaotong University, Jinan, China
| | - L L Zhang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - S L Wu
- School of Science, Shandong Jiaotong University, Jinan, China
| | - W T Liu
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
4
|
Yin YY, Zhao J, Zhang LL, Xu XY, Liu JQ. Molecular mechanisms of inhibitor bindings to A-FABP deciphered by using molecular dynamics simulations and calculations of MM-GBSA. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:293-315. [PMID: 33655818 DOI: 10.1080/1062936x.2021.1891966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Adipocyte fatty-acid binding protein (A-FABP) plays a central role in many aspects of metabolic diseases. It is an important target in drug design for treatment of FABP-related diseases. In this study, molecular dynamics (MD) simulations followed by calculations of molecular mechanics generalized Born surface area (MM-GBSA) and principal components analysis (PCA) were implemented to decipher molecular mechanism correlating with binding of inhibitors 57Q, 57P and L96 to A-FABP. The results show that van der Waals interactions are the leading factors to control associations of 57Q, 57P, and L96 with A-FABP, which reveals an energetic basis for designing of clinically available inhibitors towards A-FABP. The information from PCA and cross-correlation analysis rationally unveils that inhibitor bindings affect conformational changes of A-FABP and change relative movements between residues. Decomposition of binding affinity into contributions of individual residues not only detects hot spots of inhibitor/A-FABP binding but also shows that polar interactions of the positively charged residue Arg126 with three inhibitors provide a significant contribution for stabilization of the inhibitor/A-FABP bindings. Furthermore, the binding strength of L96 to residues Ser55, Phe57 and Lys58 are stronger than that of inhibitors 57Q and 57P to these residues.
Collapse
Affiliation(s)
- Y Y Yin
- School of Science, Shandong Jiaotong University, Jinan, China
| | - J Zhao
- School of Science, Shandong Jiaotong University, Jinan, China
| | - L L Zhang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - X Y Xu
- School of Science, Shandong Jiaotong University, Jinan, China
| | - J Q Liu
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
5
|
Cong Y, Huang K, Li Y, Zhong S, Zhang JZH, Duan L. Entropic effect and residue specific entropic contribution to the cooperativity in streptavidin-biotin binding. NANOSCALE 2020; 12:7134-7145. [PMID: 32191786 DOI: 10.1039/c9nr08380d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molecular dynamics (MD) simulations were performed employing the polarized protein-specific charge (PPC) to explore the origin of the cooperativity in streptavidin-biotin systems (wild type, two single mutations and one double-mutation). The results of the experiment found that the existence of cooperativity is mainly the result of the entropic effect. In this study, the entropic contribution to the binding free energy was calculated using the recently developed interaction entropy (IE) method, and computational results are in excellent agreement with the experimental observations and are further verified by the calculation of the thermodynamic integration. Comparison of different force fields in terms of predicted binding strength ordering, cooperativity of energy and the stability of hydrogen bonding suggests that the PPC force field combined IE method is a suitable choice. In addition, the IE method enables us to obtain the residue-specific entropic contributions to the streptavidin-biotin binding affinity and identify ten hot-spot residues providing the dominant contribution to the cooperative binding. Importantly, the overall cooperativity obtained from the ten residues also comes mainly from the entropic effect in our study. The calculation of the potential of mean force shows that the unbinding of streptavidin-biotin is a multi-step process, and each step corresponds to the formation and rupture of the hydrogen bond network. And S45A mutation may increase the rigidity of the linker region, making the flap region relatively difficult to open. The present study provides significant molecular insight into the binding cooperativity of the streptavidin-biotin complex.
Collapse
Affiliation(s)
- Yalong Cong
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | | | | | | | | | | |
Collapse
|
6
|
Sk MF, Roy R, Kar P. Exploring the potency of currently used drugs against HIV-1 protease of subtype D variant by using multiscale simulations. J Biomol Struct Dyn 2020; 39:988-1003. [PMID: 32000612 DOI: 10.1080/07391102.2020.1724196] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Acquired immune deficiency syndrome (AIDS) is caused by the human immunodeficiency virus (HIV), type 1 and 2. Further, the diversity in HIV-1 has given rise to many serotypes and recombinant strains. The currently used protease inhibitors have been developed for subtype B, although non-B subtype strains account for ∼ 90% of the global HIV infections. Subtype D is spreading rapidly and infecting a large population in North Africa and the Middle East. In the current study, molecular dynamics simulations in conjunction with the molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) scheme was used to investigate the potency of four drugs, namely atazanavir (ATV), darunavir (DRV), lopinavir (LPV) and tipranavir (TPV) against the subtype D variant. Our calculations predicted that the potency of the inhibitors decreased in the order TPV > ATV > DRV > LPV. TPV was found to be the most potent against subtype D due to an increase in van der Waals and electrostatic interactions and reduction in the desolvation energy compared to other inhibitors. This result is further supported by the hydrogen bond interactions between inhibitors and protease. Furthermore, our analyses suggested that the binding of TPV induced a more closed conformation of the flap compared to apo or other complexes. It was observed that TPV/PRD has a lower cavity volume relative to the other three complexes leading to a tighter binding. The open conformation of the flap was observed for LPV/PRD. We expect that this study might be useful for designing more potent inhibitors against HIV-1 subtype D. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Fulbabu Sk
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Indore, Madhya Pradesh, India
| | - Rajarshi Roy
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Indore, Madhya Pradesh, India
| | - Parimal Kar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Indore, Madhya Pradesh, India
| |
Collapse
|
7
|
Zhong S, Huang K, Xiao Z, Sheng X, Li Y, Duan L. Binding Mechanism of Thrombin–Ligand Systems Investigated by a Polarized Protein-Specific Charge Force Field and Interaction Entropy Method. J Phys Chem B 2019; 123:8704-8716. [DOI: 10.1021/acs.jpcb.9b08064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Susu Zhong
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Kaifang Huang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Zhengrong Xiao
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Xiehuang Sheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yuchen Li
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
8
|
Williams LJ, Schendt BJ, Fritz ZR, Attali Y, Lavroff RH, Yarmush ML. A protein interaction free energy model based on amino acid residue contributions: Assessment of point mutation stability of T4 lysozyme. TECHNOLOGY 2019; 7:12-39. [PMID: 32211456 PMCID: PMC7093156 DOI: 10.1142/s233954781950002x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here we present a model to estimate the interaction free energy contribution of each amino acid residue of a given protein. Protein interaction energy is described in terms of per-residue interaction factors, μ. Multibody interactions are implicitly captured in μ through the combination of amino acid terms (γ) guided by local conformation indices (σ). The model enables construction of an interaction factor heat map for a protein in a given fold, allows prima facie assessment of the degree of residue-residue interaction, and facilitates a qualitative and quantitative evaluation of protein association properties. The model was used to compute thermal stability of T4 bacteriophage lysozyme mutants across seven sites. Qualitative assessment of mutational effects provides a straightforward rationale regarding whether a particular site primarily perturbs native or non-native states, or both. The presented model was found to be in good agreement with experimental mutational data (R 2 = 0.73) and suggests an approach by which to convert structure space into energy space.
Collapse
Affiliation(s)
- Lawrence J Williams
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd., Piscataway, NJ 08854, USA
| | - Brian J Schendt
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd., Piscataway, NJ 08854, USA
| | - Zachary R Fritz
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Yonatan Attali
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd., Piscataway, NJ 08854, USA
| | - Robert H Lavroff
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd., Piscataway, NJ 08854, USA
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| |
Collapse
|
9
|
Li M, Cong Y, Li Y, Zhong S, Wang R, Li H, Duan L. Insight Into the Binding Mechanism of p53/pDIQ-MDMX/MDM2 With the Interaction Entropy Method. Front Chem 2019; 7:33. [PMID: 30761293 PMCID: PMC6361799 DOI: 10.3389/fchem.2019.00033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/14/2019] [Indexed: 01/29/2023] Open
Abstract
The study of the p53-MDMX/MDM2 binding sites is a research hotspot for tumor drug design. The inhibition of p53-targeted MDMX/MDM2 has become an effective approach in anti-tumor drug development. In this paper, a theoretically rigorous and computationally accurate method, namely, the interaction entropy (IE) method, combined with the polarized protein-specific charge (PPC) force field, is used to explore the difference in the binding mechanism between p53-MDMX and p53-MDM2. The interaction of a 12mer peptide inhibitor (pDIQ), which is similar to p53 in structure, with MDMX/MDM2 is also studied. The results demonstrate that p53/pDIQ with MDM2 generates a stronger interaction than with MDMX. Compared to p53, pDIQ has larger binding free energies with MDMX and MDM2. According to the calculated binding free energies, the differences in the binding free energy among the four complexes that are obtained from the combination of PPC and IE are more consistent with the experimental values than with the results from the combination of the non-polarizable AMBER force field and IE. In addition, according to the decomposition of the binding free energy, the van der Waals (vdW) interactions are the main driving force for the binding of the four complexes. They are also the main source of the weaker binding affinity of p53/pDIQ-MDMX relative to p53/pDIQ-MDM2. Compared with p53-MDMX/MDM2, according to the analysis of the residue decomposition, the predicated total residue contributions are higher in pDIQ-MDMX/MDM2 than in p53-MDMX/MDM2, which explains why pDIQ has higher binding affinity than p53 with MDMX/MDM2. The current study provides theoretical guidance for understanding the binding mechanisms and designing a potent dual inhibitor that is targeted to MDMX/MDM2.
Collapse
Affiliation(s)
- Mengxin Li
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Yalong Cong
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Yuchen Li
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Susu Zhong
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Ran Wang
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Hao Li
- School of Physics and Electronics, Shandong Normal University, Jinan, China.,Department of Science and Technology, Shandong Normal University, Jinan, China
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| |
Collapse
|
10
|
Nayak C, Chandra I, Singh SK. An
in silico
pharmacological approach toward the discovery of potent inhibitors to combat drug resistance HIV‐1 protease variants. J Cell Biochem 2018; 120:9063-9081. [DOI: 10.1002/jcb.28181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Chirasmita Nayak
- Computer Aided Drug Design and Molecular Modeling, Department of Bioinformatics Alagappa University Karaikudi India
| | - Ishwar Chandra
- Computer Aided Drug Design and Molecular Modeling, Department of Bioinformatics Alagappa University Karaikudi India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling, Department of Bioinformatics Alagappa University Karaikudi India
| |
Collapse
|
11
|
Yan F, Liu X, Zhang S, Su J, Zhang Q, Chen J. Electrostatic interaction-mediated conformational changes of adipocyte fatty acid binding protein probed by molecular dynamics simulation. J Biomol Struct Dyn 2018; 37:3583-3595. [DOI: 10.1080/07391102.2018.1520648] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fangfang Yan
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Xinguo Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Shaolong Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Jing Su
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Qinggang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
12
|
Li Y, Cong Y, Feng G, Zhong S, Zhang JZH, Sun H, Duan L. The impact of interior dielectric constant and entropic change on HIV-1 complex binding free energy prediction. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2018; 5:064101. [PMID: 30868080 PMCID: PMC6404944 DOI: 10.1063/1.5058172] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/21/2018] [Indexed: 06/01/2023]
Abstract
At present, the calculated binding free energy obtained using the molecular mechanics/Poisson-Boltzmann (Generalized-Born) surface area (MM/PB(GB)SA) method is overestimated due to the lack of knowledge of suitable interior dielectric constants in the simulation on the interaction of Human Immunodeficiency Virus (HIV-1) protease systems with inhibitors. Therefore, the impact of different values of the interior dielectric constant and the entropic contribution when using the MM/PB(GB)SA method to calculate the binding free energy was systemically evaluated. Our results show that the use of higher interior dielectric constants (1.4-2.0) can clearly improve the predictive accuracy of the MM/PBSA and MM/GBSA methods, and computational errors are significantly reduced by including the effects of electronic polarization and using a new highly efficient interaction entropy (IE) method to calculate the entropic contribution. The suitable range for the interior dielectric constant is 1.4-1.6 for the MM/PBSA method; within this range, the correlation coefficient fluctuates around 0.84, and the mean absolute error fluctuates around 2 kcal/mol. Similarly, an interior dielectric constant of 1.8-2.0 produces a correlation coefficient of approximately 0.76 when using the MM/GBSA method. In addition, the entropic contribution of each individual residue was further calculated using the IE method to predict hot-spot residues, and the detailed binding mechanisms underlying the interactions of the HIV-1 protease, its inhibitors, and bridging water molecules were investigated. In this study, the use of a higher interior dielectric constant and the IE method can improve the calculation accuracy of the HIV-1 system.
Collapse
Affiliation(s)
- Yuchen Li
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | | | - Guoqiang Feng
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Susu Zhong
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | | | - Huiyong Sun
- Department of Medicinal Chemistry, School of Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
13
|
Chen J, Peng C, Wang J, Zhu W. Exploring molecular mechanism of allosteric inhibitor to relieve drug resistance of multiple mutations in HIV-1 protease by enhanced conformational sampling. Proteins 2018; 86:1294-1305. [PMID: 30260044 DOI: 10.1002/prot.25610] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/02/2018] [Accepted: 09/23/2018] [Indexed: 12/12/2022]
Abstract
Recently, allosteric regulations of HIV-1 protease (PR) are suggested as a promising approach to relieve drug resistance of mutations toward inhibitors targeting the active site of PR. Replica-exchange molecular dynamics (REMD) simulations and normal mode analysis (NMA) are integrated to enhance conformational sampling of PR. Molecular mechanics generalized Born surface area (MM-GBSA) method was applied to calculate binding free energies of three inhibitors APV, DRV, and NIT to the wild-type (WT) and multidrug resistance (MDR) PRs. The results suggest that binding free energies of APV and DRV are decreased in the MDR PR relative to the WT PR, suggesting drug resistance of mutations on these two inhibitors. However, the binding ability of the allosteric inhibitor NIT is not impaired in the MDR PR. In addition, internal dynamics analysis based on REMD simulations proves that mutations hardly produce obvious effect on the conformation of the MDR PR in comparison to the WT PR. Scanning of hydrophobic contacts and hydrogen bond contacts of inhibitors with residues of PRs on the concatenated trajectories of REMD demonstrates that mutations change the symmetric interaction networks of APV and DRV with PR, but do not generate obvious influence on the asymmetric interaction network of NIT with PR. In summary, allosteric inhibitor NIT can adapt the MDR PR better than those inhibitors toward the active site of PR, thus allosteric inhibitors of PR may be a possible channel to overcome drug resistance of PR.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China.,Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Cheng Peng
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Jinan Wang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Weiliang Zhu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
14
|
Chen J, Duan L, Ji C, Zhang JZH. Computational Study of PCSK9-EGFA Complex with Effective Polarizable Bond Force Field. Front Mol Biosci 2018; 4:101. [PMID: 29379787 PMCID: PMC5775225 DOI: 10.3389/fmolb.2017.00101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/28/2017] [Indexed: 12/16/2022] Open
Abstract
Inhibiting of Proprotein Convertase Subtilisin/Kexin-type 9 (PCSK9) and Low Density Lipoprotein Receptor (LDLR) binding is an effective way for reducing Low Density Lipoprotein cholesterol (LDL-C). Understanding the interaction between PCSK9 and LDLR is useful for PCSK9 inhibitor design. In this work, MD simulations with the standard (non-polarizable) AMBER force field and effective polarizable bond (EPB) force field were performed for wild type and four mutants of PCSK9 and EGFA (Epidermal Growth Factor-like repeat A) domain of LDLR complexes. These four mutants are gain-of-function mutants. The analysis of hydrogen bond dynamics and the relative binding free energy indicates that EPB is more reliable in simulating protein dynamics and predicting relative binding affinity. Structures sampled from MD simulations with the standard AMBER force field deviate too far away from crystal structures. Many important interaction components between of PCSK9 and EGFA no longer exist in the simulation with the Amber force field. For comparison, simulation using EPB force field gives more stable structures as shown by hydrogen bond analysis and produced relative binding free energies that are consistent with experimental results. Our study suggests that inclusion of polarization effects in MD simulation is important for studying the protein-protein interaction.
Collapse
Affiliation(s)
- Jian Chen
- Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Changge Ji
- Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
| | - John Z H Zhang
- Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
| |
Collapse
|
15
|
Trypsin-Ligand binding affinities calculated using an effective interaction entropy method under polarized force field. Sci Rep 2017; 7:17708. [PMID: 29255159 PMCID: PMC5735144 DOI: 10.1038/s41598-017-17868-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/01/2017] [Indexed: 12/22/2022] Open
Abstract
Molecular dynamics (MD) simulation in the explicit water is performed to study the interaction mechanism of trypsin-ligand binding under the AMBER force field and polarized protein-specific charge (PPC) force field combined the new developed highly efficient interaction entropy (IE) method for calculation of entropy change. And the detailed analysis and comparison of the results of MD simulation for two trypsin-ligand systems show that the root-mean-square deviation (RMSD) of backbone atoms, B-factor, intra-protein and protein-ligand hydrogen bonds are more stable under PPC force field than AMBER force field. Our results demonstrate that the IE method is superior than the traditional normal mode (Nmode) method in the calculation of entropy change and the calculated binding free energy under the PPC force field combined with the IE method is more close to the experimental value than other three combinations (AMBER-Nmode, AMBER-IE and PPC-Nmode). And three critical hydrogen bonds between trypsin and ligand are broken under AMBER force field. However, they are well preserved under PPC force field. Detailed binding interactions of ligands with trypsin are further analyzed. The present work demonstrates that the polarized force field combined the highly efficient IE method is critical in MD simulation and free energy calculation.
Collapse
|
16
|
A test of AMBER force fields in predicting the secondary structure of α-helical and β-hairpin peptides. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.04.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
17
|
Su J, Liu X, Zhang S, Yan F, Zhang Q, Chen J. A computational insight into binding modes of inhibitors XD29, XD35, and XD28 to bromodomain-containing protein 4 based on molecular dynamics simulations. J Biomol Struct Dyn 2017; 36:1212-1224. [DOI: 10.1080/07391102.2017.1317666] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jing Su
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Xinguo Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Shaolong Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Fangfang Yan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Qinggang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, 250357, China
| |
Collapse
|
18
|
Duan L, Feng G, Wang X, Wang L, Zhang Q. Effect of electrostatic polarization and bridging water on CDK2–ligand binding affinities calculated using a highly efficient interaction entropy method. Phys Chem Chem Phys 2017; 19:10140-10152. [DOI: 10.1039/c7cp00841d] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new highly efficient interaction entropy (IE) method combined with the polarized protein-specific charge (PPC) force field is employed to investigate the interaction mechanism of CDK2–ligand binding and the effect of the bridging water.
Collapse
Affiliation(s)
- Lili Duan
- School of Physics and Electronics
- Shandong Normal University
- Jinan 250014
- China
| | - Guoqiang Feng
- School of Physics and Electronics
- Shandong Normal University
- Jinan 250014
- China
| | - Xianwei Wang
- Center for Optics & Optoelectronics Research
- College of Science
- Zhejiang University of Technology
- Hangzhou 310023
- China
| | - Lizhi Wang
- School of Physics
- Ludong University
- Yantai 264025
- China
| | - Qinggang Zhang
- School of Physics and Electronics
- Shandong Normal University
- Jinan 250014
- China
| |
Collapse
|