1
|
Yu C, Xu Y. Development and validation of a nomogram for predicting severe adenovirus pneumonia in children. Front Pediatr 2025; 13:1428090. [PMID: 40309168 PMCID: PMC12040940 DOI: 10.3389/fped.2025.1428090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
Background Adenovirus is a common respiratory pathogen in children. Severe adenovirus pneumonia(SAP) can cause serious complications in children. In this study, The nomogram we developed quantifies the severity of adenoviral pneumonia into percentage risk in a scientific, simple, intuitive, and effective manner, showing unique advantages compared to current empirical assessments and chart evaluations. Methods 228 children with adenoviral pneumonia admitted to the Respiratory Department of Tianjin Children's Hospital from January 2020 to January 2024 were collected. According to the clinical manifestations, the patients were divided into SAP (SAP) group and general adenoviral pneumonia (GAP) group. The clinical manifestations, laboratory indexes and some imaging data of the two groups were observed. Univariate and multivariate logical regression were used to select the variables of SAP. Select the prediction factor, construct the prediction model, and express the prediction factor with nomogram. Calibration curve, ROC curve and clinical decision curve were used to evaluate the performance and clinical practicability of the prediction model. Results The time of fever and complications in SAP group were longer than those in GAP group. The data of diagnosis and prediction of adenoviral pneumonia and clinical significance were included in logical regression. Univariate logical regression was performed first, followed by multivariate logical regression, atelectasis (OR = 2.757; 95%CI, 1.454-5.34), FER (OR = 2.232; 95%CI, 1.442-3.536), IL-6 (OR = 2.001; 95%CI, 1.368-3.009), LDH (OR = 2.860; 95%CI, 1.839-4.680) were independent significant predictors of SAP. The probability of prediction is consistent with that of observation in the training queue (0.819) and the verification queue (0.317). The area under the ROC curve of the model group and verification group was 0.873 (95%CI: 0.82-0.926) and 0.738 (95%CI: 0.620-0.856), respectively. The clinical decision curve indicated that the prediction model had high clinical practicability. Conclusion Atelectasis, LDH and IL-6 are predictive factors of SAP. The construction of clinical predictive model nomogram plays a key role in simple and efficient judgment of the occurrence and development of SAP, and has value in guiding clinical treatment.
Collapse
Affiliation(s)
| | - Yongsheng Xu
- Department of Pediatric Respiratory Medicine, Tianjin Children's Hospital (Children's Hospital, Tianjin University), Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| |
Collapse
|
2
|
Schanne G, Demignot S, Policar C, Delsuc N. Cellular evaluation of superoxide dismutase mimics as catalytic drugs: Challenges and opportunities. Coord Chem Rev 2024; 514:215906. [DOI: 10.1016/j.ccr.2024.215906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Saghari Y, Movahedi M, Tebianian M, Entezari M. The Neuroprotective Effects of Curcumin Nanoparticles on The Cerebral Ischemia-Reperfusion Injury in The Rats-The Roles of The Protein Kinase RNA-Like ER Kinase/Extracellular Signal-Regulated Kinase and Transcription Factor EB proteins. CELL JOURNAL 2024; 26:62-69. [PMID: 38351730 PMCID: PMC10864777 DOI: 10.22074/cellj.2023.1995696.1257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/31/2023] [Accepted: 11/11/2023] [Indexed: 02/18/2024]
Abstract
OBJECTIVE Reduction of cerebral ischemia-reperfusion injury (IRI)/re-oxygenation injury, is defined as the paradoxical exacerbation of the cellular dysfunction and death, following restoration of the blood flow to previously ischemic tissues. The re-establishment of blood flow is essential to salvage the ischemic tissues. As a result, the treatment of IRI with novel therapies, which have fewer side effects, are of great importance. Therefore, this study aimed to investigate the effects of curcumin nanoparticle (CN) pre-treatment on the cerebral I/R rat model. MATERIALS AND METHODS In this experimental study, CN was administered to rats orally five days before the bilateral common carotid artery occlusion (BCCAO) and continued for three days. The intensity of oxidative stress, the activities of antioxidant enzymes, glutathione (GSH) content, the activity of mitochondrial enzymes, including succinate dehydrogenase (SDH), malate dehydrogenase (MDH) and lactate dehydrogenase (LDH), curcumin bioavailability, pERK/ERK expression ratio and TFEB protein were studied. Data analysis was performed using Graphpad Prism V.8 software, one-way analysis of variance (ANOVA) with the statistical package for the social sciences (SPSS V.26 software). RESULTS Cerebral IRI-damage significantly increased the oxidative stress (P=0.0008) and decreased the activity of the antioxidant enzymes including catalase (CAT) (P<0.001), super oxide dismutase (SOD) (P<0.001), reduced GSH (P<0.001), mitochondrial enzymes, pERK/ERK expression ratio (P=0.002) and TEFB protein (P=0.005) in rats' brains. In addition, the pre-treatment of the rats with CN resulted in a decrease in the reactive oxygen species (ROS), and an increase in the activities of antioxidants and mitochondrial enzymes. This in turn up-regulated the pERK/ERK expression ratio and TEFB expression. CONCLUSION CN has neuroprotective effects on the cerebral IRI condition due to its antioxidant properties and is able to overexpress the pERK and TFEB proteins; thus, it can be considered as a suitable treatment option during and after the incidence of stroke.
Collapse
Affiliation(s)
- Yalda Saghari
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Monireh Movahedi
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Tebianian
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Karaj, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Protection against Lipopolysaccharide-Induced Endotoxemia by Terrein Is Mediated by Blocking Interleukin-1β and Interleukin-6 Production. Pharmaceuticals (Basel) 2022; 15:ph15111429. [PMID: 36422559 PMCID: PMC9693353 DOI: 10.3390/ph15111429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Terrein is a fungal metabolite and has been known to exert anti-melanogenesis, anti-cancer, and anti-bacterial activities. However, its role in endotoxemia has never been investigated until now. In the present study, we examined the effect of terrein on lipopolysaccharide (LPS)-induced endotoxemia in mice and characterized the potential mechanisms of action. Treatment with terrein increased the survival of mice and decreased the production of inflammatory cytokines, including interleukin-1β (IL-1β) and interleukin-6 (IL-6) in an LPS-induced endotoxemia model. In addition, terrein suppressed the LPS-induced production of IL-1β and IL-6 in RAW 264.7 cells, a murine macrophage-like cell line, and the mRNA expression of IL-1β and IL-6 was also inhibited by terrein in LPS-stimulated RAW 264.7 cells. Further study demonstrated that terrein blocked LPS-induced phosphorylation of p65 subunit of nuclear factor (NF)/κB and the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) was also suppressed by terrein treatment. Collectively, these results suggest that terrein exerts a protective effect again LPS-induced endotoxemia in mice by blocking the production of inflammatory cytokines. Our results also suggest that the anti-inflammatory effect of terrein might be mediated, at least in part, by blocking the activation of NF-κB, JNK, and p38 MAPK signaling pathways.
Collapse
|
5
|
Magkrioti C, Antonopoulou G, Fanidis D, Pliaka V, Sakellaropoulos T, Alexopoulos LG, Ullmer C, Aidinis V. Lysophosphatidic Acid Is a Proinflammatory Stimulus of Renal Tubular Epithelial Cells. Int J Mol Sci 2022; 23:ijms23137452. [PMID: 35806457 PMCID: PMC9267536 DOI: 10.3390/ijms23137452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic kidney disease (CKD) refers to a spectrum of diseases defined by renal fibrosis, permanent alterations in kidney structure, and low glomerular-filtration rate. Prolonged epithelial-tubular damage involves a series of changes that eventually lead to CKD, highlighting the importance of tubular epithelial cells in this process. Lysophosphatidic acid (LPA) is a bioactive lipid that signals mainly through its six cognate LPA receptors and is implicated in several chronic inflammatory pathological conditions. In this report, we have stimulated human proximal tubular epithelial cells (HKC-8) with LPA and 175 other possibly pathological stimuli, and simultaneously detected the levels of 27 intracellular phosphoproteins and 32 extracellular secreted molecules with multiplex ELISA. This quantification revealed a large amount of information concerning the signaling and the physiology of HKC-8 cells that can be extrapolated to other proximal tubular epithelial cells. LPA responses clustered with pro-inflammatory stimuli such as TNF and IL-1, promoting the phosphorylation of important inflammatory signaling hubs, including CREB1, ERK1, JUN, IκΒα, and MEK1, as well as the secretion of inflammatory factors of clinical relevance, including CCL2, CCL3, CXCL10, ICAM1, IL-6, and IL-8, most of them shown for the first time in proximal tubular epithelial cells. The identified LPA-induced signal-transduction pathways, which were pharmacologically validated, and the secretion of the inflammatory factors offer novel insights into the possible role of LPA in CKD pathogenesis.
Collapse
Affiliation(s)
- Christiana Magkrioti
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
| | - Georgia Antonopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
| | - Dionysios Fanidis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
| | - Vaia Pliaka
- ProtATonce Ltd., 15343 Athens, Greece; (V.P.); (T.S.); (L.G.A.)
| | | | - Leonidas G. Alexopoulos
- ProtATonce Ltd., 15343 Athens, Greece; (V.P.); (T.S.); (L.G.A.)
- School of Mechanical Engineering, National Technical University of Athens, 15780 Zografou, Greece
| | - Christoph Ullmer
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
- Correspondence:
| |
Collapse
|
6
|
Gene Networks of Hyperglycemia, Diabetic Complications, and Human Proteins Targeted by SARS-CoV-2: What Is the Molecular Basis for Comorbidity? Int J Mol Sci 2022; 23:ijms23137247. [PMID: 35806251 PMCID: PMC9266766 DOI: 10.3390/ijms23137247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
People with diabetes are more likely to have severe COVID-19 compared to the general population. Moreover, diabetes and COVID-19 demonstrate a certain parallelism in the mechanisms and organ damage. In this work, we applied bioinformatics analysis of associative molecular networks to identify key molecules and pathophysiological processes that determine SARS-CoV-2-induced disorders in patients with diabetes. Using text-mining-based approaches and ANDSystem as a bioinformatics tool, we reconstructed and matched networks related to hyperglycemia, diabetic complications, insulin resistance, and beta cell dysfunction with networks of SARS-CoV-2-targeted proteins. The latter included SARS-CoV-2 entry receptors (ACE2 and DPP4), SARS-CoV-2 entry associated proteases (TMPRSS2, CTSB, and CTSL), and 332 human intracellular proteins interacting with SARS-CoV-2. A number of genes/proteins targeted by SARS-CoV-2 (ACE2, BRD2, COMT, CTSB, CTSL, DNMT1, DPP4, ERP44, F2RL1, GDF15, GPX1, HDAC2, HMOX1, HYOU1, IDE, LOX, NUTF2, PCNT, PLAT, RAB10, RHOA, SCARB1, and SELENOS) were found in the networks of vascular diabetic complications and insulin resistance. According to the Gene Ontology enrichment analysis, the defined molecules are involved in the response to hypoxia, reactive oxygen species metabolism, immune and inflammatory response, regulation of angiogenesis, platelet degranulation, and other processes. The results expand the understanding of the molecular basis of diabetes and COVID-19 comorbidity.
Collapse
|
7
|
Dou M, Song W, Lin Y, Chen Q, Lu C, Liu Z. Clinical characteristics and viral analysis of severe influenza A [H1N1]pdm09 in Guangzhou, 2019. J Med Virol 2022; 94:2568-2577. [PMID: 35146773 DOI: 10.1002/jmv.27642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/08/2022] [Accepted: 01/31/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To understand the clinical characteristics of and analyze viral genes in patients with severe pneumonia due to [H1N1]pdm09 influenza virus in Guangzhou, 2019. METHODS The clinical data of 120 inpatients with laboratory-confirmed influenza A H1N1 virus from January to March 2019 were collected and analyzed. The subjects were diagnosed according to the criteria of the "Diagnosis and Treatment Program of Influenza A H1N1 (third Edition 2009)" issued by the Ministry of Health and were divided into severe and nonsevere groups. Serum samples during fever were collected for cytokine analysis, and the viral genes were analyzed after the virus cultured in MDCK cells. The data were analyzed by SPSS 16 software, and the results of gene sequencing were analyzed by MEGA 6 software. RESULTS Among the 120 inpatients, 36 (30%) were severe and 84 (70%) were nonsevere patients. The average age of severe patients was 53.11 ±19.94 years, the average age of nonsevere patients, at 44.03 ±24.47 years. There was no significant difference between the two groups (p< 0.05). There were significant differences in the rates of moist rales and dyspnea in critically ill patients (p< 0.05). There were significant differences in the white blood cell count (WBC), lactate dehydrogenase (LDH), creatine kinase (CK), serum creatinine (sCr), procalcitonin (PCT) and C-reactive protein (CRP) in severe patients with type A H1N1. Chest radiologic findings in severe patients showed ground glass shadows or pulmonary solid changes, and the difference was statistically significant for pulmonary fibrosis. Chronic lung disease (52.8%) and cardiovascular disease (27.8%) were independent risk factors for severe disease (p< 0.05). There were significant differences in secondary infections by Staphylococcus aureus (11.1%), pulmonary Aspergillus (22%) and Acinetobacter baumannii (16.7%) in critically ill patients (p< 0.05). Serum IL-8 in critically ill patients was significantly higher than those in nonsevere patients and healthy controls. The origin of virus strains in severe and nonsevere patients was the same, and there was no obvious mutation in the amino acid region of the antigenic site of the HA protein, but compared with the results of gene sequencing in previous years, the mutation sites showed a trend of annual accumulation. In conclusion, there was a high risk of severe pneumonia caused by H1N1 influenza A virus in Guangzhou in spring 2019. Long-term continuous surveillance, prevention and control of the virus should be carried out to predict its epidemiology and distribution. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Min Dou
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjun Song
- State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yongping Lin
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Qigao Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Chang Lu
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhongmin Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Jadhao M, Chen CL, Liu W, Deshmukh D, Liao WT, Chen JYF, Urade R, Tsai EM, Hsu SK, Wang LF, Chiu CC. Endoglin Modulates TGFβR2 Induced VEGF and Proinflammatory Cytokine Axis Mediated Angiogenesis in Prolonged DEHP-Exposed Breast Cancer Cells. Biomedicines 2022; 10:biomedicines10020417. [PMID: 35203627 PMCID: PMC8962291 DOI: 10.3390/biomedicines10020417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis is the process of vascular network development and plays a crucial role in cancer growth, progression, and metastasis. Phthalates are a class of environmental pollutants that have detrimental effects on human health and are reported to increase cancer risk. However, the interplay between phthalate exposure and angiogenesis has not been investigated thoroughly. In this study, we investigated the effect of prolonged di (2-ethylhexyl) phthalate (DEHP) treatment on the angiogenic potential of triple-negative breast cancer. MDA-MB-231 cells were exposed to physiological concentrations of DEHP for more than three months. Prolonged DEHP exposure induced angiogenesis in breast cancer cells. Endoglin (ENG)/CD105 is a membrane glycoprotein and an auxiliary receptor of the TGFβ receptor complex. In endothelial cells, ENG is highly expressed and it is a prerequisite for developmental angiogenesis. A literature review highlights endoglin as a well-known mesenchymal stem cell marker responsible for vascular development and angiogenesis. NGS analysis showed that endoglin overexpression in DEHP-exposed MDA-MB-231 cells correlated with tumor development and growth. An in vivo zebrafish xenograft assay showed that VEGFA induced sprouting of the subintestinal vein (SIV) in embryos injected with DEHP-exposed cells. Endoglin knockdown reduced SIV sprouting and VEGFA expression in zebrafish embryos. An in vitro HUVEC tube formation assay showed that endoglin depletion reversed DEHP-induced VEGF-mediated HUVEC tube formation in coculture. DEHP-induced endoglin activated TGFβ/SMAD3/VEGF and MAPK/p38 signaling in MDA-MB-231 cells. A cytokine angiogenesis antibody array showed induced expression of the inflammatory cytokines IL1α, IL1β, IL6, and IL8, along with GMCSF and VEGF. Endoglin knockdown reversed DEHP-induced activation of the TGFβ/SMAD3/VEGF signaling axis, MAPK/p38 signaling, and cytokine regulation, limiting angiogenesis potential both in vivo and in vitro. Targeting endoglin might serve as a potential alternative treatment to control angiogenesis, leading to metastasis and limiting cancer progression.
Collapse
Affiliation(s)
- Mahendra Jadhao
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.J.); (D.D.)
| | - Chun-Lin Chen
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; (C.-L.C.); (R.U.)
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.L.); (W.-T.L.); (J.Y.-F.C.); (S.-K.H.)
| | - Dhanashri Deshmukh
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.J.); (D.D.)
| | - Wei-Ting Liao
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.L.); (W.-T.L.); (J.Y.-F.C.); (S.-K.H.)
| | - Jeff Yi-Fu Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.L.); (W.-T.L.); (J.Y.-F.C.); (S.-K.H.)
| | - Ritesh Urade
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; (C.-L.C.); (R.U.)
| | - Eing-Mei Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- The Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sheng-Kai Hsu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.L.); (W.-T.L.); (J.Y.-F.C.); (S.-K.H.)
| | - Li-Fang Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.J.); (D.D.)
- Correspondence: (L.-F.W.); (C.-C.C.); Tel.: +886-67-312-1101 (ext. 2217) (L.-F.W.); +886-67-312-1101 (ext. 2368) (C.-C.C.); Fax: +886-67-312-5339 (L.-F.W.)
| | - Chien-Chih Chiu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; (C.-L.C.); (R.U.)
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.L.); (W.-T.L.); (J.Y.-F.C.); (S.-K.H.)
- The Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (L.-F.W.); (C.-C.C.); Tel.: +886-67-312-1101 (ext. 2217) (L.-F.W.); +886-67-312-1101 (ext. 2368) (C.-C.C.); Fax: +886-67-312-5339 (L.-F.W.)
| |
Collapse
|
9
|
Herold R, Scholtysik R, Moroniak S, Weiss C, Ishikawa H, Schroten H, Schwerk C. Capsule-dependent impact of MAPK signalling on host cell invasion and immune response during infection of the choroid plexus epithelium by Neisseria meningitidis. Fluids Barriers CNS 2021; 18:53. [PMID: 34863201 PMCID: PMC8643193 DOI: 10.1186/s12987-021-00288-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/16/2021] [Indexed: 01/15/2023] Open
Abstract
Background The Gram-negative bacterium Neisseria meningitidis (Nm) can cause meningitis in humans, but the host signalling pathways manipulated by Nm during central nervous system (CNS) entry are not completely understood. Methods We investigate the role of the mitogen-activated protein kinases (MAPK) Erk1/2 and p38 in an in vitro model of the blood-cerebrospinal fluid barrier (BCSFB) based on human epithelial choroid plexus (CP) papilloma (HIBCPP) cells during infection with Nm serogroup B (NmB) and serogroup C (NmC) strains. A transcriptome analysis of HIBCPP cells following infection with Nm by massive analysis of cDNA ends (MACE) was done to further characterize the cellular response to infection of the barrier. Results Interestingly, whereas NmB and NmC wild type strains required active Erk1/2 and p38 pathways for infection, invasion by capsule-deficient mutants was independent of Erk1/2 and, in case of the NmB strain, of p38 activity. The transcriptome analysis of HIBCPP cells following infection with Nm demonstrated specific regulation of genes involved in the immune response dependent on Erk1/2 signalling. Gene ontology (GO) analysis confirmed loss of MAPK signalling after Erk1/2 inhibition and revealed an additional reduction of cellular responses including NFκB and JAK-STAT signalling. Interestingly, GO terms related to TNF signalling and production of IL6 were lost specifically following Erk1/2 inhibition during infection with wild type Nm, which correlated with the reduced infection rates by the wild type in absence of Erk1/2 signalling. Conclusion Our data point towards a role of MAPK signalling during infection of the CP epithelium by Nm, which is strongly influenced by capsule expression, and affects infection rates as well as the host cell response. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-021-00288-7.
Collapse
Affiliation(s)
- Rosanna Herold
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - René Scholtysik
- Genomics & Transcriptomics Facility, Institute of Cell Biology, University Hospital Essen, Virchowstraße 173, 45122, Essen, Germany
| | - Selina Moroniak
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Christel Weiss
- Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
10
|
Chukwurah E, Farabaugh KT, Guan BJ, Ramakrishnan P, Hatzoglou M. A tale of two proteins: PACT and PKR and their roles in inflammation. FEBS J 2021; 288:6365-6391. [PMID: 33387379 PMCID: PMC9248962 DOI: 10.1111/febs.15691] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Inflammation is a pathological hallmark associated with bacterial and viral infections, autoimmune diseases, genetic disorders, obesity and diabetes, as well as environmental stresses including physical and chemical trauma. Among numerous proteins regulating proinflammatory signaling, very few such as Protein kinase R (PKR), have been shown to play an all-pervading role in inflammation induced by varied stimuli. PKR was initially characterized as an interferon-inducible gene activated by viral double-stranded RNA with a role in protein translation inhibition. However, it has become increasingly clear that PKR is involved in multiple pathways that promote inflammation in response to stress activation, both dependent on and independent of its cellular protein activator of PKR (PACT). In this review, we discuss the signaling pathways that contribute to the initiation of inflammation, including Toll-like receptor, interferon, and RIG-I-like receptor signaling, as well as inflammasome activation. We go on to discuss the specific roles that PKR and PACT play in such proinflammatory signaling, as well as in metabolic syndrome- and environmental stress-induced inflammation.
Collapse
Affiliation(s)
- Evelyn Chukwurah
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Kenneth T. Farabaugh
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| | | | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
11
|
Potential Adjuvant Therapeutic Effect of Lactobacillus plantarum Probio-88 Postbiotics against SARS-COV-2. Vaccines (Basel) 2021; 9:vaccines9101067. [PMID: 34696175 PMCID: PMC8537773 DOI: 10.3390/vaccines9101067] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
In response to the ongoing COVID-19 pandemic, the global effort to develop high efficacy countermeasures to control the infection are being conducted at full swing. While the efficacy of vaccines and coronavirus drugs are being tested, the microbiome approach represents an alternative pathophysiology-based approach to prevent the severity of the infection. In the current study, we evaluated the action of a novel probiotic Lactobacillus plantarum Probio-88 against SARS-COV-2 replication and immune regulation using an in vitro and in silico study. The results showed that extract from this strain (P88-CFS) significantly inhibited the replication of SARS-COV-2 and the production of reactive oxygen species (ROS) levels. Furthermore, compared with infected cells, P88-CFS treated cells showed a significant reduction in inflammatory markers such as IFN-α, IFN-β, and IL-6. Using an in silico molecular docking approach, it was postulated that the antiviral activity of L. plantarum Probio-88 was derived from plantaricin E (PlnE) and F (PlnF). The high binding affinity and formation of hydrogen bonding indicated that the association of PlnE and PlnF on SARS-COV-2 helicase might serve as a blocker by preventing the binding of ss-RNA during the replication of the virus. In conclusion, our study substantiated that P88-CFS could be used as an integrative therapeutic approach along with vaccine to contain the spread of the highly infectious pathogen and possibly its variants.
Collapse
|
12
|
Zhao J, Wang Y, Huang X, Ma Q, Song J, Wu X, Zhou H, Weng Y, Yang Z, Wang X. Liu Shen Wan inhibits influenza virus-induced secondary Staphylococcus aureus infection in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2021; 277:114066. [PMID: 33766755 DOI: 10.1016/j.jep.2021.114066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/24/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liu Shen Wan (LSW) is a traditional Chinese medicine (TCM) with detoxification and antiphlogistic activity; it is composed of bezoar, toad venom, musk, pearl powder, borneol and realgar. In recent years, LSW has been widely used in traditional medicine for the treatment of influenza, tonsillitis, pharyngitis, mumps, cancer and leukaemia. AIM OF STUDY The anti-influenza virus properties of LSW and its inhibition of the inflammatory response was demonstrated in our previous research; however, the effect and potential mechanism of LSW against influenza induced secondary bacteria have remained obscure. Therefore, in the present study, a model of influenza virus PR8 with secondary infection by Staphylococcus aureus (S. aureus) in vitro and in mice was established to examine the effect and potential mechanism by which LSW inhibits bacterial adhesion and subsequent severe pneumonia after viral infection. MATERIALS AND METHODS We investigated the effect of LSW on the PR8-induced adhesion of live S. aureus in A549 cells. RT-qPCR was used to detect the expression of adhesion molecules. Western blotting was used to determine the expression of CEACAM1, RIG-1, MDA5, p-NF-κB, and NF-κB in A549 cells. Inflammatory cytokines were detected using a Bio-Plex Pro Human Cytokine Screening Panel (R&D) in A549 cells and Mouse Magnetic Luminex Assays (R&D) in mice infected with PR8 virus and secondarily with S. aureus, respectively. Moreover, the survival rate, lung index, viral titre, bacterial loads and pathological changes in the lung tissue of mice infected with PR8 and S. aureus were investigated to estimate the effect of LSW in inhibiting severe pneumonia. RESULTS LSW significantly decreased S. aureus adhesion following influenza virus infection in A549 cells, which may have occurred by suppressing expression of the adhesion molecule CEACAM1. In addition, treatment with LSW dramatically suppressed the induction of proinflammatory cytokines (CCL2/MCP-1 and CXCL-9/MIG) and chemokines (IL-6 and TNF-α) by PR8 infection following secondary LPS stimulation in A549 cells. Upregulation of related signalling proteins (RIG-I, MDA5 and NF-κB) induced by viruses and bacteria was suppressed by LSW in A549 cells. LSW significantly decreased the viral titres and bacterial load, prolonged survival time, and ameliorated lung inflammation and injury in mice with S. aureus infection secondary to PR8 infection. CONCLUSIONS We demonstrated that LSW prevents S. aureus adherence to influenza virus-infected A549 cells, perhaps by inhibiting the expression of the adhesion molecule CEACAM1. The upregulation of proinflammatory cytokines and related signalling proteins induced by viruses and bacteria was suppressed by LSW in A549 cells. LSW significantly ameliorated lung injury caused by viral and secondary bacterial infection. These findings provide a further evaluation of LSW and suggest a beneficial effect of LSW for the prevention of secondary bacterial infection and related complications.
Collapse
Affiliation(s)
- Jin Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yutao Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaodong Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qinhai Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Song
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hongxia Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yunceng Weng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau.
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China; Institute of Integration of Traditional and Western Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
13
|
Wilden JJ, Jacob JC, Ehrhardt C, Ludwig S, Boergeling Y. Altered Signal Transduction in the Immune Response to Influenza Virus and S. pneumoniae or S. aureus Co-Infections. Int J Mol Sci 2021; 22:5486. [PMID: 34067487 PMCID: PMC8196994 DOI: 10.3390/ijms22115486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 12/23/2022] Open
Abstract
Influenza virus is a well-known respiratory pathogen, which still leads to many severe pulmonary infections in the human population every year. Morbidity and mortality rates are further increased if virus infection coincides with co-infections or superinfections caused by bacteria such as Streptococcus pneumoniae (S. pneumoniae) and Staphylococcus aureus (S. aureus). This enhanced pathogenicity is due to complex interactions between the different pathogens and the host and its immune system and is mainly governed by altered intracellular signaling processes. In this review, we summarize the recent findings regarding the innate and adaptive immune responses during co-infection with influenza virus and S. pneumoniae or S. aureus, describing the signaling pathways involved and how these interactions influence disease outcomes.
Collapse
Affiliation(s)
- Janine J. Wilden
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (J.C.J.); (S.L.)
| | - Jasmin C. Jacob
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (J.C.J.); (S.L.)
- CiM-IMPRS, The Joined Graduate School of the Cells in Motion Interfaculty Centre, University of Muenster and the International Max Planck Research School—Molecular Biomedicine, 48149 Muenster, Germany
| | - Christina Ehrhardt
- Section of Experimental Virology, Center for Molecular Biomedicine (CMB), Institute of Medical Microbiology, Jena University Hospital, 07745 Jena, Germany;
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (J.C.J.); (S.L.)
- “Cells in Motion Interfaculty Center (CIMIC)”, WWU Muenster, 48149 Muenster, Germany
| | - Yvonne Boergeling
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (J.C.J.); (S.L.)
| |
Collapse
|
14
|
Gilroy DW, De Maeyer RPH, Tepper M, O'Brien A, Uddin M, Chen J, Goldstein DR, Akbar AN. Treating exuberant, non-resolving inflammation in the lung; Implications for acute respiratory distress syndrome and COVID-19. Pharmacol Ther 2021; 221:107745. [PMID: 33188794 PMCID: PMC7657264 DOI: 10.1016/j.pharmthera.2020.107745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/30/2020] [Indexed: 01/26/2023]
Abstract
While COVID-19, the disease driven by SARS-CoV-2 has ignited interest in the host immune response to this infection, it has also highlighted the lack of treatment options for the damaging inflammatory responses driven by pathogens that precipitate the acute respiratory distress syndrome (ARDS). With the global prevalence of SARS-CoV-2 and the likelihood of a second winter spike alongside seasonal flu, the need for effective and targeted anti-inflammatory agents is even more pressing. Here we discuss the aetiology of COVID-19 and the common signalling pathways driven by SARS-CoV-2, namely p38 MAP kinase. We highlight that p38 MAP kinase becomes elevated with increasing age, thereby driving many of the inflammatory pathways that precipitate death in old people with the added drawback of impairing vaccine efficacy in this susceptible age group. Finally, we review drugs available to inhibit p38 MAP kinase, their risks-versus-benefits as well as suggested dosing regimen to combat over-exuberant innate immune responses and potentially reverse vaccine inefficacy in older patients.
Collapse
Affiliation(s)
- Derek W Gilroy
- Division of Medicine, University College London, London, UK.
| | | | - Mark Tepper
- Senex Therapeutics Inc., Newton, Center, MA, USA
| | | | - Mohib Uddin
- Late Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Sweden
| | - Judy Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel R Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Arne N Akbar
- Division of Medicine, University College London, London, UK
| |
Collapse
|
15
|
Hirawat R, Saifi MA, Godugu C. Targeting inflammatory cytokine storm to fight against COVID-19 associated severe complications. Life Sci 2021; 267:118923. [PMID: 33358906 PMCID: PMC7831473 DOI: 10.1016/j.lfs.2020.118923] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Such testing and trying time probably never seen before in the human history. The novel coronavirus disease abbreviated as COVID-19 is the ongoing health crisis which entered into human life in late December 2019. The ease of transmission between humans and the undetectability in early stage makes COVID-19 frightening and unprecedented. The disease is characterised by pneumonia progressing to breathing difficulty, acute respiratory distress syndrome (ARDS) and multi-organ failure. Clinical studies suggest excessive release of inflammatory mediators leads to cytokine storm, a phenomenon which appears to be potentially life-threatening in COVID-19. Across the globe, when the world authorities are grappling to contain the virus, our review provides a glimpse on structure, pathophysiology of the virus and further sheds light on various clinical complications associated with the disease in order to open up/raise new horizons to explore various possible theoretical targets for COVID-19. The review also portrays a question and debates: Can targeting cytokine storm can be a feasible approach to combat COVID-19?
Collapse
Affiliation(s)
- Rishabh Hirawat
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
16
|
Ge J, Chu H, Xiao Q, Hao W, Shang J, Zhu T, Sun Z, Wei X. BC and 1,4NQ-BC up-regulate the cytokines and enhance IL-33 expression in LPS pretreatment of human bronchial epithelial cells ☆. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116452. [PMID: 33486252 DOI: 10.1016/j.envpol.2021.116452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Black carbon (BC) reacts with different substances to form secondary pollutants called aged black carbon, which causes inflammation and lung damage. BC and aged BC may enhance IL-33 in vivo, which may be derived from macrophages. The pro-inflammatory effect of IL-33 makes it essential to determine the source of IL-33, so it guides us to explore how to alleviate lung injury. In this study, a human bronchial epithelial cell line of 16HBE cells was selected, and aged BC (1,4-NQ coated BC and ozone oxidized BC) was used. We found that both BC and aged BC were able to up-regulate the mRNA expression of IL-1β, IL-6, and IL-8 except IL-33. However, the Mitogen-activated protein kinases (MAPKs) and Phosphatidylinositol 3-kinase (PI3K)/Protein kinase B (AKTs) pathways remained inactive. After pretreatment with Lipopolysaccharide (LPS), IL-33 mRNA expression was significantly increased in 16HBE cells and MAPKs and PI3K/AKT were activated. These results suggested that MAPKs and PI3K/AKT pathways were involved in the elevation of IL-33. Furthermore, epithelial cells are unlikely to be the source of lung inflammation caused by elevated IL-33 in BC and aged BC.
Collapse
Affiliation(s)
- Jianhong Ge
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, PR China; Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Jing Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Tong Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, PR China; Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| |
Collapse
|
17
|
Wilden JJ, Hrincius ER, Niemann S, Boergeling Y, Löffler B, Ludwig S, Ehrhardt C. Impact of Staphylococcus aureus Small Colony Variants on Human Lung Epithelial Cells with Subsequent Influenza Virus Infection. Microorganisms 2020; 8:E1998. [PMID: 33333815 PMCID: PMC7765246 DOI: 10.3390/microorganisms8121998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/29/2022] Open
Abstract
Human beings are exposed to microorganisms every day. Among those, diverse commensals and potential pathogens including Staphylococcus aureus (S. aureus) compose a significant part of the respiratory tract microbiota. Remarkably, bacterial colonization is supposed to affect the outcome of viral respiratory tract infections, including those caused by influenza viruses (IV). Since 30% of the world's population is already colonized with S. aureus that can develop metabolically inactive dormant phenotypes and seasonal IV circulate every year, super-infections are likely to occur. Although IV and S. aureus super-infections are widely described in the literature, the interactions of these pathogens with each other and the host cell are only scarcely understood. Especially, the effect of quasi-dormant bacterial subpopulations on IV infections is barely investigated. In the present study, we aimed to investigate the impact of S. aureus small colony variants on the cell intrinsic immune response during a subsequent IV infection in vitro. In fact, we observed a significant impact on the regulation of pro-inflammatory factors, contributing to a synergistic effect on cell intrinsic innate immune response and induction of harmful cell death. Interestingly, the cytopathic effect, which was observed in presence of both pathogens, was not due to an increased pathogen load.
Collapse
Affiliation(s)
- Janine J. Wilden
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (E.R.H.); (Y.B.); (S.L.)
| | - Eike R. Hrincius
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (E.R.H.); (Y.B.); (S.L.)
| | - Silke Niemann
- Institute of Medical Microbiology, Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany;
| | - Yvonne Boergeling
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (E.R.H.); (Y.B.); (S.L.)
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, 07747 Jena, Germany;
- Cluster of Excellence EXC 2051 “Balance of the Microverse”, FSU Jena, 07743 Jena, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (E.R.H.); (Y.B.); (S.L.)
- Cluster of Excellence EXC 1003 “Cells in Motion”, WWU Muenster, 48149 Muenster, Germany
| | - Christina Ehrhardt
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, 07745 Jena, Germany
| |
Collapse
|
18
|
Cai Y, Varasteh S, van Putten JPM, Folkerts G, Braber S. Mannheimia haemolytica and lipopolysaccharide induce airway epithelial inflammatory responses in an extensively developed ex vivo calf model. Sci Rep 2020; 10:13042. [PMID: 32747652 PMCID: PMC7400546 DOI: 10.1038/s41598-020-69982-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/20/2020] [Indexed: 01/27/2023] Open
Abstract
Pulmonary infection is associated with inflammation and damage to the bronchial epithelium characterized by an increase in the release of inflammatory factors and a decrease in airway barrier function. Our objective is to optimize a method for the isolation and culture of primary bronchial epithelial cells (PBECs) and to provide an ex vivo model to study mechanisms of epithelial airway inflammation. PBECs were isolated and cultured from the airways of calves in a submerged cell culture and liquid-liquid interface system. A higher yield and cell viability were obtained after stripping the epithelium from the bronchial section compared to cutting the bronchial section in smaller pieces prior to digestion. Mannheimia haemolytica and lipopolysaccharide (LPS) as stimulants increased inflammatory responses (IL-8, IL-6 and TNF-α release), possibly, by the activation of "TLR-mediated MAPKs and NF-κB" signaling. Furthermore, M. haemolytica and LPS disrupted the bronchial epithelial layer as observed by a decreased transepithelial electrical resistance and zonula occludens-1 and E-cadherin expression. An optimized isolation and culture method for calf PBECs was developed, which cooperated with animal use Replacement, Reduction and Refinement (3R's) principle, and can also contribute to the increased knowledge and development of effective therapies for other animal and humans (childhood) respiratory diseases.
Collapse
Affiliation(s)
- Yang Cai
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Soheil Varasteh
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jos P M van Putten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
19
|
Wu S, Wang HQ, Guo TT, Li YH. Luteolin inhibits CVB3 replication through inhibiting inflammation. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:762-773. [PMID: 31321999 DOI: 10.1080/10286020.2019.1642329] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/30/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Coxsackievirus B3 (CVB3) infection causes many inflammation-related diseases, such as viral myocarditis and aseptic meningitis. However, no vaccines or drugs have been approved for prevention or therapy of CVB3-induced diseases. In this study, luteolin (3,4,5,7-tetrahydroxyflavone) had been found that could dose-dependently reduce the production of viral progeny and synthesis of CVB3 RNA and protein. The luteolin-mediated inhibition of CVB3 was found to be mechanistically possible, at least in part, through depressing the phosphorylation of p38 MAPK and JNK MAPK, and inhibiting NF-κB nuclear translocation and subsequently attenuated the expression of inflammatory cytokines in CVB3-infected cells. Luteolin may be a potential agent or supplement against CVB3 infection by inhibiting inflammation.
Collapse
Affiliation(s)
- Shuo Wu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Hui-Qiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Ting-Ting Guo
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-Huan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| |
Collapse
|
20
|
Hoffmann M, Mösbauer K, Hofmann-Winkler H, Kaul A, Kleine-Weber H, Krüger N, Gassen NC, Müller MA, Drosten C, Pöhlmann S. Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature 2020; 585:588-590. [PMID: 32698190 DOI: 10.1038/s41586-020-2575-3] [Citation(s) in RCA: 317] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been associated with more than 780,000 deaths worldwide (as of 20 August 2020). To develop antiviral interventions quickly, drugs used for the treatment of unrelated diseases are currently being repurposed to treat COVID-19. Chloroquine is an anti-malaria drug that is used for the treatment of COVID-19 as it inhibits the spread of SARS-CoV-2 in the African green monkey kidney-derived cell line Vero1-3. Here we show that engineered expression of TMPRSS2, a cellular protease that activates SARS-CoV-2 for entry into lung cells4, renders SARS-CoV-2 infection of Vero cells insensitive to chloroquine. Moreover, we report that chloroquine does not block infection with SARS-CoV-2 in the TMPRSS2-expressing human lung cell line Calu-3. These results indicate that chloroquine targets a pathway for viral activation that is not active in lung cells and is unlikely to protect against the spread of SARS-CoV-2 in and between patients.
Collapse
Affiliation(s)
- Markus Hoffmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany. .,Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany.
| | - Kirstin Mösbauer
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,German Centre for Infection Research, associated partner Charité, Berlin, Germany
| | - Heike Hofmann-Winkler
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Artur Kaul
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Hannah Kleine-Weber
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany.,Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Nadine Krüger
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Nils C Gassen
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Marcel A Müller
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,German Centre for Infection Research, associated partner Charité, Berlin, Germany.,Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,German Centre for Infection Research, associated partner Charité, Berlin, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany. .,Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
21
|
Yu J, Sun X, Goie JYG, Zhang Y. Regulation of Host Immune Responses against Influenza A Virus Infection by Mitogen-Activated Protein Kinases (MAPKs). Microorganisms 2020; 8:microorganisms8071067. [PMID: 32709018 PMCID: PMC7409222 DOI: 10.3390/microorganisms8071067] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza is a major respiratory viral disease caused by infections from the influenza A virus (IAV) that persists across various seasonal outbreaks globally each year. Host immune response is a key factor determining disease severity of influenza infection, presenting an attractive target for the development of novel therapies for treatments. Among the multiple signal transduction pathways regulating the host immune activation and function in response to IAV infections, the mitogen-activated protein kinase (MAPK) pathways are important signalling axes, downstream of various pattern recognition receptors (PRRs), activated by IAVs that regulate various cellular processes in immune cells of both innate and adaptive immunity. Moreover, aberrant MAPK activation underpins overexuberant production of inflammatory mediators, promoting the development of the “cytokine storm”, a characteristic of severe respiratory viral diseases. Therefore, elucidation of the regulatory roles of MAPK in immune responses against IAVs is not only essential for understanding the pathogenesis of severe influenza, but also critical for developing MAPK-dependent therapies for treatment of respiratory viral diseases. In this review, we will summarise the current understanding of MAPK functions in both innate and adaptive immune response against IAVs and discuss their contributions towards the cytokine storm caused by highly pathogenic influenza viruses.
Collapse
Affiliation(s)
- Jiabo Yu
- Integrative Biomedical Sciences Programme, University of Edinburgh Institute, Zhejiang University, International Campus Zhejiang University, Haining 314400, China; (J.Y.); (X.S.)
| | - Xiang Sun
- Integrative Biomedical Sciences Programme, University of Edinburgh Institute, Zhejiang University, International Campus Zhejiang University, Haining 314400, China; (J.Y.); (X.S.)
| | - Jian Yi Gerald Goie
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- The Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- The Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
- Correspondence: ; Tel.: +65-65166407
| |
Collapse
|
22
|
Gao K, Song YP, Du X, Chen H, Zhao LT. Exploring multiple mechanisms of Qingjie Fanggan prescription for prevention and treatment of influenza based on systems pharmacology. Comput Biol Chem 2020; 88:107307. [PMID: 32622176 DOI: 10.1016/j.compbiolchem.2020.107307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/24/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022]
Abstract
Influenza is a type of acute disease characterized by strong contagiousness and short incubation period, which have posed a large potential threat to public health. Traditional Chinese Medicine (TCM) advocates to the aim of combating complex diseases from a holistic view, which has shown effectiveness in anti-influenza. However, the mechanism of TCM prescription remains puzzling. Here, we applied a system pharmacology approach to reveal the underlying molecular mechanisms of Qingjie Fanggan prescription (QFP) in the prevention and treatment of influenza. In this study, we identified 228 potential active compounds by means of absorption, distribution, metabolism, and excretion (ADME) evaluation system and literature research. Then, the targets of the potential active compounds were predicted by using the WES (Weighted Ensemble Similarity) method, and the influenza-related targets were obtained according to some existing gene databases. Next, an herb-component-target network was constructed to further dissect the multi-directional therapeutic approach for QFP. Meanwhile, we also performed gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analysis on 344 potential targets. Finally, a target-pathway network was constructed to further dissect the core pathways and targets in treatment of influenza for QFP. And the key components and targets were docked by AutoDock Vina to explore their binding mode. All of these demonstrated that QFP had multi-scale curative activity in regulating influenza-related biological processes, which facilitates the application of traditional medicine in modern medicine.
Collapse
Affiliation(s)
- Kai Gao
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yan-Ping Song
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China.
| | - Xia Du
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China.
| | - Hao Chen
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Lin-Tao Zhao
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
23
|
Deramaudt TB, Ali M, Vinit S, Bonay M. Sulforaphane reduces intracellular survival of Staphylococcus aureus in macrophages through inhibition of JNK and p38 MAPK‑induced inflammation. Int J Mol Med 2020; 45:1927-1941. [PMID: 32323751 PMCID: PMC7169961 DOI: 10.3892/ijmm.2020.4563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages are active contributors to the innate immune defense system. As macrophage activation is clearly affected by the surrounding microenvironment, the present study investigated the effect of sulforaphane (SFN) on the bactericidal activity of macrophages and the underlying molecular mechanisms involved in this process. Human THP-1-derived macrophages, primary human peripheral blood mononuclear cell-derived macrophages, and primary mouse bone marrow derived-macrophages (BMDMs) pretreated with SFN or DMSO were utilized in a model of Staphylococcus aureus infection. The results suggested that SFN pretreatment of macrophages effectively repressed the intracellular survival of S. aureus through modulation of p38/JNK signaling and decreased S. aureus-induced caspases-3/7-dependent cell apoptosis, potentially through downregulation of microRNA (miR)-142-5p and miR-146a-5p. As SFN is a well-known activator of nuclear factor erythroid 2-related factor 2 (Nrf2), Nrf2−/− BMDMs were used to demonstrate that the SFN-mediated inhibitory effect was independent of Nrf2. Nevertheless, an increase in intracellular bacterial survival in Nrf2-deficient macrophages was observed. In addition, SFN pretreatment suppressed S. aureus-induced transcriptional expression of genes coding for the proinflammatory cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α), as well as for the M1 markers C-C motif chemokine receptor 7, IL-23 and inducible nitric oxide synthase (iNOS). Western blot analysis indicated that S. aureus challenge activated p38 mitogen-activated protein kinase (MAPK) (p38) and c-Jun N-terminal kinase (JNK) MAPK signaling pathways, while SFN pretreatment prevented p38 and JNK phosphorylation. Pretreatment with 2 specific inhibitors of p38 and JNK, SB203580 and SP600125, respectively, resulted in a decrease in S. aureus-induced proinflammatory gene expression levels compared with those observed in the SFN-pretreated macrophages. Furthermore, THP-1-derived macrophages pretreated with SB203580 or SP600125 prior to bacterial infection exhibited a significant inhibition in intracellular S. aureus survival. In conclusion, we hypothesize that concomitant targeting of the p38/JNK-inflammatory response and the S. aureus-induced apoptosis with SFN may be a promising therapeutic approach in S. aureus infection.
Collapse
Affiliation(s)
- Therese B Deramaudt
- Department of Neuromuscular Handicap: Biotherapies and Therapeutic Innovations, National Institute of Health and Medical Research, University of Versailles‑Saint‑Quentin‑en‑Yvelines, 78180 Montigny‑le‑Bretonneux, France
| | - Malika Ali
- Department of Neuromuscular Handicap: Biotherapies and Therapeutic Innovations, National Institute of Health and Medical Research, University of Versailles‑Saint‑Quentin‑en‑Yvelines, 78180 Montigny‑le‑Bretonneux, France
| | - Stephane Vinit
- Department of Neuromuscular Handicap: Biotherapies and Therapeutic Innovations, National Institute of Health and Medical Research, University of Versailles‑Saint‑Quentin‑en‑Yvelines, 78180 Montigny‑le‑Bretonneux, France
| | - Marcel Bonay
- Department of Neuromuscular Handicap: Biotherapies and Therapeutic Innovations, National Institute of Health and Medical Research, University of Versailles‑Saint‑Quentin‑en‑Yvelines, 78180 Montigny‑le‑Bretonneux, France
| |
Collapse
|
24
|
Dutta D, Mukherjee D, Mukherjee IA, Maiti TK, Basak A, Das AK. Staphylococcal superantigen-like proteins interact with human MAP kinase signaling protein ERK2. FEBS Lett 2019; 594:266-277. [PMID: 31468523 DOI: 10.1002/1873-3468.13590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 01/05/2023]
Abstract
This study aimed to identify the intracellular binding partner of a unique class of staphylococcal secreted exotoxins called superantigen-like proteins (SSL) from human macrophage and keratinocyte cell lysates. Here, we report that SSL1 specifically binds to human extracellular signal-regulated kinase 2 (hERK2), an important stress-activated kinase in mitogen-activated protein kinase signaling pathways. Western blot and in vitro binding studies with recombinant hERK2 confirmed the binding interaction of SSL1, SSL7, and SSL10 with hERK2. Moreover, the SSLs-hERK2 interaction was validated biochemically by ELISA. Our finding shows that SSLs play a novel role by binding with host cell MAP kinase signaling pathway protein. Understanding the SSL-hERK2 interaction will also provide a basis for designing SSL-based peptide inhibitors of hERK2 in cancer therapy.
Collapse
Affiliation(s)
- Debabrata Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India.,Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, India
| | - Devdeep Mukherjee
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | | | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | - Amit Basak
- Department of Chemistry, Indian Institute of Technology Kharagpur, India.,School of Bioscience, Indian Institute of Technology Kharagpur, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India.,School of Bioscience, Indian Institute of Technology Kharagpur, India
| |
Collapse
|
25
|
Hufsky F, Ibrahim B, Modha S, Clokie MRJ, Deinhardt-Emmer S, Dutilh BE, Lycett S, Simmonds P, Thiel V, Abroi A, Adriaenssens EM, Escalera-Zamudio M, Kelly JN, Lamkiewicz K, Lu L, Susat J, Sicheritz T, Robertson DL, Marz M. The Third Annual Meeting of the European Virus Bioinformatics Center. Viruses 2019; 11:E420. [PMID: 31060321 PMCID: PMC6563321 DOI: 10.3390/v11050420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 01/21/2023] Open
Abstract
The Third Annual Meeting of the European Virus Bioinformatics Center (EVBC) took place in Glasgow, United Kingdom, 28-29 March 2019. Virus bioinformatics has become central to virology research, and advances in bioinformatics have led to improved approaches to investigate viral infections and outbreaks, being successfully used to detect, control, and treat infections of humans and animals. This active field of research has attracted approximately 110 experts in virology and bioinformatics/computational biology from Europe and other parts of the world to attend the two-day meeting in Glasgow to increase scientific exchange between laboratory- and computer-based researchers. The meeting was held at the McIntyre Building of the University of Glasgow; a perfect location, as it was originally built to be a place for "rubbing your brains with those of other people", as Rector Stanley Baldwin described it. The goal of the meeting was to provide a meaningful and interactive scientific environment to promote discussion and collaboration and to inspire and suggest new research directions and questions. The meeting featured eight invited and twelve contributed talks, on the four main topics: (1) systems virology, (2) virus-host interactions and the virome, (3) virus classification and evolution and (4) epidemiology, surveillance and evolution. Further, the meeting featured 34 oral poster presentations, all of which focused on specific areas of virus bioinformatics. This report summarizes the main research findings and highlights presented at the meeting.
Collapse
Affiliation(s)
- Franziska Hufsky
- European Virus Bioinformatics Center, 07743 Jena, Germany.
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Bashar Ibrahim
- European Virus Bioinformatics Center, 07743 Jena, Germany.
- Chair of Bioinformatics, Matthias-Schleiden-Institute, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Sejal Modha
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK.
| | - Martha R J Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK.
| | - Stefanie Deinhardt-Emmer
- European Virus Bioinformatics Center, 07743 Jena, Germany.
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.
- Section for Experimental Virology, Jena University Hospital, Hans-Knöll-Straße 2, D-07745 Jena, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, D-07747 Jena, Germany.
| | - Bas E Dutilh
- European Virus Bioinformatics Center, 07743 Jena, Germany.
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands.
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 26, Nijmegen 6525 GA, The Netherlands.
| | - Samantha Lycett
- Infection & Immunity Division, Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, UK.
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building, South Parks Road, Oxford OX1 3SY, UK.
| | - Volker Thiel
- European Virus Bioinformatics Center, 07743 Jena, Germany.
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Facility, University of Bern, 3012 Bern, Switzerland.
| | - Aare Abroi
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia.
| | - Evelien M Adriaenssens
- European Virus Bioinformatics Center, 07743 Jena, Germany.
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK.
| | | | - Jenna Nicole Kelly
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Facility, University of Bern, 3012 Bern, Switzerland.
| | - Kevin Lamkiewicz
- European Virus Bioinformatics Center, 07743 Jena, Germany.
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Lu Lu
- Usher Institute of Population Health Sciences & Informatics, Ashworth Laboratories, Kings Buildings, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| | - Julian Susat
- Institute of Clinical Molecular Biology, Kiel University, 24118 Kiel, Germany.
| | - Thomas Sicheritz
- Natural History Museum of Denmark, University of Copenhagen, DK-1123 Copenhagen, Denmark.
| | - David L Robertson
- European Virus Bioinformatics Center, 07743 Jena, Germany.
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK.
| | - Manja Marz
- European Virus Bioinformatics Center, 07743 Jena, Germany.
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany.
| |
Collapse
|
26
|
Nayak TK, Mamidi P, Sahoo SS, Kumar PS, Mahish C, Chatterjee S, Subudhi BB, Chattopadhyay S, Chattopadhyay S. P38 and JNK Mitogen-Activated Protein Kinases Interact With Chikungunya Virus Non-structural Protein-2 and Regulate TNF Induction During Viral Infection in Macrophages. Front Immunol 2019; 10:786. [PMID: 31031770 PMCID: PMC6473476 DOI: 10.3389/fimmu.2019.00786] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/25/2019] [Indexed: 02/02/2023] Open
Abstract
Chikungunya virus (CHIKV), a mosquito-borne Alphavirus, is endemic in different parts of the globe. The host macrophages are identified as the major cellular reservoirs of CHIKV during infection and this virus triggers robust TNF production in the host macrophages, which might be a key mediator of virus induced inflammation. However, the molecular mechanism underneath TNF induction is not understood yet. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV to address the above-mentioned question. It was observed that CHIKV induces both p38 and JNK phosphorylation in macrophages in a time-dependent manner and p-p38 inhibitor, SB203580 is effective in reducing infection even at lower concentration as compared to the p-JNK inhibitor, SP600125. However, inhibition of p-p38 and p-JNK decreased CHIKV induced TNF production in the host macrophages. Moreover, CHIKV induced macrophage derived TNF was found to facilitate TCR driven T cell activation. Additionally, it was noticed that the expressions of key transcription factors involved mainly in antiviral responses (p-IRF3) and TNF production (p-c-jun) were induced significantly in the CHIKV infected macrophages as compared to the corresponding mock cells. Further, it was demonstrated that CHIKV mediated TNF production in the macrophages is dependent on p38 and JNK MAPK pathways linking p-c-jun transcription factor. Interestingly, it was found that CHIKV nsP2 interacts with both p-p38 and p-JNK MAPKs in the macrophages. This observation was supported by the in silico protein-protein docking analysis which illustrates the specific amino acids responsible for the nsP2-MAPKs interactions. A strong polar interaction was predicted between Thr-180 (within the phosphorylation lip) of p38 and Gln-273 of nsP2, whereas, no such polar interaction was predicted for the phosphorylation lip of JNK which indicates the differential roles of p-p38 and p-JNK during CHIKV infection in the host macrophages. In summary, for the first time it has been shown that CHIKV triggers robust TNF production in the host macrophages via both p-p38 and p-JNK/p-c-jun pathways and the interaction of viral protein, nsP2 with these MAPKs during infection. Hence, this information might shed light in rationale-based drug designing strategies toward a possible control measure of CHIKV infection in future.
Collapse
Affiliation(s)
- Tapas Kumar Nayak
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, India
| | - Prabhudutta Mamidi
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Subhransu Sekhar Sahoo
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, India
| | - P Sanjai Kumar
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, India
| | - Chandan Mahish
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, India
| | | | - Bharat Bhusan Subudhi
- School of Pharmaceutical Sciences, Siksha O Anusandhan University, Bhubaneswar, India
| | - Soma Chattopadhyay
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Subhasis Chattopadhyay
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, India
| |
Collapse
|
27
|
Rutting S, Xenaki D, Malouf M, Horvat JC, Wood LG, Hansbro PM, Oliver BG. Short-chain fatty acids increase TNFα-induced inflammation in primary human lung mesenchymal cells through the activation of p38 MAPK. Am J Physiol Lung Cell Mol Physiol 2018; 316:L157-L174. [PMID: 30407866 DOI: 10.1152/ajplung.00306.2018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Short-chain fatty acids (SCFAs), produced as by-products of dietary fiber metabolism by gut bacteria, have anti-inflammatory properties and could potentially be used for the treatment of inflammatory diseases, including asthma. The direct effects of SCFAs on inflammatory responses in primary human lung mesenchymal cells have not been assessed. We investigated whether SCFAs can protect against tumor necrosis factor (TNF)α-induced inflammation in primary human lung fibroblasts (HLFs) and airway smooth muscle (ASM) cells in vitro. HLFs and ASM cells were exposed to SCFAs, acetate (C2:0), propionate (C3:0), and butyrate (C4:0) (0.01-25 mM) with or without TNFα, and the release of proinflammatory cytokines, IL-6, and CXCL8 was measured using ELISA. We found that none of the SCFAs suppressed TNFα-induced cytokine release. On the contrary, challenge with supraphysiological concentrations (10-25 mM), as might be used therapeutically, of propionate or butyrate in combination with TNFα resulted in substantially greater IL-6 and CXCL8 release from HLFs and ASM cells than challenge with TNFα alone, demonstrating synergistic effects. In ASM cells, challenge with acetate also enhanced TNFα-induced IL-6, but not CXCL8 release. Synergistic upregulation of IL-6 and CXCL8 was mediated through the activation of free fatty acid receptor (FFAR)3, but not FFAR2. The signaling pathways involved were further examined using specific inhibitors and immunoblotting, and responses were found to be mediated through p38 MAPK signaling. This study demonstrates that proinflammatory, rather than anti-inflammatory effects of SCFAs are evident in lung mesenchymal cells.
Collapse
Affiliation(s)
- Sandra Rutting
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney , Sydney, New South Wales , Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle , Newcastle, New South Wales , Australia
| | - Dia Xenaki
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney , Sydney, New South Wales , Australia
| | - Monique Malouf
- Thoracic Medicine and Lung Transplantation, Saint Vincent's Hospital , Sydney, New South Wales , Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle , Newcastle, New South Wales , Australia
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle , Newcastle, New South Wales , Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle , Newcastle, New South Wales , Australia.,Graduate School of Health, Discipline of Pharmacy, University of Technology Sydney , Sydney, New South Wales , Australia
| | - Brian G Oliver
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney , Sydney, New South Wales , Australia.,School of Life Sciences, University of Technology Sydney , Sydney, New South Wales , Australia
| |
Collapse
|
28
|
Tsai MH, Wu CH, Lin WN, Cheng CY, Chuang CC, Chang KT, Jiang RS, Hsu JF, Lee IT. Infection with Staphylococcus aureus elicits COX-2/PGE2/IL-6/MMP-9-dependent aorta inflammation via the inhibition of intracellular ROS production. Biomed Pharmacother 2018; 107:889-900. [DOI: 10.1016/j.biopha.2018.08.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
|
29
|
Tsai MH, Yang CM, Chang KT, Chuang CC, Lin WN, Jiang RS, Wu CH, Lee IT. Carbon monoxide ameliorates Staphylococcus aureus-elicited COX-2/IL-6/MMP-9-dependent human aortic endothelial cell migration and inflammatory responses. Immunol Lett 2018; 203:40-49. [PMID: 30236480 DOI: 10.1016/j.imlet.2018.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/28/2018] [Accepted: 09/14/2018] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus (S. aureus) can often lead to many life-threatening diseases. It has the ability to invade normal endovascular tissue. Acute inflammation and its resolution are important to ensure bacterial clearance and limit tissue injury. Carbon monoxide (CO) has been shown to exert anti-inflammatory effects in various tissues and organ systems. In our study, we investigated the effects and the mechanisms of carbon monoxide releasing molecule-2 (CORM-2) on S. aureus-induced inflammatory responses in human aortic endothelial cells (HAECs). We proved that S. aureus induced cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2)/interleukin-6 (IL-6)/matrix metallopeptidase-9 (MMP-9) expression and cell migration, which were decreased by CORM-2. Moreover, CORM-2 had no effects on TLR2 mRNA levels in response to S. aureus. Interestingly, we proved that S. aureus decreased intracellular ROS generation, suggesting that the inhibition of ROS further promoted inflammatory responses. However, CORM-2 significantly inhibited S. aureus-induced inflammation by increasing intracellular ROS generation. S. aureus-induced NF-κB activation was also inhibited by CORM-2. Finally, we proved that S. aureus induced levels of the biomarkers of inflammation in cardiovascular diseases, which were inhibited by CORM-2. Taken together, these results suggest that CORM-2 inhibits S. aureus-induced COX-2/PGE2/IL-6/MMP-9 expression and aorta inflammatory responses by increasing the ROS generation and reducing the inflammatory molecules levels.
Collapse
Affiliation(s)
- Ming-Horng Tsai
- Department of Pediatrics, Division of Neonatology and Pediatric Hematology/Oncology, Chang Gung Memorial Hospital, Yunlin, Taiwan; Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan; Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan; Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| | - Kuo-Ting Chang
- Translational Medicine Center, Taoyuan General Hospital, Ministry of Healthy and Welfare, Taoyuan, Taiwan
| | - Chu-Chun Chuang
- Department of Physical Therapy, China Medical University, Taichung, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Rong-San Jiang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Cheng-Hsun Wu
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
| | - I-Ta Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Nursing, College of Nursing, Hungkuang University, Taichung, Taiwan.
| |
Collapse
|
30
|
In Vitro Models to Study Influenza Virus and Staphylococcus aureus Super-Infection on a Molecular Level. Methods Mol Biol 2018. [PMID: 30151583 DOI: 10.1007/978-1-4939-8678-1_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Investigation of pathogen-host interactions on a molecular level requires sophisticated in vitro infection procedures, especially in the presence of different pathogens.Super-infections of influenza viruses (IV) and bacteria, with increasing incidence of Staphylococcus aureus (S. aureus) cases, are a long-known phenomenon and represent a major complication in IV-infected patients. Although several in vivo studies have improved our knowledge about pathogenesis and immune responses of super-infections that result in increased morbidity and mortality, the consequences of the direct interplay of viruses and bacteria on a molecular level in affected cells that may contribute to the deadly synergism of these pathogens are so far poorly characterized. Here we describe different infection schemes to study IV and S. aureus coinfections of distinct cell populations in vitro. Depending on the focus of interest, regulation of cell responses such as signalling mechanisms or pro- and anti-inflammatory cytokine expression, or consequences for the viral or bacterial life cycle, can be analyzed. The described infection procedures could be used as guidelines and adapted to super-infection settings of other viral and bacterial pathogens.
Collapse
|
31
|
Bruchhagen C, Jarick M, Mewis C, Hertlein T, Niemann S, Ohlsen K, Peters G, Planz O, Ludwig S, Ehrhardt C. Metabolic conversion of CI-1040 turns a cellular MEK-inhibitor into an antibacterial compound. Sci Rep 2018; 8:9114. [PMID: 29904167 PMCID: PMC6002397 DOI: 10.1038/s41598-018-27445-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022] Open
Abstract
Influenza virus (IV) infections cause severe respiratory illnesses that can be complicated by bacterial super-infections. Previously, we identified the cellular Raf-MEK-ERK cascade as a promising antiviral target. Inhibitors of MEK, such as CI-1040, showed potent antiviral activity. However, it remained unclear if this inhibitor and its active form, ATR-002, might sensitize host cells to either IV or secondary bacterial infections. To address these questions, we studied the anti-pathogen activity of ATR-002 in comparison to CI-1040, particularly, its impact on Staphylococcus aureus (S. aureus), which is a major cause of IV super-infections. We analysed IV and S. aureus titres in vitro during super-infection in the presence and absence of the drugs and characterized the direct impact of ATR-002 on bacterial growth and phenotypic changes. Importantly, neither CI-1040 nor ATR-002 treatment led to increased bacterial titres during super-infection, indicating that the drug does not sensitize cells for bacterial infection. In contrast, we rather observed reduced bacterial titres in presence of ATR-002. Surprisingly, ATR-002 also led to reduced bacterial growth in suspension cultures, reduced stress- and antibiotic tolerance without resistance induction. Our data identified for the first time that a particular MEK-inhibitor metabolite exhibits direct antibacterial activity, which is likely due to interference with the bacterial PknB kinase/Stp phosphatase signalling system.
Collapse
Affiliation(s)
- Christin Bruchhagen
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149, Muenster, Germany
| | - Marcel Jarick
- Institute for Molecular Infection Biology (IMIB), University of Wuerzburg, Josef-Schneider-Str. 2/D15, D-97080, Wuerzburg, Germany
| | - Carolin Mewis
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149, Muenster, Germany
| | - Tobias Hertlein
- Institute for Molecular Infection Biology (IMIB), University of Wuerzburg, Josef-Schneider-Str. 2/D15, D-97080, Wuerzburg, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital of Muenster, Domagkstr. 10, D-48149, Muenster, Germany
| | - Knut Ohlsen
- Institute for Molecular Infection Biology (IMIB), University of Wuerzburg, Josef-Schneider-Str. 2/D15, D-97080, Wuerzburg, Germany
| | - Georg Peters
- Institute of Medical Microbiology, University Hospital of Muenster, Domagkstr. 10, D-48149, Muenster, Germany
| | - Oliver Planz
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, D-72076, Tuebingen, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149, Muenster, Germany
| | - Christina Ehrhardt
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149, Muenster, Germany.
| |
Collapse
|
32
|
Talreja J, Samavati L. K63-Linked Polyubiquitination on TRAF6 Regulates LPS-Mediated MAPK Activation, Cytokine Production, and Bacterial Clearance in Toll-Like Receptor 7/8 Primed Murine Macrophages. Front Immunol 2018. [PMID: 29515583 PMCID: PMC5826352 DOI: 10.3389/fimmu.2018.00279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Post viral infection bacterial pneumonia is a major cause of morbidity and mortality associated with both seasonal and pandemic influenza virus illness. Despite much efforts put into the discovery of mechanisms of post viral-bacterial infections and their complications in recent years, the molecular mechanisms underlying the increased susceptibility to bacterial infection remain poorly understood. In this study, we focused on the pathways regulating immune responses in murine macrophages and modeled post viral-bacterial infections through pretreatment of bone marrow-derived macrophages (BMDMs) with a toll-like receptor (TLR) 7/8 ligand (R848) and subsequent challenge with TLR2/4 agonists to mimic bacterial infection. We found R848-primed BMDMs upon subsequent exposure to TLR2/4 ligands respond with enhanced inflammatory cytokine production, especially IL-6 and TNF-α. The enhanced cytokine production in R848-primed BMDMs in response to TLR2/4 was due to increased TGF-β-activated kinase (TAK) 1 phosphorylation with subsequent activation of ERK and p38 MAPKs. Furthermore, we identified that R848 priming leads to increased K63-linked polyubiquitination on TRAF6. K63-linked polyubiquitination on TRAF6 is a signal leading to enhanced activation of downstream pathways including TAK1. Importantly, R848-primed BMDMs infected with live bacteria exhibited decreased bacterial clearance. Small-molecule enhancer of rapamycin 3, an ubiquitin ligase inhibitor reversed the K63-linked polyubiquitination on TRAF6 in R848-primed BMDMs and subsequently decreased TAK1 and MAPK phosphorylation, and cytokine production as well as reversed the decreased bacterial clearance capacity of BMDMs. Our study may provide a novel molecular target to alleviate post viral-bacterial infections.
Collapse
Affiliation(s)
- Jaya Talreja
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine, Detroit Medical Center, Detroit, MI, United States
| | - Lobelia Samavati
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine, Detroit Medical Center, Detroit, MI, United States.,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|