1
|
Yang H, Ni Y, Li J, Chen H, Liu C. Unveiling the mitochondrial genome of Salvia splendens insights into the evolutionary traits within the genus Salvia. Sci Rep 2025; 15:13344. [PMID: 40246928 PMCID: PMC12006378 DOI: 10.1038/s41598-025-96637-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/31/2025] [Indexed: 04/19/2025] Open
Abstract
Previously, we resolved the complete sequences of the mitochondrial genomes (mitogenome) of two Salvia species (S. miltiorrhiza and S. officinalis). The major configurations of these two species were two circular chromosomes. In this study, we further studied the mitogenome of a floral species of Salvia (Salvia splendens) to understand the diversity and evolution of the Salvia mitogenomes. We sequenced the total DNAs of S. splendens using the Nanopore and Illumina platforms and assembled the mitogenome using a hybrid assembly strategy. The major configurations of the S. splendens were two circular chromosomes with lengths of 182,239 and 165,055 bp. There were 32 protein-coding genes (PCGs), three rRNA genes, and 18 tRNA genes annotated in the S. splendens mitogenome. We found 56 pairs of repetitive sequences in the S. splendens mitogenome. Three of them (R01, 04, and 07) could mediate recombination, whose products could be identified by the mapping of Nanopore reads, PCR amplifications, and Sanger sequencing of the PCR products. 457 RNA editing sites were identified in the S. splendens mitochondrial RNAs when comparing the RNA-seq data with their corresponding DNA templates. We showed that S. splendens was a sister taxon to S. miltiorrhiza based on the mitogenomes, consistent with the phylogeny determined with the plastome sequences. Crucially, we developed 12 mitochondrial markers sourced from mitochondrial intron regions to facilitate the identification of three Salvia species. Our study offers a comprehensive view of the structure of the Salvia mitogenomes and provides robust mitochondrial markers for Salvia species identification.
Collapse
Affiliation(s)
- Heyu Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Yang Ni
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Jingling Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Haimei Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China.
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China.
| |
Collapse
|
2
|
Zhang K, Qu G, Zhang Y, Liu J. Assembly and comparative analysis of the first complete mitochondrial genome of Astragalus membranaceus (Fisch.) Bunge: an invaluable traditional Chinese medicine. BMC PLANT BIOLOGY 2024; 24:1055. [PMID: 39511474 PMCID: PMC11546474 DOI: 10.1186/s12870-024-05780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Astragalus membranaceus (Fisch.) Bunge is one of the most well-known tonic herbs in traditional Chinese medicine, renowned for its remarkable medicinal value in various clinical contexts. The corresponding chloroplast (cp) and nuclear genomes have since been accordingly sequenced, providing valuable information for breeding and phylogeny studies. However, the mitochondrial genome (mitogenome) of A. membranaceus remains unexplored, which hinders comprehensively understanding the evolution of its genome. RESULTS For this study, we de novo assembled the mitogenome of A. membranaceus (Fisch.) Bunge var. mongholicus (Bunge) P. K. Hsiao using a strategy integrating Illumina and Nanopore sequencing technology and subsequently performed comparative analysis with its close relatives. The mitogenome has a multi-chromosome structure, consisting of two circular chromosomes with a total length of 398,048 bp and an overall GC content of 45.3%. It encodes 54 annotated functional genes, comprising 33 protein-coding genes (PCGs), 18 tRNA genes, and 3 rRNA genes. An investigation of codon usage in the PCGs revealed an obvious preference for codons ending in A or U (T) bases, given their high frequency. RNA editing identified 500 sites in the coding regions of mt PCGs that exhibit a perfect conversion of the base C to U, a process that tends to lead to the conversion of hydrophilic amino acids into hydrophobic amino acids. From the mitogenome analysis, a total of 399 SSRs, 4 tandem repeats, and 77 dispersed repeats were found, indicating that A. membranaceus possesses fewer repeats compared to its close relatives with similarly sized mitogenomes. Selection pressure analysis indicated that most mt PCGs were purifying selection genes, while only five PCGs (ccmB, ccmFc, ccmFn, nad3, and nad9) were positive selection genes. Notably, positive selection emerged as a critical factor in the evolution of ccmB and nad9 in all the pairwise species comparisons, suggesting the extremely critical role of these genes in the evolution of A. membranaceus. Moreover, we inferred that 22 homologous fragments have been transferred from cp to mitochondria (mt), in which 5 cp-derived tRNA genes remain intact in the mitogenome. Further comparative analysis revealed that the syntenic region and mt gene organization are relatively conserved within the provided legumes. The comparison of gene content indicated that the gene composition of Fabaceae mitogenomes differed. Finally, the phylogenetic tree established from analysis is largely congruent with the taxonomic relationships of Fabaceae species and highlights the close relationship between Astragalus and Oxytropis. CONCLUSIONS We provide the first report of the assembled and annotated A. membranaceus mitogenome, which enriches the genetic resources available for the Astragalus genus and lays the foundation for comprehensive exploration of this invaluable medicinal plant.
Collapse
Affiliation(s)
- Kun Zhang
- College of Agriculture and Life Sciences, Shanxi Datong University, Datong, Shanxi, China.
- Key Laboratory of Organic Dry Farming for Special Crops in Datong City, Datong, Shanxi, China.
| | - Gaoyang Qu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yue Zhang
- College of Agriculture and Life Sciences, Shanxi Datong University, Datong, Shanxi, China
| | - Jianxia Liu
- College of Agriculture and Life Sciences, Shanxi Datong University, Datong, Shanxi, China
- Key Laboratory of Organic Dry Farming for Special Crops in Datong City, Datong, Shanxi, China
| |
Collapse
|
3
|
Cai Y, Chen H, Ni Y, Li J, Zhang J, Liu C. Repeat-mediated recombination results in Complex DNA structure of the mitochondrial genome of Trachelospermum jasminoides. BMC PLANT BIOLOGY 2024; 24:966. [PMID: 39407117 PMCID: PMC11481363 DOI: 10.1186/s12870-024-05568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Trachelospermum jasminoides has medicinal and ornamental value and is widely distributed in China. Although the chloroplast genome has been documented, the mitochondrial genome has not yet been studied. RESULTS The mitochondrial genome of T. jasminoides was assembled and functionally annotated using Illumina and nanopore reads. The mitochondrial genome comprises a master circular molecular structure of 605,764 bp and encodes 65 genes: 39 protein-coding genes, 23 transfer RNA (tRNA) genes and 3 ribosomal RNA genes. In addition to the single circular conformation, we found many alternative conformations of the T. jasminoides mitochondrial genome mediated by 42 repetitive sequences. Six repetitive sequences (DRS01-DRS06) were supported by nanopore long reads, polymerase chain reaction (PCR) amplifications, and Sanger sequencing of the PCR products. Eleven homologous fragments were identified by comparing the mitochondrial and chloroplast genome sequences, including three complete tRNA genes. Moreover, 531 edited RNA sites were identified in the protein-coding sequences based on RNA sequencing data, with nad4 having the highest number of sites (54). CONCLUSION To our knowledge, this is the first description of the mitochondrial genome of T. jasminoides. Our results demonstrate the existence of multiple conformations. These findings lay a foundation for understanding the genetics and evolutionary dynamics of Apocynaceae.
Collapse
Affiliation(s)
- Yisha Cai
- School of Medicine, Huaqiao University, Fujian, 362021, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China
| | - Haimei Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China
| | - Yang Ni
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China
| | - Jingling Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China
| | - Jinghong Zhang
- School of Medicine, Huaqiao University, Fujian, 362021, China.
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China.
| |
Collapse
|
4
|
He Y, Liu W, Wang J. Assembly and comparative analysis of the complete mitochondrial genome of Trigonella foenum-graecum L. BMC Genomics 2023; 24:756. [PMID: 38066419 PMCID: PMC10704837 DOI: 10.1186/s12864-023-09865-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Trigonella foenum-graecum L. is a Leguminosae plant, and the stems, leaves, and seeds of this plant are rich in chemical components that are of high research value. The chloroplast (cp) genome of T. foenum-graecum has been reported, but the mitochondrial (mt) genome remains unexplored. RESULTS In this study, we used second- and third-generation sequencing methods, which have the dual advantage of combining high accuracy and longer read length. The results showed that the mt genome of T. foenum-graecum was 345,604 bp in length and 45.28% in GC content. There were 59 genes, including: 33 protein-coding genes (PCGs), 21 tRNA genes, 4 rRNA genes and 1 pseudo gene. Among them, 11 genes contained introns. The mt genome codons of T. foenum-graecum had a significant A/T preference. A total of 202 dispersed repetitive sequences, 96 simple repetitive sequences (SSRs) and 19 tandem repetitive sequences were detected. Nucleotide diversity (Pi) analysis counted the variation in each gene, with atp6 being the most notable. Both synteny and phylogenetic analyses showed close genetic relationship among Trifolium pratense, Trifolium meduseum, Trifolium grandiflorum, Trifolium aureum, Medicago truncatula and T. foenum-graecum. Notably, in the phylogenetic tree, Medicago truncatula demonstrated the highest level of genetic relatedness to T. foenum-graecum, with a strong support value of 100%. The interspecies non-synonymous substitutions (Ka)/synonymous substitutions (Ks) results showed that 23 PCGs had Ka/Ks < 1, indicating that these genes would continue to evolve under purifying selection pressure. In addition, setting the similarity at 70%, 23 homologous sequences were found in the mt genome of T. foenum-graecum. CONCLUSIONS This study explores the mt genome sequence information of T. foenum-graecum and complements our knowledge of the phylogenetic diversity of Leguminosae plants.
Collapse
Affiliation(s)
- Yanfeng He
- College of Pharmacy, Qinghai Minzu University, Xining, 810007, Qinghai, China
| | - Wenya Liu
- College of Pharmacy, Qinghai Minzu University, Xining, 810007, Qinghai, China
| | - Jiuli Wang
- The College of Ecological Environment and Resources, Qinghai Minzu University, Xining, 810007, Qinghai, China.
| |
Collapse
|
5
|
Ni Y, Zhang X, Li J, Lu Q, Chen H, Ma B, Liu C. Genetic diversity of Coffea arabica L. mitochondrial genomes caused by repeat- mediated recombination and RNA editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1261012. [PMID: 37885664 PMCID: PMC10598636 DOI: 10.3389/fpls.2023.1261012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
Background Coffea arabica L. is one of the most important crops widely cultivated in 70 countries across Asia, Africa, and Latin America. Mitochondria are essential organelles that play critical roles in cellular respiration, metabolism, and differentiation. C. arabica's nuclear and chloroplast genomes have been reported. However, its mitochondrial genome remained unreported. Here, we intended to sequence and characterize its mitochondrial genome to maximize the potential of its genomes for evolutionary studies, molecular breeding, and molecular marker developments. Results We sequenced the total DNA of C. arabica using Illumina and Nanopore platforms. We then assembled the mitochondrial genome with a hybrid strategy using Unicycler software. We found that the mitochondrial genome comprised two circular chromosomes with lengths of 867,678 bp and 153,529 bp, encoding 40 protein-coding genes, 26 tRNA genes, and three rRNA genes. We also detected 270 Simple Sequence Repeats and 34 tandem repeats in the mitochondrial genome. We found 515 high-scoring sequence pairs (HSPs) for a self-to-self similarity comparison using BLASTn. Three HSPs were found to mediate recombination by the mapping of long reads. Furthermore, we predicted 472 using deep-mt with the convolutional neural network model. Then we randomly validated 90 RNA editing events by PCR amplification and Sanger sequencing, with the majority being non-synonymous substitutions and only three being synonymous substitutions. These findings provide valuable insights into the genetic characteristics of the C. arabica mitochondrial genome, which can be helpful for future study on coffee breeding and mitochondrial genome evolution. Conclusion Our study sheds new light on the evolution of C. arabica organelle genomes and their potential use in genetic breeding, providing valuable data for developing molecular markers that can improve crop productivity and quality. Furthermore, the discovery of RNA editing events in the mitochondrial genome of C. arabica offers insights into the regulation of gene expression in this species, contributing to a better understanding of coffee genetics and evolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chang Liu
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Morales DR, Rennie S, Uchida S. Benchmarking RNA Editing Detection Tools. BIOTECH 2023; 12:56. [PMID: 37754200 PMCID: PMC10527054 DOI: 10.3390/biotech12030056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
RNA, like DNA and proteins, can undergo modifications. To date, over 170 RNA modifications have been identified, leading to the emergence of a new research area known as epitranscriptomics. RNA editing is the most frequent RNA modification in mammalian transcriptomes, and two types have been identified: (1) the most frequent, adenosine to inosine (A-to-I); and (2) the less frequent, cysteine to uracil (C-to-U) RNA editing. Unlike other epitranscriptomic marks, RNA editing can be readily detected from RNA sequencing (RNA-seq) data without any chemical conversions of RNA before sequencing library preparation. Furthermore, analyzing RNA editing patterns from transcriptomic data provides an additional layer of information about the epitranscriptome. As the significance of epitranscriptomics, particularly RNA editing, gains recognition in various fields of biology and medicine, there is a growing interest in detecting RNA editing sites (RES) by analyzing RNA-seq data. To cope with this increased interest, several bioinformatic tools are available. However, each tool has its advantages and disadvantages, which makes the choice of the most appropriate tool for bench scientists and clinicians difficult. Here, we have benchmarked bioinformatic tools to detect RES from RNA-seq data. We provide a comprehensive view of each tool and its performance using previously published RNA-seq data to suggest recommendations on the most appropriate for utilization in future studies.
Collapse
Affiliation(s)
| | - Sarah Rennie
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark;
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark
| |
Collapse
|
7
|
Jiang M, Ni Y, Li J, Liu C. Characterisation of the complete mitochondrial genome of Taraxacum mongolicum revealed five repeat-mediated recombinations. PLANT CELL REPORTS 2023; 42:775-789. [PMID: 36774424 DOI: 10.1007/s00299-023-02994-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
We reported the mitochondrial genome of Taraxacum mongolicum for the first time. Five pairs of repeats that can mediate recombination were validated, leading to multiple conformations of genome. Taraxacum mongolicum belongs to the Asteraceae family and has important pharmaceutical value. To explore the possible interaction between the organelle genomes, we assembled the complete mitochondrial genome (mitogenome) of T. mongolicum using Illumina and Oxford Nanopore sequencing data. This genome corresponded to a circular molecule 304,467 bp long. It encodes 52 unique genes including 31 protein-coding, 3 ribosomal RNA (rRNA) and 18 transfer RNA (tRNA) genes. In addition to the single circular conformation, the existence of alternative conformations mediated by five repetitive sequences in the mitogenome was identified and validated. Recombination mediated by the inverted repeats resulted in two conformations. Conversely, recombination mediated by the two direct repeats broke one large circular molecule into two subgenomic circular molecules. Furthermore, we identified 12 homologous fragments by comparing the sequences of mitogenome and plastome, including eight complete tRNA genes. Lastly, we identified a total of 278 RNA-editing sites in protein-coding sequences based on RNA-seq data. Among them, cox1 and nad5 gene has the most sites (21), followed by the nad2 gene with 19 sites. We successfully validated 213 predicted RNA-editing sites using PCR amplification and Sanger sequencing. This project reported the first mitogenome of T. mongolicum and demonstrated its multiple conformations generated by repeat-mediated recombination. This genome could provide critical information for the molecular breeding of T. mongolicum, and also be used as a reference genome for other species of the genus Taraxacum.
Collapse
Affiliation(s)
- Mei Jiang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Yang Ni
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Jingling Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Chang Liu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
8
|
De Novo Hybrid Assembly of the Salvia miltiorrhiza Mitochondrial Genome Provides the First Evidence of the Multi-Chromosomal Mitochondrial DNA Structure of Salvia Species. Int J Mol Sci 2022; 23:ijms232214267. [PMID: 36430747 PMCID: PMC9694629 DOI: 10.3390/ijms232214267] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Salvia miltiorrhiza has been an economically important medicinal plant. Previously, an S. miltiorrhiza mitochondrial genome (mitogenome) assembled from Illumina short reads, appearing to be a single circular molecule, has been published. Based on the recent reports on the plant mitogenome structure, we suspected that this conformation does not accurately represent the complexity of the S. miltiorrhiza mitogenome. In the current study, we assembled the mitogenome of S. miltiorrhiza using the PacBio and Illumina sequencing technologies. The primary structure of the mitogenome contained two mitochondrial chromosomes (MC1 and MC2), which corresponded to two major conformations, namely, Mac1 and Mac2, respectively. Using two approaches, including (1) long reads mapping and (2) polymerase chain reaction amplification followed by Sanger sequencing, we observed nine repeats that can mediate recombination. We predicted 55 genes, including 33 mitochondrial protein-coding genes (PCGs), 3 rRNA genes, and 19 tRNA genes. Repeat analysis identified 112 microsatellite repeats and 3 long-tandem repeats. Phylogenetic analysis using the 26 shared PCGs resulted in a tree that was congruent with the phylogeny of Lamiales species in the APG IV system. The analysis of mitochondrial plastid DNA (MTPT) identified 16 MTPTs in the mitogenome. Moreover, the analysis of nucleotide substitution rates in Lamiales showed that the genes atp4, ccmB, ccmFc, and mttB might have been positively selected. The results lay the foundation for future studies on the evolution of the Salvia mitogenome and the molecular breeding of S. miltiorrhiza.
Collapse
|
9
|
Zhang M, Li Z, Wang Z, Xiao Y, Bao L, Wang M, An C, Gao Y. Exploring the RNA Editing Events and Their Potential Regulatory Roles in Tea Plant ( Camellia sinensis L.). Int J Mol Sci 2022; 23:13640. [PMID: 36362430 PMCID: PMC9654872 DOI: 10.3390/ijms232113640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 04/11/2024] Open
Abstract
RNA editing is a post-transcriptional modification process that alters the RNA sequence relative to the genomic blueprint. In plant organelles (namely, mitochondria and chloroplasts), the most common type is C-to-U, and the absence of C-to-U RNA editing results in abnormal plant development, such as etiolation and albino leaves, aborted embryonic development and retarded seedling growth. Here, through PREP, RES-Scanner, PCR and RT-PCR analyses, 38 and 139 RNA editing sites were identified from the chloroplast and mitochondrial genomes of Camellia sinensis, respectively. Analysis of the base preference around the RNA editing sites showed that in the -1 position of the edited C had more frequent occurrences of T whereas rare occurrences of G. Three conserved motifs were identified at 25 bases upstream of the RNA editing site. Structural analyses indicated that the RNA secondary structure of 32 genes, protein secondary structure of 37 genes and the three-dimensional structure of 5 proteins were altered due to RNA editing. The editing level analysis of matK and ndhD in six tea cultivars indicated that matK-701 might be involved in the color change of tea leaves. Furthermore, 218 PLS-CsPPR proteins were predicted to interact with the identified RNA editing sites. In conclusion, this study provides comprehensive insight into RNA editing events, which will facilitate further study of the RNA editing phenomenon of the tea plant.
Collapse
Affiliation(s)
- Mengyuan Zhang
- College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zhuo Li
- College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zijian Wang
- College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yao Xiao
- College of Language and Culture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Lu Bao
- College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Chuanjing An
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuefang Gao
- College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
10
|
Wang Y, Yu J, Chen YK, Wang ZC. Complete Chloroplast Genome Sequence of the Endemic and Endangered Plant Dendropanax oligodontus: Genome Structure, Comparative and Phylogenetic Analysis. Genes (Basel) 2022; 13:2028. [PMID: 36360265 PMCID: PMC9690231 DOI: 10.3390/genes13112028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2023] Open
Abstract
Dendropanax oligodontus, which belongs to the family Araliaceae, is an endemic and endangered species of Hainan Island, China. It has potential economic and medicinal value owing to the presence of phenylpropanoids, flavonoids, triterpenoids, etc. The analysis of the structure and characteristics of the D. oligodontus chloroplast genome (cpDNA) is crucial for understanding the genetic and phylogenetic evolution of this species. In this study, the cpDNA of D. oligodontus was sequenced for the first time using next-generation sequencing methods, assembled, and annotated. We observed a circular quadripartite structure comprising a large single-copy region (86,440 bp), a small single-copy region (18,075 bp), and a pair of inverted repeat regions (25,944 bp). The total length of the cpDNA was 156,403 bp, and the GC% was 37.99%. We found that the D. oligodontus chloroplast genome comprised 131 genes, with 86 protein-coding genes, 8 rRNA genes, and 37 tRNAs. Furthermore, we identified 26,514 codons, 13 repetitive sequences, and 43 simple sequence repeat sites in the D. oligodontus cpDNA. The most common amino acid encoded was leucine, with a strong A/T preference at the third position of the codon. The prediction of RNA editing sites in the protein-coding genes indicated that RNA editing was observed in 19 genes with a total of 54 editing sites, all of which involved C-to-T transitions. Finally, the cpDNA of 11 species of the family Araliaceae were selected for comparative analysis. The sequences of the untranslated regions and coding regions among 11 species were highly conserved, and minor differences were observed in the length of the inverted repeat regions; therefore, the cpDNAs were relatively stable and consistent among these 11 species. The variable hotspots in the genome included clpP, ycf1, rnK-rps16, rps16-trnQ, atpH-atpI, trnE-trnT, psbM-trnD, ycf3-trnS, and rpl32-trnL, providing valuable molecular markers for species authentication and regions for inferring phylogenetic relationships among them, as well as for evolutionary studies. Evolutionary selection pressure analysis indicated that the atpF gene was strongly subjected to positive environmental selection. Phylogenetic analysis indicated that D. oligodontus and Dendropanax dentiger were the most closely related species within the genus, and D. oligodontus was closely related to the genera Kalopanax and Metapanax in the Araliaceae family. Overall, the cp genomes reported in this study will provide resources for studying the genetic diversity and conservation of the endangered plant D. oligodontus, as well as resolving phylogenetic relationships within the family.
Collapse
Affiliation(s)
- Yong Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Jing Yu
- Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China
| | - Yu-Kai Chen
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Zhu-Cheng Wang
- College of Life Sciences, Cangzhou Normal University, Cangzhou 061001, China
| |
Collapse
|
11
|
Yang Z, Ni Y, Lin Z, Yang L, Chen G, Nijiati N, Hu Y, Chen X. De novo assembly of the complete mitochondrial genome of sweet potato (Ipomoea batatas [L.] Lam) revealed the existence of homologous conformations generated by the repeat-mediated recombination. BMC PLANT BIOLOGY 2022; 22:285. [PMID: 35681138 PMCID: PMC9185937 DOI: 10.1186/s12870-022-03665-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/30/2022] [Indexed: 05/27/2023]
Abstract
Sweet potato (Ipomoea batatas [L.] Lam) is an important food crop, an excellent fodder crop, and a new type of industrial raw material crop. The lack of genomic resources could affect the process of industrialization of sweet potato. Few detailed reports have been completed on the mitochondrial genome of sweet potato. In this research, we sequenced and assembled the mitochondrial genome of sweet potato and investigated its substructure. The mitochondrial genome of sweet potato is 270,304 bp with 23 unique core genes and 12 variable genes. We detected 279 pairs of repeat sequences and found that three pairs of direct repeats could mediate the homologous recombination into four independent circular molecules. We identified 70 SSRs in the whole mitochondrial genome of sweet potato. The longest dispersed repeat in mitochondrial genome was a palindromic repeat with a length of 915 bp. The homologous fragments between the chloroplast and mitochondrial genome account for 7.35% of the mitochondrial genome. We also predicted 597 RNA editing sites and found that the rps3 gene was edited 54 times, which occurred most frequently. This study further demonstrates the existence of multiple conformations in sweet potato mitochondrial genomes and provides a theoretical basis for the evolution of higher plants and cytoplasmic male sterility breeding.
Collapse
Affiliation(s)
- Zhijian Yang
- Key Laboratory of Crop Biotechnology, Fujian Agriculture and Forestry University, Fujian Province Universities, Fuzhou, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Ni
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zebin Lin
- Key Laboratory of Crop Biotechnology, Fujian Agriculture and Forestry University, Fujian Province Universities, Fuzhou, China
| | - Liubin Yang
- Key Laboratory of Crop Biotechnology, Fujian Agriculture and Forestry University, Fujian Province Universities, Fuzhou, China
| | - Guotai Chen
- Key Laboratory of Crop Biotechnology, Fujian Agriculture and Forestry University, Fujian Province Universities, Fuzhou, China
| | - Nuerla Nijiati
- Key Laboratory of Crop Biotechnology, Fujian Agriculture and Forestry University, Fujian Province Universities, Fuzhou, China
| | - Yunzhuo Hu
- Key Laboratory of Crop Biotechnology, Fujian Agriculture and Forestry University, Fujian Province Universities, Fuzhou, China
| | - Xuanyang Chen
- Key Laboratory of Crop Biotechnology, Fujian Agriculture and Forestry University, Fujian Province Universities, Fuzhou, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fuzhou, Fujian China
| |
Collapse
|
12
|
Genome-wide investigation and functional analysis of RNA editing sites in wheat. PLoS One 2022; 17:e0265270. [PMID: 35275970 PMCID: PMC8916659 DOI: 10.1371/journal.pone.0265270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Wheat is an important cereal and half of the world population consumed it. Wheat faces environmental stresses and different techniques (CRISPR, gene silencing, GWAS, etc.) were used to enhance its production but RNA editing (RESs) is not fully explored in wheat. RNA editing has a special role in controlling environmental stresses. The genome-wide identification and functional characterization of RESs in different types of wheat genotypes was done. We employed six wheat genotypes by RNA-seq analyses to achieve RESs. The findings revealed that RNA editing events occurred on all chromosomes equally. RNA editing sites were distributed randomly and 10–12 types of RESs were detected in wheat genotypes. Higher number of RESs were detected in drought-tolerant genotypes. A-to-I RNA editing (2952, 2977, 1916, 2576, 3422, and 3459) sites were also identified in six wheat genotypes. Most of the genes were found to be engaged in molecular processes after a Gene Ontology analysis. PPR (pentatricopeptide repeat), OZ1 (organelle zinc-finger), and MORF/RIP gene expression levels in wheat were also examined. Normal growth conditions diverge gene expression of these three different gene families, implying that normal growth conditions for various genotypes can modify RNA editing events and have an impact on gene expression levels. While the expression of PPR genes was not change. We used Variant Effect Predictor (VEP) to annotate RNA editing sites, and Local White had the highest RESs in the CDS region of the protein. These findings will be useful for prediction of RESs in other crops and will be helpful in drought tolerance development in wheat.
Collapse
|
13
|
Szandar K, Krawczyk K, Myszczyński K, Ślipiko M, Sawicki J, Szczecińska M. Breaking the limits - multichromosomal structure of an early eudicot Pulsatilla patens mitogenome reveals extensive RNA-editing, longest repeats and chloroplast derived regions among sequenced land plant mitogenomes. BMC PLANT BIOLOGY 2022; 22:109. [PMID: 35264098 PMCID: PMC8905907 DOI: 10.1186/s12870-022-03492-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The mitogenomes of vascular plants are one of the most structurally diverse molecules. In the present study we characterize mitogenomes of a rare and endangered species Pulsatilla patens. We investigated the gene content and its RNA editing potential, repeats distribution and plastid derived sequences. RESULTS The mitogenome structure of early divergent eudicot, endangered Pulsatilla patens does not support the master chromosome hypothesis, revealing the presence of three linear chromosomes of total length 986 613 bp. The molecules are shaped by the presence of extremely long, exceeding 87 kbp repeats and multiple chloroplast-derived regions including nearly complete inverted repeat. Since the plastid IR content of Ranunculales is very characteristic, the incorporation into mitogenome could be explained rather by intracellular transfer than mitochondrial HGT. The mitogenome contains almost a complete set of genes known from other vascular plants with exception of rps10 and sdh3, the latter being present but pseudogenized. Analysis of long ORFs enabled the identification of genes which are rarely present in plant mitogenomes, including RNA and DNA polymerases, albeit their presence even at species level is variable. Mitochondrial transcripts of P. patens were edited with a high frequency, which exceeded the level known in other analyzed angiosperms, despite the strict qualification criteria of counting the editing events and taking into analysis generally less frequently edited leaf transcriptome. The total number of edited sites was 902 and nad4 was identified as the most heavily edited gene with 65 C to U changes. Non-canonical, reverse U to C editing was not detected. Comparative analysis of mitochondrial genes of three Pulsatilla species revealed a level of variation comparable to chloroplast CDS dataset and much higher infrageneric differentiation than in other known angiosperm genera. The variation found in CDS of mitochondrial genes is comparable to values found among Pulsatilla plastomes. Despite the complicated mitogenome structure, 14 single copy regions of 329 kbp, not splitted by repeats or plastid-derived sequences (MTPT), revealed the potential for phylogenetic, phylogeographic and population genetics studies by revealing intra- and interspecific collinearity. CONCLUSIONS This study provides valuable new information about mitochondrial genome of early divergent eudicots, Pulsatilla patens, revealed multi-chromosomal structure and shed new light on mitogenomics of early eudicots.
Collapse
Affiliation(s)
- Kamil Szandar
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727, Olsztyn, Poland.
| | - Katarzyna Krawczyk
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727, Olsztyn, Poland.
| | - Kamil Myszczyński
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland.
| | - Monika Ślipiko
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727, Olsztyn, Poland.
| | - Jakub Sawicki
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727, Olsztyn, Poland.
| | - Monika Szczecińska
- Department of Ecology and Environmental Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10- 727, Olsztyn, Poland.
| |
Collapse
|
14
|
Fang B, Li J, Zhao Q, Liang Y, Yu J. Assembly of the Complete Mitochondrial Genome of Chinese Plum ( Prunus salicina): Characterization of Genome Recombination and RNA Editing Sites. Genes (Basel) 2021; 12:genes12121970. [PMID: 34946920 PMCID: PMC8701122 DOI: 10.3390/genes12121970] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
Despite the significant progress that has been made in the genome sequencing of Prunus, this area of research has been lacking a systematic description of the mitochondrial genome of this genus for a long time. In this study, we assembled the mitochondrial genome of the Chinese plum (Prunus salicina) using Illumina and Oxford Nanopore sequencing data. The mitochondrial genome size of P. salicina was found to be 508,035 base pair (bp), which is the largest reported in the Rosaceae family to date, and P. salicina was shown to be 63,453 bp longer than sweet cherry (P. avium). The P. salicina mitochondrial genome contained 37 protein-coding genes (PCGs), 3 ribosomal RNA (rRNA) genes, and 16 transfer RNA (tRNA) genes. Two plastid-derived tRNA were identified. We also found two short repeats that captured the nad3 and nad6 genes and resulted in two copies. In addition, nine pairs of repeat sequences were identified as being involved in the mediation of genome recombination. This is crucial for the formation of subgenomic configurations. To characterize RNA editing sites, transcriptome data were used, and we identified 480 RNA editing sites in protein-coding sequences. Among them, the initiation codon of the nad1 gene confirmed that an RNA editing event occurred, and the genomic encoded ACG was edited as AUG in the transcript. Combined with previous reports on the chloroplast genome, our data complemented our understanding of the last part of the organelle genome of plum, which will facilitate our understanding of the evolution of organelle genomes.
Collapse
Affiliation(s)
- Bo Fang
- Fruit Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (B.F.); (Q.Z.)
| | - Jingling Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China;
- Key Laboratory of Horticulture Science for Southern Mountainous Regions from Ministry of Education, Chongqing 400716, China
| | - Qian Zhao
- Fruit Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (B.F.); (Q.Z.)
| | - Yuping Liang
- College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China;
| | - Jie Yu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China;
- Key Laboratory of Horticulture Science for Southern Mountainous Regions from Ministry of Education, Chongqing 400716, China
- Correspondence:
| |
Collapse
|
15
|
Genome-Wide Identification of U-To-C RNA Editing Events for Nuclear Genes in Arabidopsis thaliana. Cells 2021; 10:cells10030635. [PMID: 33809209 PMCID: PMC8001311 DOI: 10.3390/cells10030635] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 01/04/2023] Open
Abstract
Cytosine-to-Uridine (C-to-U) RNA editing involves the deamination phenomenon, which is observed in animal nucleus and plant organelles; however, it has been considered the U-to-C is confined to the organelles of limited non-angiosperm plant species. Although previous RNA-seq-based analysis implied U-to-C RNA editing events in plant nuclear genes, it has not been broadly accepted due to inadequate confirmatory analyses. Here we examined the U-to-C RNA editing in Arabidopsis tissues at different developmental stages of growth. In this study, the high-throughput RNA sequencing (RNA-seq) of 12-day-old and 20-day-old Arabidopsis seedlings was performed, which enabled transcriptome-wide identification of RNA editing sites to analyze differentially expressed genes (DEGs) and nucleotide base conversions. The results showed that DEGs were expressed to higher levels in 12-day-old seedlings than in 20-day-old seedlings. Additionally, pentatricopeptide repeat (PPR) genes were also expressed at higher levels, as indicated by the log2FC values. RNA-seq analysis of 12-day- and 20-day-old Arabidopsis seedlings revealed candidates of U-to-C RNA editing events. Sanger sequencing of both DNA and cDNA for all candidate nucleotide conversions confirmed the seven U-to-C RNA editing sites. This work clearly demonstrated presence of U-to-C RNA editing for nuclear genes in Arabidopsis, which provides the basis to study the mechanism as well as the functions of the unique post-transcriptional modification.
Collapse
|
16
|
Dey A. CRISPR/Cas genome editing to optimize pharmacologically active plant natural products. Pharmacol Res 2020; 164:105359. [PMID: 33285226 DOI: 10.1016/j.phrs.2020.105359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/15/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022]
Abstract
Since time immemorial, human use medicinal plants as sources of food, therapy and industrial purpose. Classical biotechnology and recent next-generation sequencing (NGS) techniques have been successfully used to optimize plant-derived natural-products of biomedical significance. Earlier, protein based editing tools viz. zinc-finger nucleases (ZFNs) and transcription activator-like endonucleases (TALENs) have been popularized for transcriptional level genome manipulation. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated9 (Cas9) endonuclease system is an efficient, robust and selective site-directed mutagenesis strategy for RNA-guided genome-editing. CRISPR/Cas9 genome-editing tool employs designed guide-RNAs that identifies a 3 base-pair protospacer adjacent motif (PAM) sequence occurring downstream of the target-DNA. The present review comprehensively complies the recent literature (2010-2020) retrieved from scientific-databases on the application of CRISPR/Cas9-editing-tools as potent genome-editing strategies in medicinal-plants discussing the recent developments, challenges and future-perspectives with notes on broader applicability of the technique in plants and lower-organisms. In plants, CRISPR/Cas-editing has been implemented successfully in relation to crop-yield and stress-tolerance. However, very few medicinal plants have been edited using CRISPR/Cas genome tool owing to the lack of whole-genome and mRNA-sequences and shortfall of suitable transformation and regeneration strategies. However, recently a number of plant secondary metabolic-pathways (viz. alkaloid, terpenoid, flavonoids, phenolic, saponin etc.) have been engineered employing CRISPR/Cas-editing via knock-out, knock-in, point-mutation, fine-tuning of gene-expression and targeted-mutagenesis. This genome-editing tool further extends its applicability incorporating the tools of synthetic- and systems-biology, functional-genomics and NGS to produce genetically-engineered medicinal-crops with advanced-traits facilitating the production of pharmaceuticals and nutraceuticals.
Collapse
Affiliation(s)
- Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India.
| |
Collapse
|
17
|
Shi L, Chen H, Jiang M, Wang L, Wu X, Huang L, Liu C. CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Res 2020; 47:W65-W73. [PMID: 31066451 PMCID: PMC6602467 DOI: 10.1093/nar/gkz345] [Citation(s) in RCA: 699] [Impact Index Per Article: 139.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022] Open
Abstract
We previously developed a web server CPGAVAS for annotation, visualization and GenBank submission of plastome sequences. Here, we upgrade the server into CPGAVAS2 to address the following challenges: (i) inaccurate annotation in the reference sequence likely causing the propagation of errors; (ii) difficulty in the annotation of small exons of genes petB, petD and rps16 and trans-splicing gene rps12; (iii) lack of annotation for other genome features and their visualization, such as repeat elements; and (iv) lack of modules for diversity analysis of plastomes. In particular, CPGAVAS2 provides two reference datasets for plastome annotation. The first dataset contains 43 plastomes whose annotation have been validated or corrected by RNA-seq data. The second one contains 2544 plastomes curated with sequence alignment. Two new algorithms are also implemented to correctly annotate small exons and trans-splicing genes. Tandem and dispersed repeats are identified, whose results are displayed on a circular map together with the annotated genes. DNA-seq and RNA-seq data can be uploaded for identification of single-nucleotide polymorphism sites and RNA-editing sites. The results of two case studies show that CPGAVAS2 annotates better than several other servers. CPGAVAS2 will likely become an indispensible tool for plastome research and can be accessed from http://www.herbalgenomics.org/cpgavas2.
Collapse
Affiliation(s)
- Linchun Shi
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, P.R. China
| | - Haimei Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, P.R. China
| | - Mei Jiang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, P.R. China
| | - Liqiang Wang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, P.R. China
| | - Xi Wu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, P.R. China
| | - Linfang Huang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, P.R. China
| | - Chang Liu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, P.R. China
| |
Collapse
|
18
|
Lo Giudice C, Tangaro MA, Pesole G, Picardi E. Investigating RNA editing in deep transcriptome datasets with REDItools and REDIportal. Nat Protoc 2020; 15:1098-1131. [PMID: 31996844 DOI: 10.1038/s41596-019-0279-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
RNA editing is a widespread post-transcriptional mechanism able to modify transcripts through insertions/deletions or base substitutions. It is prominent in mammals, in which millions of adenosines are deaminated to inosines by members of the ADAR family of enzymes. A-to-I RNA editing has a plethora of biological functions, but its detection in large-scale transcriptome datasets is still an unsolved computational task. To this aim, we developed REDItools, the first software package devoted to the RNA editing profiling in RNA-sequencing (RNAseq) data. It has been successfully used in human transcriptomes, proving the tissue and cell type specificity of RNA editing as well as its pervasive nature. Outcomes from large-scale REDItools analyses on human RNAseq data have been collected in our specialized REDIportal database, containing more than 4.5 million events. Here we describe in detail two bioinformatic procedures based on our computational resources, REDItools and REDIportal. In the first procedure, we outline a workflow to detect RNA editing in the human cell line NA12878, for which transcriptome and whole genome data are available. In the second procedure, we show how to identify dysregulated editing at specific recoding sites in post-mortem brain samples of Huntington disease donors. On a 64-bit computer running Linux with ≥32 GB of random-access memory (RAM), both procedures should take ~76 h, using 4 to 24 cores. Our protocols have been designed to investigate RNA editing in different organisms with available transcriptomic and/or genomic reads. Scripts to complete both procedures and a docker image are available at https://github.com/BioinfoUNIBA/REDItools.
Collapse
Affiliation(s)
- Claudio Lo Giudice
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Marco Antonio Tangaro
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy.,National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - Ernesto Picardi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy. .,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy. .,National Institute of Biostructures and Biosystems (INBB), Rome, Italy.
| |
Collapse
|
19
|
Azad MTA, Qulsum U, Tsukahara T. Comparative Activity of Adenosine Deaminase Acting on RNA (ADARs) Isoforms for Correction of Genetic Code in Gene Therapy. Curr Gene Ther 2019; 19:31-39. [DOI: 10.2174/1566523218666181114122116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/26/2022]
Abstract
Introduction:
Members of the adenosine deaminase acting on RNA (ADAR) family of enzymes
consist of double-stranded RNA-binding domains (dsRBDs) and a deaminase domain (DD)
that converts adenosine (A) into inosine (I), which acts as guanosine (G) during translation. Using the
MS2 system, we engineered the DD of ADAR1 to direct it to a specific target. The aim of this work
was to compare the deaminase activities of ADAR1-DD and various isoforms of ADAR2-DD.
Materials and Methods:
We measured the binding affinity of the artificial enzyme system on a Biacore
™ X100. ADARs usually target dsRNA, so we designed a guide RNA complementary to the target
RNA, and then fused the guide sequence to the MS2 stem-loop. A mutated amber (TAG) stop
codon at 58 amino acid (TGG) of EGFP was targeted. After transfection of these three factors into
HEK 293 cells, we observed fluorescence signals of various intensities.
Results:
ADAR2-long without the Alu-cassette yielded a much higher fluorescence signal than
ADAR2-long with the Alu-cassette. With another isoform, ADAR2-short, which is 81 bp shorter at
the C-terminus, the fluorescence signal was undetectable. A single amino acid substitution of
ADAR2-long-DD (E488Q) rendered the enzyme more active than the wild type. The results of fluorescence
microscopy suggested that ADAR1-DD is more active than ADAR2-long-DD. Western blots
and sequencing confirmed that ADAR1-DD was more active than any other DD.
Conclusion:
This study provides information that should facilitate the rational use of ADAR variants
for genetic restoration and treatment of genetic diseases.
Collapse
Affiliation(s)
- Md. Thoufic A. Azad
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923- 1292, Japan
| | - Umme Qulsum
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923- 1292, Japan
| | - Toshifumi Tsukahara
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923- 1292, Japan
| |
Collapse
|