1
|
Iosif R, Skrbinšek T, Erős N, Konec M, Boljte B, Jan M, Promberger‐Fürpass B. Wolf Population Size and Composition in One of Europe's Strongholds, the Romanian Carpathians. Ecol Evol 2025; 15:e71200. [PMID: 40242802 PMCID: PMC12000540 DOI: 10.1002/ece3.71200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/04/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Strategies of coexistence with large carnivores should integrate scientific evidence, population monitoring providing an opportunity for advancing outdated management paradigms. We estimated wolf population density and social dynamics across a 1400 km2 area in a data-poor region of the Romanian Carpathians. Across three consecutive years (2017-2018 until 2019-2020), we collected and genotyped 505 noninvasive DNA wolf samples (scat, hair and urine) to identify individuals, reconstruct pedigrees, and check for the presence of hybridization with domestic dogs. We identified 27 males, 20 females, and one F1 wolf-dog hybrid male. We delineated six wolf packs, with pack size varying between two and seven individuals, and documented yearly changes in pack composition. Using a spatial capture-recapture approach, we estimated population density at 2.35 wolves/100 km2 (95% BCI = 1.68-3.03) and population abundance at 70 individuals (95% BCI = 49-89). Noninvasive DNA data collection coupled with spatial capture-recapture has the potential to inform on wolf population size and dynamics at broader spatial scales, across different sampling areas representative of the diverse Carpathian landscapes, and across different levels of human impact, supporting wildlife decision making in one of Europe's main strongholds for large carnivores.
Collapse
Affiliation(s)
- Ruben Iosif
- Foundation Conservation CarpathiaBrașovRomania
| | - Tomaž Skrbinšek
- University of Ljubljana, Biotechnical FacultyDepartment Of BiologyLjubljanaSlovenia
- DivjaLabs Ltd.LjubljanaSlovenia
| | - Nándor Erős
- Centre for Ecological ResearchInstitute of Aquatic EcologyDebrecenHungary
- Centre for Systems Biology, Biodiversity and Bioresources, Hungarian Department of Biology and EcologyBabeş‐Bolyai UniversityCluj‐NapocaRomania
| | - Marjeta Konec
- University of Ljubljana, Biotechnical FacultyDepartment Of BiologyLjubljanaSlovenia
- DivjaLabs Ltd.LjubljanaSlovenia
| | - Barbara Boljte
- University of Ljubljana, Biotechnical FacultyDepartment Of BiologyLjubljanaSlovenia
- DivjaLabs Ltd.LjubljanaSlovenia
| | - Maja Jan
- University of Ljubljana, Biotechnical FacultyDepartment Of BiologyLjubljanaSlovenia
| | | |
Collapse
|
2
|
Santostasi NL, Bauduin S, Grente O, Gimenez O, Ciucci P. Simulating the efficacy of wolf-dog hybridization management with individual-based modeling. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025; 39:e14312. [PMID: 38894638 PMCID: PMC11780192 DOI: 10.1111/cobi.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 06/21/2024]
Abstract
Introgressive hybridization between wolves and dogs is a conservation concern due to its potentially deleterious long-term evolutionary consequences. European legislation requires that wolf-dog hybridization be mitigated through effective management. We developed an individual-based model (IBM) to simulate the life cycle of gray wolves that incorporates aspects of wolf sociality that affect hybridization rates (e.g., the dissolution of packs after the death of one/both breeders) with the goal of informing decision-making on management of wolf-dog hybridization. We applied our model by projecting hybridization dynamics in a local wolf population under different mate choice and immigration scenarios and contrasted results of removal of admixed individuals with their sterilization and release. In several scenarios, lack of management led to complete admixture, whereas reactive management interventions effectively reduced admixture in wolf populations. Management effectiveness, however, strongly depended on mate choice and number and admixture level of individuals immigrating into the wolf population. The inclusion of anthropogenic mortality affecting parental and admixed individuals (e.g., poaching) increased the probability of pack dissolution and thus increased the probability of interbreeding with dogs or admixed individuals and boosted hybridization and introgression rates in all simulation scenarios. Recognizing the necessity of additional model refinements (appropriate parameterization, thorough sensitivity analyses, and robust model validation) to generate management recommendations applicable in real-world scenarios, we maintain confidence in our model's potential as a valuable conservation tool that can be applied to diverse situations and species facing similar threats.
Collapse
Affiliation(s)
- Nina Luisa Santostasi
- Department of Biology and Biotechnologies “Charles Darwin”Sapienza University of RomeRomaItaly
- CEFECNRS, Univ. Montpellier, EPHE, IRDMontpellierFrance
- National Biodiversity Future CenterPalermoItaly
| | - Sarah Bauduin
- Direction de la Recherche et Appui Scientifique, Service Conservation et Gestion des Espèces à EnjeuxOffice Français de la BiodiversitéJuvignacFrance
| | - Oksana Grente
- CEFECNRS, Univ. Montpellier, EPHE, IRDMontpellierFrance
| | | | - Paolo Ciucci
- Department of Biology and Biotechnologies “Charles Darwin”Sapienza University of RomeRomaItaly
- National Biodiversity Future CenterPalermoItaly
| |
Collapse
|
3
|
Sarabia C, Salado I, Fernández-Gil A, vonHoldt BM, Hofreiter M, Vilà C, Leonard JA. Potential Adaptive Introgression From Dogs in Iberian Grey Wolves (Canis lupus). Mol Ecol 2025:e17639. [PMID: 39791197 DOI: 10.1111/mec.17639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
Invading species along with increased anthropogenization may lead to hybridization events between wild species and closely related domesticates. As a consequence, wild species may carry introgressed alleles from domestic species, which is generally assumed to yield adverse effects in wild populations. The opposite evolutionary consequence, adaptive introgression, where introgressed genes are positively selected in the wild species, is possible but has rarely been documented. Grey wolves (Canis lupus) are widely distributed across the Holarctic and frequently coexist with their close relative, the domestic dog (C. familiaris). Despite ample opportunity, hybridization rarely occurs in most populations. Here we studied the geographically isolated grey wolves of the Iberian Peninsula, who have coexisted with a large population of loosely controlled dogs for thousands of years in a human-modified landscape. We assessed the extent and impact of dog introgression on the current Iberian grey wolf population by analysing 150 whole genomes of Iberian and other Eurasian grey wolves as well as dogs originating from across Europe and western Siberia. We identified almost no recent introgression and a small (< 5%) overall ancient dog ancestry. Using a combination of single scan statistics and ancestry enrichment estimates, we identified positive selection on six genes (DAPP1, NSMCE4A, MPPED2, PCDH9, MBTPS1, and CDH13) for which wild Iberian wolves carry alleles introgressed from dogs. The genes with introgressed and positively selected alleles include functions in immune response and brain functions, which may explain some of the unique behavioural phenotypes in Iberian wolves such as their reduced dispersal compared to other wolf populations.
Collapse
Affiliation(s)
- Carlos Sarabia
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
| | - Isabel Salado
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | | | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Michael Hofreiter
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Carles Vilà
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | | |
Collapse
|
4
|
Pacheco C, Rio-Maior H, Nakamura M, Álvares F, Godinho R. Relatedness-based mate choice and female philopatry: inbreeding trends of wolf packs in a human-dominated landscape. Heredity (Edinb) 2024; 132:211-220. [PMID: 38472424 PMCID: PMC10997798 DOI: 10.1038/s41437-024-00676-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Inbreeding can reduce offspring fitness and has substantial implications for the genetic diversity and long-term viability of populations. In social cooperative canids, inbreeding is conditioned by the geographic proximity between opposite-sex kin outside natal groups and the presence of related individuals in neighbouring groups. Consequently, challenges in moving into other regions where the species is present can also affect inbreeding rates. These can be particularly problematic in areas of high human density, where movement can be restricted, even for highly vagile species. In this study, we investigate the socio-ecological dynamics of Iberian wolf packs in the human-dominated landscape of Alto Minho, in northwest Portugal, where wolves exhibit a high prevalence of short-distance dispersal and limited gene flow with neighbouring regions. We hypothesise that mating occurs regardless of relatedness, resulting in recurrent inbreeding due to high kin encounter rates. Using data from a 10-year non-invasive genetic monitoring programme and a combination of relatedness estimates and genealogical reconstructions, we describe genetic diversity, mate choice, and dispersal strategies among Alto Minho packs. In contrast with expectations, our findings reveal relatedness-based mate choice, low kin encounter rates, and a reduced number of inbreeding events. We observed a high prevalence of philopatry, particularly among female breeders, with the most common breeding strategy involving the pairing of a philopatric female with an unrelated immigrant male. Overall, wolves were not inbred, and temporal changes in genetic diversity were not significant. Our findings are discussed, considering the demographic trend of wolves in Alto Minho and its human-dominated landscape.
Collapse
Affiliation(s)
- Carolina Pacheco
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal.
| | - Helena Rio-Maior
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Mónia Nakamura
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Francisco Álvares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Raquel Godinho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal.
| |
Collapse
|
5
|
Lobo D, López-Bao JV, Godinho R. The population bottleneck of the Iberian wolf impacted genetic diversity but not admixture with domestic dogs: A temporal genomic approach. Mol Ecol 2023; 32:5986-5999. [PMID: 37855673 DOI: 10.1111/mec.17171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
After decades of intense persecution, the Iberian wolf subspecies faced a severe bottleneck in the 1970s that considerably reduced its range and population size, nearly leading to its extinction in central and southern Iberian Peninsula. Such population decline could have impacted the genetic diversity of Iberian wolves through different processes, namely genetic drift and dynamics of hybridization with domestic dogs. By contrasting the genomes of 68 contemporary with 54 historical samples spanning the periods before and immediately after the 1970s bottleneck, we found evidence of its impact on genetic diversity and dynamics of wolf-dog hybridization. Our genome-wide assessment revealed that wolves and dogs form two well-differentiated genetic groups in Iberia and that hybridization rates did not increase during the bottleneck. However, an increased number of hybrid individuals was found over time during the population re-expansion, particularly at the edge of the wolf range. We estimated a low percentage of dog ancestry (~1.4%) in historical samples, suggesting that dog introgression was not a key driver for wolf extinction in central and southern Iberia. Our findings also unveil a significant decline in genetic diversity in contemporary samples, with the highest proportion of homozygous segments in the genome being recently inherited. Overall, our study provides unprecedented insight into the impact of a sharp decline on the Iberian wolf genome and refines our understanding of the ecological and evolutionary drivers of wolf-dog hybridization in the wild.
Collapse
Affiliation(s)
- Diana Lobo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - José Vicente López-Bao
- Biodiversity Research Institute (CSIC - Oviedo University - Principality of Asturias) Oviedo University, Mieres, Spain
| | - Raquel Godinho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
6
|
Werhahn G, Senn H, Macdonald DW, Sillero-Zubiri C. The Diversity in the Genus Canis Challenges Conservation Biology: A Review of Available Data on Asian Wolves. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.782528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Taxa belonging to the Genus Canis can challenge taxonomists because species boundaries and distribution ranges are often gradual. Species delineation within Canis is currently not based on consistent criteria, and is hampered by geographical bias and lack of taxonomic research. But a consistent taxonomy is critical, given its importance for assigning legal protection, conservation priorities, and financial resources. We carried out a qualitative review of the major wolf lineages so far identified from Asia from historical to contemporary time and considered relevant morphological, ecological, and genetic evidence. We present full mitochondrial phylogenies and genetic distances between these lineages. This review aims to summarize the available data on contemporary Asian wolf lineages within the context of the larger phylogenetic Canis group and to work toward a taxonomy that is consistent within the Canidae. We found support for the presence and taxon eligibility of Holarctic gray, Himalayan/Tibetan, Indian, and Arabian wolves in Asia and recommend their recognition at the taxonomic levels consistent within the group.
Collapse
|
7
|
A reduced SNP panel to trace gene flow across southern European wolf populations and detect hybridization with other Canis taxa. Sci Rep 2022; 12:4195. [PMID: 35264717 PMCID: PMC8907317 DOI: 10.1038/s41598-022-08132-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 03/01/2022] [Indexed: 12/18/2022] Open
Abstract
Intra- and inter-specific gene flow are natural evolutionary processes. However, human-induced hybridization is a global conservation concern across taxa, and the development of discriminant genetic markers to differentiate among gene flow processes is essential. Wolves (Canis lupus) are affected by hybridization, particularly in southern Europe, where ongoing recolonization of historic ranges is augmenting gene flow among divergent populations. Our aim was to provide diagnostic canid markers focused on the long-divergent Iberian, Italian and Dinaric wolf populations, based on existing genomic resources. We used 158 canid samples to select a panel of highly informative single nucleotide polymorphisms (SNPs) to (i) distinguish wolves in the three regions from domestic dogs (C. l. familiaris) and golden jackals (C. aureus), and (ii) identify their first two hybrid generations. The resulting 192 SNPs correctly identified the five canid groups, all simulated first-generation (F1) hybrids (0.482 ≤ Qi ≤ 0.512 between their respective parental groups) and all first backcross (BC1) individuals (0.723 ≤ Qi ≤ 0.827 to parental groups). An assay design and test with invasive and non-invasive canid samples performed successfully for 178 SNPs. By separating natural population admixture from inter-specific hybridization, our reduced panel can help advance evolutionary research, monitoring, and timely conservation management.
Collapse
|
8
|
Dziech A. Identification of Wolf-Dog Hybrids in Europe – An Overview of Genetic Studies. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.760160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Significant development of genetic tools during the last decades provided opportunities for more detailed analyses and deeper understanding of species hybridization. New genetic markers allowed for reliable identification of admixed individuals deriving from recent hybridization events (a few generations) and those originating from crossings up to 19 generations back. Implementation of microsatellites (STRs) together with Bayesian clustering provided abundant knowledge regarding presence of admixed individuals in numerous populations and helped understand the problematic nature of studying hybridization (i.a., defining a reliable thresholds for recognizing individuals as admixed or obtaining well-grounded results representing actual proportion of hybrids in a population). Nevertheless, their utilization is limited to recent crossbreeding events. Single Nucleotide Polymorphisms (SNPs) proved to be more sensible tools for admixture analyses furnishing more reliable knowledge, especially for older generation backcrosses. Small sets of Ancestry Informative Markers (AIMs) of both types of markers were effective enough to implement in monitoring programs, however, SNPs seem to be more appropriate because of their ability to identify admixed individuals up to 3rd generations. The main aim of this review is to summarize abundant knowledge regarding identification of wolf-dog hybrids in Europe and discuss the most relevant problems relating to the issue, together with advantages and disadvantages of implemented markers and approaches.
Collapse
|
9
|
Santostasi NL, Gimenez O, Caniglia R, Fabbri E, Molinari L, Reggioni W, Ciucci P. Estimating Admixture at the Population Scale: Taking Imperfect Detectability and Uncertainty in Hybrid Classification Seriously. J Wildl Manage 2021. [DOI: 10.1002/jwmg.22038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nina L. Santostasi
- Department of Biology and Biotechnologies “Charles Darwin” University of Rome La Sapienza Rome Italy
| | - Olivier Gimenez
- CEFE, CNRS University of Montpellier, University Paul Valéry Montpellier 3, EPHE, IRD Montpellier France
| | - Romolo Caniglia
- Italian Institute for Environmental Protection and Research (ISPRA), Unit for Conservation Genetics (BIO–CGE), Ozzano dell'Emilia Italy
| | - Elena Fabbri
- Italian Institute for Environmental Protection and Research (ISPRA), Unit for Conservation Genetics (BIO–CGE), Ozzano dell'Emilia Italy
| | - Luigi Molinari
- Wolf Apennine Center, Appennino Tosco‐Emiliano National Park, Ligonchio Italy
| | - Willy Reggioni
- Wolf Apennine Center, Appennino Tosco‐Emiliano National Park, Ligonchio Italy
| | - Paolo Ciucci
- CEFE, CNRS University of Montpellier, University Paul Valéry Montpellier 3, EPHE, IRD Montpellier France
| |
Collapse
|
10
|
Ravagni S, Sanchez-Donoso I, Vilà C. Biased assessment of ongoing admixture using STRUCTURE in the absence of reference samples. Mol Ecol Resour 2020; 21:677-689. [PMID: 33085825 DOI: 10.1111/1755-0998.13286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 11/30/2022]
Abstract
Detection of hybridization and introgression is important in ecological research as in conservation and evolutionary biology. STRUCTURE is one of the most popular software to study introgression and allows estimating what proportion of the genome of each individual belongs to each ancestral population, even in cases where no reference sample from the ancestral nonadmixed populations is previously identified. In spite of its frequent use, some studies have indicated that ancestry estimates may not always be reliable. We simulated population data under different conditions with regard to the genetic differentiation between ancestral populations, number of loci considered, number of alleles per marker and hybridization rate, and analysed data with STRUCTURE. When reference samples were not included, the comparison of the known degree of admixture for each simulated individual and the value estimated with STRUCTURE revealed a strong underestimation of the level of introgression, classifying many admixed individuals as nonadmixed. This derives from an inaccurate estimation of the ancestral allele frequencies. When samples from the nonadmixed ancestral population were included as reference in the analyses, the bias in the estimations was reduced. The most accurate estimates were obtained when potentially admixed samples were few in relation to reference samples. Thus, whenever possible, a very large proportion of nonadmixed reference samples should be included in admixture assessments and different approaches should be combined. The misestimate of the amount of introgression can impair our understanding of the evolutionary history of species and misguide conservation efforts.
Collapse
Affiliation(s)
- Sara Ravagni
- Conservation and Evolutionary Genetics Group, Doñana Biological Station (EBD-CSIC), Seville, Spain
| | - Ines Sanchez-Donoso
- Conservation and Evolutionary Genetics Group, Doñana Biological Station (EBD-CSIC), Seville, Spain
| | - Carles Vilà
- Conservation and Evolutionary Genetics Group, Doñana Biological Station (EBD-CSIC), Seville, Spain
| |
Collapse
|
11
|
Buglione M, Troisi SR, Petrelli S, van Vugt M, Notomista T, Troiano C, Bellomo A, Maselli V, Gregorio R, Fulgione D. The First Report on the Ecology and Distribution of the Wolf Population in Cilento, Vallo di Diano and Alburni National Park. BIOL BULL+ 2020. [DOI: 10.1134/s1062359021010040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Korablev MP, Korablev NP, Korablev PN. Genetic diversity and population structure of the grey wolf (Canis lupus Linnaeus, 1758) and evidence of wolf × dog hybridisation in the centre of European Russia. Mamm Biol 2020. [DOI: 10.1007/s42991-020-00074-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Population genetics of the African wolf (Canis lupaster) across its range: first evidence of hybridization with domestic dogs in Africa. Mamm Biol 2020. [DOI: 10.1007/s42991-020-00059-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Silva P, Galaverni M, Ortega-Del Vecchyo D, Fan Z, Caniglia R, Fabbri E, Randi E, Wayne R, Godinho R. Genomic evidence for the Old divergence of Southern European wolf populations. Proc Biol Sci 2020; 287:20201206. [PMID: 32693716 PMCID: PMC7423677 DOI: 10.1098/rspb.2020.1206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The grey wolf (Canis lupus) is one of the most widely distributed mammals in which a variety of distinct populations have been described. However, given their currently fragmented distribution and recent history of human-induced population decline, little is known about the events that led to their differentiation. Based on the analysis of whole canid genomes, we examined the divergence times between Southern European wolf populations and their ancient demographic history. We found that all present-day Eurasian wolves share a common ancestor ca 36 000 years ago, supporting the hypothesis that all extant wolves derive from a single population that subsequently expanded after the Last Glacial Maximum. We also estimated that the currently isolated European populations of the Iberian Peninsula, Italy and the Dinarics-Balkans diverged very closely in time, ca 10 500 years ago, and maintained negligible gene flow ever since. This indicates that the current genetic and morphological distinctiveness of Iberian and Italian wolves can be attributed to their isolation dating back to the end of the Pleistocene, predating the recent human-induced extinction of wolves in Central Europe by several millennia.
Collapse
Affiliation(s)
- Pedro Silva
- CIBIO/InBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Marco Galaverni
- Conservation Unit, WWF Italia, Via Po 25/c - 00198 Roma, Italy
| | - Diego Ortega-Del Vecchyo
- International Laboratory for Human Genome Research, National Autonomous University of Mexico, Santiago de Querétaro, Querétaro 76230, Mexico
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Romolo Caniglia
- Unit for Conservation Genetics (BIO-CGE), Department for the Monitoring and Protection of the Environment and for Biodiversity Conservation, Italian Institute for Environmental Protection and Research (ISPRA), Via Cà Fornacetta 9, 40064 Ozzano dell'Emilia (Bo), Italy
| | - Elena Fabbri
- Unit for Conservation Genetics (BIO-CGE), Department for the Monitoring and Protection of the Environment and for Biodiversity Conservation, Italian Institute for Environmental Protection and Research (ISPRA), Via Cà Fornacetta 9, 40064 Ozzano dell'Emilia (Bo), Italy
| | - Ettore Randi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, Bologna 40126, Italy.,Department of Chemistry and Bioscience, Faculty of Engineering and Science, University of Aalborg, Aalborg, Denmark
| | - Robert Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Raquel Godinho
- CIBIO/InBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.,Department of Zoology, Faculty of Sciences, University of Johannesburg, Auckland Park 2006, South Africa
| |
Collapse
|
15
|
Abstract
Abstract
The gray wolf and the domestic dog are closely related species that can interbreed and produce fertile offspring. In settings where unrestrained dogs are present in the wild, hybridization can happen naturally. However, the behavior of the resulting hybrids and their ecological impact is largely understudied. In September–November 2018, a putative gray wolf was repeatedly camera-trapped in a group of 10 presumably feral dogs in a remote mountainous area (the Osogovo Mountain) along the border between Bulgaria and North Macedonia. The most feasible explanation for this individual’s atypical behavior is that it is of hybrid origin (assumption based on phenotype). To the best of our knowledge, this is the first documented observation of such a kind. A discussion of its recruitment and position in the group is presented, setting the basis for further investigation of the complex interaction between wolves, dogs and hybrids in the wild.
Collapse
|
16
|
Caniglia R, Galaverni M, Velli E, Mattucci F, Canu A, Apollonio M, Mucci N, Scandura M, Fabbri E. A standardized approach to empirically define reliable assignment thresholds and appropriate management categories in deeply introgressed populations. Sci Rep 2020; 10:2862. [PMID: 32071323 PMCID: PMC7028925 DOI: 10.1038/s41598-020-59521-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/28/2020] [Indexed: 11/09/2022] Open
Abstract
Anthropogenic hybridization is recognized as a major threat to the long-term survival of natural populations. While identifying F1 hybrids might be simple, the detection of older admixed individuals is far from trivial and it is still debated whether they should be targets of management. Examples of anthropogenic hybridization have been described between wolves and domestic dogs, with numerous cases detected in the Italian wolf population. After selecting appropriate wild and domestic reference populations, we used empirical and simulated 39-autosomal microsatellite genotypes, Bayesian assignment and performance analyses to develop a workflow to detect different levels of wolf x dog admixture. Membership proportions to the wild cluster (qiw) and performance indexes identified two q-thresholds which allowed to efficiently classify the analysed genotypes into three assignment classes: pure (with no or negligible domestic ancestry), older admixed (with a marginal domestic ancestry) and recent admixed (with a clearly detectable domestic ancestry) animals. Based on their potential to spread domestic variants, such classes were used to define three corresponding management categories: operational pure, introgressed and operational hybrid individuals. Our multiple-criteria approach can help wildlife managers and decision makers in more efficiently targeting the available resources for the long-term conservation of species threatened by anthropogenic hybridization.
Collapse
Affiliation(s)
- Romolo Caniglia
- Unit for Conservation Genetics (BIO-CGE), Italian Institute for Environmental Protection and Research (ISPRA), Ozzano dell' Emilia, Bologna, Italy.
| | | | - Edoardo Velli
- Unit for Conservation Genetics (BIO-CGE), Italian Institute for Environmental Protection and Research (ISPRA), Ozzano dell' Emilia, Bologna, Italy
| | - Federica Mattucci
- Unit for Conservation Genetics (BIO-CGE), Italian Institute for Environmental Protection and Research (ISPRA), Ozzano dell' Emilia, Bologna, Italy
| | - Antonio Canu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Marco Apollonio
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Nadia Mucci
- Unit for Conservation Genetics (BIO-CGE), Italian Institute for Environmental Protection and Research (ISPRA), Ozzano dell' Emilia, Bologna, Italy
| | - Massimo Scandura
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Elena Fabbri
- Unit for Conservation Genetics (BIO-CGE), Italian Institute for Environmental Protection and Research (ISPRA), Ozzano dell' Emilia, Bologna, Italy
| |
Collapse
|
17
|
Comparison of minidogfiler and "ASCH" STR multiplex systems for preliminary estimation of variability within wolf´s like dog breeds. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2019. [DOI: 10.1016/j.fsigss.2019.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Salvatori V, Godinho R, Braschi C, Boitani L, Ciucci P. High levels of recent wolf × dog introgressive hybridization in agricultural landscapes of central Italy. EUR J WILDLIFE RES 2019. [DOI: 10.1007/s10344-019-1313-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Donfrancesco V, Ciucci P, Salvatori V, Benson D, Andersen LW, Bassi E, Blanco JC, Boitani L, Caniglia R, Canu A, Capitani C, Chapron G, Czarnomska SD, Fabbri E, Galaverni M, Galov A, Gimenez O, Godinho R, Greco C, Hindrikson M, Huber D, Hulva P, Jedrzejewski W, Kusak J, Linnell JDC, Llaneza L, López-Bao JV, Männil P, Marucco F, Mattioli L, Milanesi P, Milleret C, Mysłajek RW, Ordiz A, Palacios V, Pedersen HC, Pertoldi C, Pilot M, Randi E, Rodríguez A, Saarma U, Sand H, Scandura M, Stronen AV, Tsingarska E, Mukherjee N. Unravelling the Scientific Debate on How to Address Wolf-Dog Hybridization in Europe. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00175] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
20
|
Karssene Y, Nowak C, Chammem M, Cocchiararo B, Nouira S. Genetic diversity of the genus Vulpes (Red fox and Fennec fox) in Tunisia based on mitochondrial DNA and noninvasive DNA sampling. Mamm Biol 2019. [DOI: 10.1016/j.mambio.2018.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Two decades of non-invasive genetic monitoring of the grey wolves recolonizing the Alps support very limited dog introgression. Sci Rep 2019; 9:148. [PMID: 30651571 PMCID: PMC6335406 DOI: 10.1038/s41598-018-37331-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
Potential hybridization between wolves and dogs has fueled the sensitive conservation and political debate underlying the recovery of the grey wolf throughout Europe. Here we provide the first genetic analysis of wolf-dog admixture in an area entirely recolonized, the northwestern Alps. As part of a long-term monitoring program, we performed genetic screening of thousands of non-invasive samples collected in Switzerland and adjacent territories since the return of the wolf in the mid-1990s. We identified a total of 115 individuals, only 2 of them showing significant signs of admixture stemming from past interbreeding with dogs, followed by backcrossing. This low rate of introgression (<2% accounting for all wolves ever detected over 1998–2017) parallels those from other European populations, especially in Western Europe (<7%). Despite potential hybridization with stray dogs, few founders and strong anthropogenic pressures, the genetic integrity of the Alpine population has remained intact throughout the entire recolonization process. In a context of widespread misinformation, this finding should reduce conflicts among the different actors involved and facilitate wolf conservation. Real-time genetic monitoring will be necessary to identify potential hybrids and support an effective management of this emblematic population.
Collapse
|
22
|
Stronen AV, Iacolina L, Ruiz-Gonzalez A. Rewilding and conservation genomics: How developments in (re)colonization ecology and genomics can offer mutual benefits for understanding contemporary evolution. Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2018.e00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
23
|
Santostasi NL, Ciucci P, Caniglia R, Fabbri E, Molinari L, Reggioni W, Gimenez O. Use of hidden Markov capture-recapture models to estimate abundance in the presence of uncertainty: Application to the estimation of prevalence of hybrids in animal populations. Ecol Evol 2019; 9:744-755. [PMID: 30766665 PMCID: PMC6362442 DOI: 10.1002/ece3.4819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 11/09/2022] Open
Abstract
Estimating the relative abundance (prevalence) of different population segments is a key step in addressing fundamental research questions in ecology, evolution, and conservation. The raw percentage of individuals in the sample (naive prevalence) is generally used for this purpose, but it is likely to be subject to two main sources of bias. First, the detectability of individuals is ignored; second, classification errors may occur due to some inherent limits of the diagnostic methods. We developed a hidden Markov (also known as multievent) capture-recapture model to estimate prevalence in free-ranging populations accounting for imperfect detectability and uncertainty in individual's classification. We carried out a simulation study to compare naive and model-based estimates of prevalence and assess the performance of our model under different sampling scenarios. We then illustrate our method with a real-world case study of estimating the prevalence of wolf (Canis lupus) and dog (Canis lupus familiaris) hybrids in a wolf population in northern Italy. We showed that the prevalence of hybrids could be estimated while accounting for both detectability and classification uncertainty. Model-based prevalence consistently had better performance than naive prevalence in the presence of differential detectability and assignment probability and was unbiased for sampling scenarios with high detectability. We also showed that ignoring detectability and uncertainty in the wolf case study would lead to underestimating the prevalence of hybrids. Our results underline the importance of a model-based approach to obtain unbiased estimates of prevalence of different population segments. Our model can be adapted to any taxa, and it can be used to estimate absolute abundance and prevalence in a variety of cases involving imperfect detection and uncertainty in classification of individuals (e.g., sex ratio, proportion of breeders, and prevalence of infected individuals).
Collapse
Affiliation(s)
- Nina Luisa Santostasi
- Department of Biology and Biotechnologies “Charles Darwin”University of Rome La SapienzaRomeItaly
- CEFE, CNRSUniversity of Montpellier, University Paul Valéry Montpellier 3, EPHE, IRDMontpellierFrance
| | - Paolo Ciucci
- Department of Biology and Biotechnologies “Charles Darwin”University of Rome La SapienzaRomeItaly
| | - Romolo Caniglia
- Italian Institute for Environmental Protection and Research (ISPRA)Unit for Conservation Genetics (BIO‐CGE)Ozzano dell'EmiliaBolognaItaly
| | - Elena Fabbri
- Italian Institute for Environmental Protection and Research (ISPRA)Unit for Conservation Genetics (BIO‐CGE)Ozzano dell'EmiliaBolognaItaly
| | - Luigi Molinari
- Wolf Apennine CenterAppennino Tosco‐Emiliano National ParkLigonchioItaly
| | - Willy Reggioni
- Wolf Apennine CenterAppennino Tosco‐Emiliano National ParkLigonchioItaly
| | - Olivier Gimenez
- CEFE, CNRSUniversity of Montpellier, University Paul Valéry Montpellier 3, EPHE, IRDMontpellierFrance
| |
Collapse
|
24
|
Gómez-Sánchez D, Olalde I, Sastre N, Enseñat C, Carrasco R, Marques-Bonet T, Lalueza-Fox C, Leonard JA, Vilà C, Ramírez O. On the path to extinction: Inbreeding and admixture in a declining grey wolf population. Mol Ecol 2018; 27:3599-3612. [DOI: 10.1111/mec.14824] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Daniel Gómez-Sánchez
- Ciencies Experimetals i de la Salut; Institut de Biologia Evolutiva (Universitat Pompeu Fabra - CSIC); Barcelona Spain
| | - Iñigo Olalde
- Ciencies Experimetals i de la Salut; Institut de Biologia Evolutiva (Universitat Pompeu Fabra - CSIC); Barcelona Spain
| | - Natalia Sastre
- Departament de Ciència Animal i dels Aliments; Facultat de Veterinària, Servei Veterinari de Genètica Molecular; Universitat Autònoma de Barcelona; Bellaterra Spain
- Department of Ecology and Evolutionary Biology; UCLA; Los Angeles California
| | | | - Rafael Carrasco
- Departamento de Biologia Animal, Biologia Vegetal y Ecología; Universidad de Jaén (UJA); Jaen Spain
| | - Tomas Marques-Bonet
- Ciencies Experimetals i de la Salut; Institut de Biologia Evolutiva (Universitat Pompeu Fabra - CSIC); Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA); Barcelona Spain
- Centro Nacional de Análisis Genómico (CNAG); Barcelona Spain
| | - Carles Lalueza-Fox
- Ciencies Experimetals i de la Salut; Institut de Biologia Evolutiva (Universitat Pompeu Fabra - CSIC); Barcelona Spain
| | - Jennifer A. Leonard
- Conservation and Evolutionary Genetics Group; Estación Biológica de Doñana (EBD-CSIC); Seville Spain
| | - Carles Vilà
- Conservation and Evolutionary Genetics Group; Estación Biológica de Doñana (EBD-CSIC); Seville Spain
| | - Oscar Ramírez
- Ciencies Experimetals i de la Salut; Institut de Biologia Evolutiva (Universitat Pompeu Fabra - CSIC); Barcelona Spain
- Vetgenomics S.L.; Bellaterra Spain
| |
Collapse
|
25
|
Noninvasive genetic assessment provides evidence of extensive gene flow and possible high movement ability in the African golden wolf. Mamm Biol 2018. [DOI: 10.1016/j.mambio.2018.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
26
|
Pilot M, Greco C, vonHoldt BM, Randi E, Jędrzejewski W, Sidorovich VE, Konopiński MK, Ostrander EA, Wayne RK. Widespread, long-term admixture between grey wolves and domestic dogs across Eurasia and its implications for the conservation status of hybrids. Evol Appl 2018; 11:662-680. [PMID: 29875809 PMCID: PMC5978975 DOI: 10.1111/eva.12595] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 01/03/2018] [Indexed: 01/05/2023] Open
Abstract
Hybridisation between a domesticated species and its wild ancestor is an important conservation problem, especially if it results in the introgression of domestic gene variants into wild species. Nevertheless, the legal status of hybrids remains unregulated, partially because of the limited understanding of the hybridisation process and its consequences. The occurrence of hybridisation between grey wolves and domestic dogs is well documented from different parts of the wolf geographic range, but little is known about the frequency of hybridisation events, their causes and the genetic impact on wolf populations. We analysed 61K SNPs spanning the canid genome in wolves from across Eurasia and North America and compared that data to similar data from dogs to identify signatures of admixture. The haplotype block analysis, which included 38 autosomes and the X chromosome, indicated the presence of individuals of mixed wolf-dog ancestry in most Eurasian wolf populations, but less admixture was present in North American populations. We found evidence for male-biased introgression of dog alleles into wolf populations, but also identified a first-generation hybrid resulting from mating between a female dog and a male wolf. We found small blocks of dog ancestry in the genomes of 62% Eurasian wolves studied and melanistic individuals with no signs of recent admixed ancestry, but with a dog-derived allele at a locus linked to melanism. Consequently, these results suggest that hybridisation has been occurring in different parts of Eurasia on multiple timescales and is not solely a recent phenomenon. Nevertheless, wolf populations have maintained genetic differentiation from dogs, suggesting that hybridisation at a low frequency does not diminish distinctiveness of the wolf gene pool. However, increased hybridisation frequency may be detrimental for wolf populations, stressing the need for genetic monitoring to assess the frequency and distribution of individuals resulting from recent admixture.
Collapse
Affiliation(s)
| | - Claudia Greco
- Department of Environmental Monitoring and Biodiversity ConservationItalian National Institute for Environmental Protection and ResearchBolognaItaly
| | - Bridgett M. vonHoldt
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNJUSA
| | - Ettore Randi
- Department of Environmental Monitoring and Biodiversity ConservationItalian National Institute for Environmental Protection and ResearchBolognaItaly
- Department 18/Section of Environmental EngineeringAalborg UniversityAalborgDenmark
| | - Włodzimierz Jędrzejewski
- Mammal Research InstitutePolish Academy of SciencesBiałowieżaPoland
- Present address:
Instituto Venezolano de Investigaciones Cientificas (IVIC)Centro de EcologiaCaracasVenezuela
| | | | | | - Elaine A. Ostrander
- Cancer Genetics and Comparative Genomics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMDUSA
| | - Robert K. Wayne
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
27
|
Toward reliable population estimates of wolves by combining spatial capture-recapture models and non-invasive DNA monitoring. Sci Rep 2018; 8:2177. [PMID: 29391588 PMCID: PMC5794931 DOI: 10.1038/s41598-018-20675-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/10/2018] [Indexed: 11/09/2022] Open
Abstract
Decision-makers in wildlife policy require reliable population size estimates to justify interventions, to build acceptance and support in their decisions and, ultimately, to build trust in managing authorities. Traditional capture-recapture approaches present two main shortcomings, namely, the uncertainty in defining the effective sampling area, and the spatially-induced heterogeneity in encounter probabilities. These limitations are overcome using spatially explicit capture-recapture approaches (SCR). Using wolves as case study, and non-invasive DNA monitoring (faeces), we implemented a SCR with a Poisson observation model in a single survey to estimate wolf density and population size, and identify the locations of individual activity centres, in NW Iberia over 4,378 km2. During the breeding period, posterior mean wolf density was 2.55 wolves/100 km2 (95%BCI = 1.87–3.51), and the posterior mean population size was 111.6 ± 18.8 wolves (95%BCI = 81.8–153.6). From simulation studies, addressing different scenarios of non-independence and spatial aggregation of individuals, we only found a slight underestimation in population size estimates, supporting the reliability of SCR for social species. The strategy used here (DNA monitoring combined with SCR) may be a cost-effective way to generate reliable population estimates for large carnivores at regional scales, especially for endangered species or populations under game management.
Collapse
|