1
|
Hector RE, Mertens JA, Nichols NN. Metabolic engineering of a stable haploid strain derived from lignocellulosic inhibitor tolerant Saccharomyces cerevisiae natural isolate YB-2625. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:190. [PMID: 38057826 DOI: 10.1186/s13068-023-02442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Significant genetic diversity exists across Saccharomyces strains. Natural isolates and domesticated brewery and industrial strains are typically more robust than laboratory strains when challenged with inhibitory lignocellulosic hydrolysates. These strains also contain genes that are not present in lab strains and likely contribute to their superior inhibitor tolerance. However, many of these strains have poor sporulation efficiencies and low spore viability making subsequent gene analysis, further metabolic engineering, and genomic analyses of the strains challenging. This work aimed to develop an inhibitor tolerant haploid with stable mating type from S. cerevisiae YB-2625, which was originally isolated from bagasse. RESULTS Haploid spores isolated from four tetrads from strain YB-2625 were tested for tolerance to furfural and HMF. Due to natural mutations present in the HO-endonuclease, all haploid strains maintained a stable mating type. One of the haploids, YRH1946, did not flocculate and showed enhanced tolerance to furfural and HMF. The tolerant haploid strain was further engineered for xylose fermentation by integration of the genes for xylose metabolism at two separate genomic locations (ho∆ and pho13∆). In fermentations supplemented with inhibitors from acid hydrolyzed corn stover, the engineered haploid strain derived from YB-2625 was able to ferment all of the glucose and 19% of the xylose, whereas the engineered lab strains performed poorly in fermentations. CONCLUSIONS Understanding the molecular mechanisms of inhibitor tolerance will aid in developing strains with improved growth and fermentation performance using biomass-derived sugars. The inhibitor tolerant, xylose fermenting, haploid strain described in this work has potential to serve as a platform strain for identifying pathways required for inhibitor tolerance, and for metabolic engineering to produce fuels and chemicals from undiluted lignocellulosic hydrolysates.
Collapse
Affiliation(s)
- Ronald E Hector
- Agricultural Research Service, USDA, National Center for Agricultural Utilization Research, (Bioenergy Research), 1815 N University, Peoria, IL, 61604, USA.
| | - Jeffrey A Mertens
- Agricultural Research Service, USDA, National Center for Agricultural Utilization Research, (Bioenergy Research), 1815 N University, Peoria, IL, 61604, USA
| | - Nancy N Nichols
- Agricultural Research Service, USDA, National Center for Agricultural Utilization Research, (Bioenergy Research), 1815 N University, Peoria, IL, 61604, USA
| |
Collapse
|
2
|
Asemoloye MD, Bello TS, Oladoye PO, Remilekun Gbadamosi M, Babarinde SO, Ebenezer Adebami G, Olowe OM, Temporiti MEE, Wanek W, Marchisio MA. Engineered yeasts and lignocellulosic biomaterials: shaping a new dimension for biorefinery and global bioeconomy. Bioengineered 2023; 14:2269328. [PMID: 37850721 PMCID: PMC10586088 DOI: 10.1080/21655979.2023.2269328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
The next milestone of synthetic biology research relies on the development of customized microbes for specific industrial purposes. Metabolic pathways of an organism, for example, depict its chemical repertoire and its genetic makeup. If genes controlling such pathways can be identified, scientists can decide to enhance or rewrite them for different purposes depending on the organism and the desired metabolites. The lignocellulosic biorefinery has achieved good progress over the past few years with potential impact on global bioeconomy. This principle aims to produce different bio-based products like biochemical(s) or biofuel(s) from plant biomass under microbial actions. Meanwhile, yeasts have proven very useful for different biotechnological applications. Hence, their potentials in genetic/metabolic engineering can be fully explored for lignocellulosic biorefineries. For instance, the secretion of enzymes above the natural limit (aided by genetic engineering) would speed-up the down-line processes in lignocellulosic biorefineries and the cost. Thus, the next milestone would greatly require the development of synthetic yeasts with much more efficient metabolic capacities to achieve basic requirements for particular biorefinery. This review gave comprehensive overview of lignocellulosic biomaterials and their importance in bioeconomy. Many researchers have demonstrated the engineering of several ligninolytic enzymes in heterologous yeast hosts. However, there are still many factors needing to be well understood like the secretion time, titter value, thermal stability, pH tolerance, and reactivity of the recombinant enzymes. Here, we give a detailed account of the potentials of engineered yeasts being discussed, as well as the constraints associated with their development and applications.
Collapse
Affiliation(s)
- Michael Dare Asemoloye
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, Nankai District, China
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Tunde Sheriffdeen Bello
- Department of Plant Biology, School of Life Sciences, Federal University of Technology Minna, Minna Niger State, Nigeria
| | | | | | - Segun Oladiran Babarinde
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | | | - Olumayowa Mary Olowe
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag, Mmabatho, South Africa
| | | | - Wolfgang Wanek
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, Nankai District, China
| |
Collapse
|
3
|
Fu J, Wang Z, Miao H, Yu C, Zheng Z, Ouyang J. Rapid adaptive evolution of Bacillus coagulans to undetoxified corncob hydrolysates for lactic acid production and new insights into its high phenolic degradation. BIORESOURCE TECHNOLOGY 2023; 383:129246. [PMID: 37247791 DOI: 10.1016/j.biortech.2023.129246] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Here, an adapted Bacillus coagulans (Weizmannia coagulans) strain CC17B-1 was developed for lignocellulosic lactic acid production through a short and rapid adaptive laboratory evolution technique. Without any detoxification, two actual corn cob hydrolysates from the factory were effectively fermented to lactic acid within 60 h. Strain CC17B-1 is capable of degrading all nine determined phenolic compounds in the hydrolysate, with the only exception being vanillic acid. Notably, its tolerances for ferulic acid and p-coumaric acid are the highest doses reported in anaerobic microbes. A proposed degradation pathway showed that strain CC17B-1 could convert phenolic aldehydes to phenolic alcohol and then further degrade them completely. This work provides new ideas for the microbe phenolic degradation pathway and paves the way for industrial lactic acid production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Jiaming Fu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zijie Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Hongcheng Miao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Chang Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhaojuan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
4
|
Sha Y, Zhou L, Wang Z, Ding Y, Lu M, Xu Z, Zhai R, Jin M. Adaptive laboratory evolution boost Yarrowia lipolytica tolerance to vanillic acid. J Biotechnol 2023; 367:42-52. [PMID: 36965629 DOI: 10.1016/j.jbiotec.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/18/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
Microbial tolerance to lignocellulose-derived inhibitors, such as aromatic acids, is critical for the economical production of biofuels and biochemicals. Here, adaptive laboratory evolution was applied to improve the tolerance of Yarrowia lipolytica to a representative aromatic acid inhibitor vanillic acid. The transcriptome profiling of evolved strain suggested that the tolerance could be related to the up-regulation of RNA processing and multidrug transporting pathways. Further analysis by reverse engineering confirmed that the amplification of YALI0_F13475g coding for transcriptional coactivator and YALI0_E25201g coding for multidrug transporter conferred tolerance not only to vanillic acid but also towards ferulic acid, p-coumaric acid, p-hydroxybenzoic acid and syringic acid. These findings suggested that regulation of RNA processing and multidrug transporting pathways may be important for enhanced aromatic acid tolerance in Y. lipolytica. This study provides valuable genetic information for robust strain construction for lignocellulosic biorefinery.
Collapse
Affiliation(s)
- Yuanyuan Sha
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Linlin Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zedi Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ying Ding
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Rui Zhai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
5
|
Ciamponi FE, Procópio DP, Murad NF, Franco TT, Basso TO, Brandão MM. Multi-omics network model reveals key genes associated with p-coumaric acid stress response in an industrial yeast strain. Sci Rep 2022; 12:22466. [PMID: 36577778 PMCID: PMC9797568 DOI: 10.1038/s41598-022-26843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
The production of ethanol from lignocellulosic sources presents increasingly difficult issues for the global biofuel scenario, leading to increased production costs of current second-generation (2G) ethanol when compared to first-generation (1G) plants. Among the setbacks encountered in industrial processes, the presence of chemical inhibitors from pre-treatment processes severely hinders the potential of yeasts in producing ethanol at peak efficiency. However, some industrial yeast strains have, either naturally or artificially, higher tolerance levels to these compounds. Such is the case of S. cerevisiae SA-1, a Brazilian fuel ethanol industrial strain that has shown high resistance to inhibitors produced by the pre-treatment of cellulosic complexes. Our study focuses on the characterization of the transcriptomic and physiological impact of an inhibitor of this type, p-coumaric acid (pCA), on this strain under chemostat cultivation via RNAseq and quantitative physiological data. It was found that strain SA-1 tend to increase ethanol yield and production rate while decreasing biomass yield when exposed to pCA, in contrast to pCA-susceptible strains, which tend to decrease their ethanol yield and fermentation efficiency when exposed to this substance. This suggests increased metabolic activity linked to mitochondrial and peroxisomal processes. The transcriptomic analysis also revealed a plethora of differentially expressed genes located in co-expressed clusters that are associated with changes in biological pathways linked to biosynthetic and energetical processes. Furthermore, it was also identified 20 genes that act as interaction hubs for these clusters, while also having association with altered pathways and changes in metabolic outputs, potentially leading to the discovery of novel targets for metabolic engineering toward a more robust industrial yeast strain.
Collapse
Affiliation(s)
- F. E. Ciamponi
- grid.411087.b0000 0001 0723 2494Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (Unicamp), Av. Cândido Rondon, 400, Campinas, SP 13083-875 Brazil
| | - D. P. Procópio
- grid.11899.380000 0004 1937 0722Department of Chemical Engineering, University of São Paulo (USP), Av. Prof. Luciano Gualberto, 380, São Paulo, SP 05508-010 Brazil
| | - N. F. Murad
- grid.411087.b0000 0001 0723 2494Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (Unicamp), Av. Cândido Rondon, 400, Campinas, SP 13083-875 Brazil
| | - T. T. Franco
- grid.411087.b0000 0001 0723 2494School of Chemical Engineering (FEQ), State University of Campinas (Unicamp), Av. Albert Einstein, 500, Campinas, SP 13083-852 Brazil
| | - T. O. Basso
- grid.11899.380000 0004 1937 0722Department of Chemical Engineering, University of São Paulo (USP), Av. Prof. Luciano Gualberto, 380, São Paulo, SP 05508-010 Brazil
| | - M. M. Brandão
- grid.411087.b0000 0001 0723 2494Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (Unicamp), Av. Cândido Rondon, 400, Campinas, SP 13083-875 Brazil
| |
Collapse
|
6
|
Lima CS, Neitzel T, Pirolla R, Dos Santos LV, Lenczak JL, Roberto IC, Rocha GJM. Metabolomic profiling of Spathaspora passalidarum fermentations reveals mechanisms that overcome hemicellulose hydrolysate inhibitors. Appl Microbiol Biotechnol 2022; 106:4075-4089. [PMID: 35622124 DOI: 10.1007/s00253-022-11987-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
Understanding the mechanisms involved in tolerance to inhibitors is the first step in developing robust yeasts for industrial second-generation ethanol (E2G) production. Here, we used ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) and MetaboAnalyst 4.0 for analysis of MS data to examine the changes in the metabolic profile of the yeast Spathaspora passalidarum during early fermentation of hemicellulosic hydrolysates containing high or low levels of inhibitors (referred to as control hydrolysate or CH and strategy hydrolysate or SH, respectively). During fermentation of SH, the maximum ethanol production was 16 g L-1 with a yield of 0.28 g g-1 and productivity of 0.22 g L-1 h-1, whereas maximum ethanol production in CH fermentation was 1.74 g L-1 with a yield of 0.11 g g-1 and productivity of 0.01 g L-1 h-1. The high level of inhibitors in CH induced complex physiological and biochemical responses related to stress tolerance in S. passalidarum. This yeast converted compounds with aldehyde groups (hydroxymethylfurfural, furfural, 4-hydroxybenzaldehyde, syringaldehyde, and vanillin) into less toxic compounds, and inhibitors were found to reduce cell viability and ethanol production. Intracellularly, high levels of inhibitors altered the energy homeostasis and redox balance, resulting in lower levels of ATP and NADPH, while that of glycolytic, pentose phosphate, and tricarboxylic acid (TCA) cycle pathways were the most affected, being the catabolism of glucogenic amino acids, the main cellular response to inhibitor-induced stress. This metabolomic investigation reveals interesting targets for metabolic engineering of ethanologenic yeast strains tolerant against multiple inhibitors for E2G production. KEY POINTS: • Inhibitors in the hydrolysates affected the yeast's redox balance and energy status. • Inhibitors altered the glycolytic, pentose phosphate, TCA cycle and amino acid pathways. • S. passalidarum converted aldehyde groups into less toxic compounds.
Collapse
Affiliation(s)
- Cleilton Santos Lima
- Department of Biotechnology, Engineering College of Lorena, University of São Paulo (USP), Estrada Municipal Do Campinho, s/n, Campinho, Lorena, SP, 12602-810, Brazil. .,Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Rua Giuseppe Máximo Scolfaro 10.000, Campinas, SP, 13083-100, Brazil.
| | - Thiago Neitzel
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Rua Giuseppe Máximo Scolfaro 10.000, Campinas, SP, 13083-100, Brazil.,Program in Bioenergy, Faculty of Food Engineering, State University of Campinas (UNICAMP), Rua Monteiro Lobato 80, Campinas, SP, 13083-862, Brazil
| | - Renan Pirolla
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Rua Giuseppe Máximo Scolfaro 10.000, Campinas, SP, 13083-100, Brazil
| | - Leandro Vieira Dos Santos
- Senai Innovation Institute for Biotechnology, São Paulo, SP, 01130-000, Brazil.,Genetics and Molecular Biology Graduate Program, Institute of Biology, State University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas, 13083-862, Brazil
| | - Jaciane Lutz Lenczak
- Department of Chemical Engineering and Food Engineering, University Campus - CTC, Federal University of Santa Catarina (UFSC), R. Do Biotério Central, Córrego Grande, s/n Florianópolis, SC, 88040-900, Brazil
| | - Inês Conceição Roberto
- Department of Biotechnology, Engineering College of Lorena, University of São Paulo (USP), Estrada Municipal Do Campinho, s/n, Campinho, Lorena, SP, 12602-810, Brazil
| | - George J M Rocha
- Department of Biotechnology, Engineering College of Lorena, University of São Paulo (USP), Estrada Municipal Do Campinho, s/n, Campinho, Lorena, SP, 12602-810, Brazil. .,Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Rua Giuseppe Máximo Scolfaro 10.000, Campinas, SP, 13083-100, Brazil.
| |
Collapse
|
7
|
How adaptive laboratory evolution can boost yeast tolerance to lignocellulosic hydrolyses. Curr Genet 2022; 68:319-342. [PMID: 35362784 DOI: 10.1007/s00294-022-01237-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 12/25/2022]
Abstract
The yeast Saccharomyces cerevisiae is an excellent candidate for establishing cell factories to convert lignocellulosic biomass into chemicals and fuels. To enable this technology, yeast robustness must be improved to withstand the fermentation inhibitors (e.g., weak organic acids, phenols, and furan aldehydes) resulting from biomass pretreatment and hydrolysis. Here, we discuss how evolution experiments performed in the lab, a method commonly known as adaptive laboratory evolution (ALE), may contribute to lifting yeast tolerance against the inhibitors of lignocellulosic hydrolysates (LCHs). The key is that, through the combination of whole-genome sequencing and reverse engineering, ALE provides a robust platform for discovering and testing adaptive alleles, allowing to explore the genetic underpinnings of yeast responses to LCHs. We review the insights gained from past evolution experiments with S. cerevisiae in LCH inhibitors and propose experimental designs to optimise the discovery of genetic variants adaptive to biomass toxicity. The knowledge gathered through ALE projects is envisaged as a roadmap to engineer superior yeast strains for biomass-based bioprocesses.
Collapse
|
8
|
Data mining of Saccharomyces cerevisiae mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates. Biotechnol Adv 2022; 57:107947. [DOI: 10.1016/j.biotechadv.2022.107947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
|
9
|
Stress modulation as a means to improve yeasts for lignocellulose bioconversion. Appl Microbiol Biotechnol 2021; 105:4899-4918. [PMID: 34097119 DOI: 10.1007/s00253-021-11383-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022]
Abstract
The second-generation (2G) fermentation environment for lignocellulose conversion presents unique challenges to the fermentative organism that do not necessarily exist in other industrial fermentations. While extreme osmotic, heat, and nutrient starvation stresses are observed in sugar- and starch-based fermentation environments, additional pre-treatment-derived inhibitor stress, potentially exacerbated by stresses such as pH and product tolerance, exist in the 2G environment. Furthermore, in a consolidated bioprocessing (CBP) context, the organism is also challenged to secrete enzymes that may themselves lead to unfolded protein response and other stresses. This review will discuss responses of the yeast Saccharomyces cerevisiae to 2G-specific stresses and stress modulation strategies that can be followed to improve yeasts for this application. We also explore published -omics data and discuss relevant rational engineering, reverse engineering, and adaptation strategies, with the view of identifying genes or alleles that will make positive contributions to the overall robustness of 2G industrial strains. KEYPOINTS: • Stress tolerance is a key driver to successful application of yeast strains in biorefineries. • A wealth of data regarding stress responses has been gained through omics studies. • Integration of this knowledge could inform engineering of fit for purpose strains.
Collapse
|
10
|
Yaguchi AL, Lee SJ, Blenner MA. Synthetic Biology towards Engineering Microbial Lignin Biotransformation. Trends Biotechnol 2021; 39:1037-1064. [PMID: 33712323 DOI: 10.1016/j.tibtech.2021.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 01/19/2023]
Abstract
Lignin is the second most abundant biopolymer on earth and is a major source of aromatic compounds; however, it is vastly underutilized owing to its heterogeneous and recalcitrant nature. Microorganisms have evolved efficient mechanisms that overcome these challenges to depolymerize lignin and funnel complex mixtures of lignin-derived monomers to central metabolites. This review summarizes recent synthetic biology efforts to enhance lignin depolymerization and aromatic catabolism in bacterial and fungal hosts for the production of both natural and novel bioproducts. We also highlight difficulties in engineering complex phenotypes and discuss the outlook for the future of lignin biological valorization.
Collapse
Affiliation(s)
- Allison L Yaguchi
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 South Palmetto Boulevard, Clemson, SC 29634, USA
| | - Stephen J Lee
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 South Palmetto Boulevard, Clemson, SC 29634, USA
| | - Mark A Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 South Palmetto Boulevard, Clemson, SC 29634, USA; Current address: Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA.
| |
Collapse
|
11
|
Detering T, Mundry K, Berger RG. Generation of 4-vinylguaiacol through a novel high-affinity ferulic acid decarboxylase to obtain smoke flavours without carcinogenic contaminants. PLoS One 2020; 15:e0244290. [PMID: 33347481 PMCID: PMC7751879 DOI: 10.1371/journal.pone.0244290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
Traditional smoke flavours bear the risk of containing a multitude of contaminating carcinogenic side-products. Enzymatic decarboxylation of ferulic acid released from agro-industrial side-streams by ferulic acid esterases (FAE) enables the sustainable generation of pure, food grade 4-vinylguaiacol (4-VG), the impact compound of smoke flavour. The first basidiomycetous ferulic acid decarboxylase (FAD) was isolated from Schizophyllum commune (ScoFAD) and heterologously produced by Komagataella phaffii. It showed a molecular mass of 21 kDa, catalytic optima at pH 5.5 and 35°C, and a sequence identity of 63.6% to its next relative, a FAD from the ascomycete Cordyceps farinosa. The ScoFAD exhibited a high affinity to its only known substrate ferulic acid (FA) of 0.16 mmol L-1 and a turnover number of 750 s-1. The resulting catalytic efficiency kcat KM-1 of 4,779 L s-1 mmol-1 exceeded the next best known enzyme by more than a factor of 50. Immobilised on AminoLink Plus Agarose, ScoFAD maintained its activity for several days. The combination with FAEs and agro-industrial side-streams paves the way for a new generation of sustainable, clean, and safe smoke flavours.
Collapse
Affiliation(s)
- Thorben Detering
- Institut of Food Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, Hanover, Lower Saxony, Germany
- * E-mail:
| | - Katharina Mundry
- Institut of Food Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, Hanover, Lower Saxony, Germany
| | - Ralf G. Berger
- Institut of Food Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, Hanover, Lower Saxony, Germany
| |
Collapse
|
12
|
Teymennet-Ramírez KV, Martínez-Morales F, Muñoz-Garay C, Bertrand B, Morales-Guzmán D, Trejo-Hernández MR. Laccase treatment of phenolic compounds for bioethanol production and the impact of these compounds on yeast physiology. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1856820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Karla V. Teymennet-Ramírez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Fernando Martínez-Morales
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Carlos Muñoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (ICF-UNAM), Cuernavaca, México
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (ICF-UNAM), Cuernavaca, México
| | - Daniel Morales-Guzmán
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - María R. Trejo-Hernández
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| |
Collapse
|
13
|
Fletcher E, Baetz K. Multi-Faceted Systems Biology Approaches Present a Cellular Landscape of Phenolic Compound Inhibition in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2020; 8:539902. [PMID: 33154962 PMCID: PMC7591714 DOI: 10.3389/fbioe.2020.539902] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/02/2020] [Indexed: 01/18/2023] Open
Abstract
Synthetic biology has played a major role in engineering microbial cell factories to convert plant biomass (lignocellulose) to fuels and bioproducts by fermentation. However, the final product yield is limited by inhibition of microbial growth and fermentation by toxic phenolic compounds generated during lignocellulosic pre-treatment and hydrolysis. Advances in the development of systems biology technologies (genomics, transcriptomics, proteomics, metabolomics) have rapidly resulted in large datasets which are necessary to obtain a holistic understanding of complex biological processes underlying phenolic compound toxicity. Here, we review and compare different systems biology tools that have been utilized to identify molecular mechanisms that modulate phenolic compound toxicity in Saccharomyces cerevisiae. By focusing on and comparing functional genomics and transcriptomics approaches we identify common mechanisms potentially underlying phenolic toxicity. Additionally, we discuss possible ways by which integration of data obtained across multiple unbiased approaches can result in new avenues to develop yeast strains with a significant improvement in tolerance to phenolic fermentation inhibitors.
Collapse
Affiliation(s)
- Eugene Fletcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Kristin Baetz
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
14
|
|
15
|
de Witt RN, Kroukamp H, Van Zyl WH, Paulsen IT, Volschenk H. QTL analysis of natural Saccharomyces cerevisiae isolates reveals unique alleles involved in lignocellulosic inhibitor tolerance. FEMS Yeast Res 2020; 19:5528620. [PMID: 31276593 DOI: 10.1093/femsyr/foz047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022] Open
Abstract
Decoding the genetic basis of lignocellulosic inhibitor tolerance in Saccharomyces cerevisiae is crucial for rational engineering of bioethanol strains with enhanced robustness. The genetic diversity of natural strains present an invaluable resource for the exploration of complex traits of industrial importance from a pan-genomic perspective to complement the limited range of specialised, tolerant industrial strains. Natural S. cerevisiae isolates have lately garnered interest as a promising toolbox for engineering novel, genetically encoded tolerance phenotypes into commercial strains. To this end, we investigated the genetic basis for lignocellulosic inhibitor tolerance of natural S. cerevisiae isolates. A total of 12 quantitative trait loci underpinning tolerance were identified by next-generation sequencing linked bulk-segregant analysis of superior interbred pools. Our findings corroborate the current perspective of lignocellulosic inhibitor tolerance as a multigenic, complex trait. Apart from a core set of genetic variants required for inhibitor tolerance, an additional genetic background-specific response was observed. Functional analyses of the identified genetic loci revealed the uncharacterised ORF, YGL176C and the bud-site selection XRN1/BUD13 as potentially beneficial alleles contributing to tolerance to a complex lignocellulosic inhibitor mixture. We present evidence for the consideration of both regulatory and coding sequence variants for strain improvement.
Collapse
Affiliation(s)
- R N de Witt
- Department of Microbiology, Stellenbosch University, De Beer Street, Stellenbosch 7600, Western Cape, South Africa
| | - H Kroukamp
- Department of Molecular Sciences, Macquarie University, Balaclava Rd, North Ryde, NSW 2109, Australia
| | - W H Van Zyl
- Department of Microbiology, Stellenbosch University, De Beer Street, Stellenbosch 7600, Western Cape, South Africa
| | - I T Paulsen
- Department of Molecular Sciences, Macquarie University, Balaclava Rd, North Ryde, NSW 2109, Australia
| | - H Volschenk
- Department of Microbiology, Stellenbosch University, De Beer Street, Stellenbosch 7600, Western Cape, South Africa
| |
Collapse
|
16
|
Xia J, Yang Y, Liu CG, Yang S, Bai FW. Engineering Zymomonas mobilis for Robust Cellulosic Ethanol Production. Trends Biotechnol 2019; 37:960-972. [DOI: 10.1016/j.tibtech.2019.02.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
|
17
|
Lubbers RJM, Dilokpimol A, Visser J, Mäkelä MR, Hildén KS, de Vries RP. A comparison between the homocyclic aromatic metabolic pathways from plant-derived compounds by bacteria and fungi. Biotechnol Adv 2019; 37:107396. [PMID: 31075306 DOI: 10.1016/j.biotechadv.2019.05.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/18/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Abstract
Aromatic compounds derived from lignin are of great interest for renewable biotechnical applications. They can serve in many industries e.g. as biochemical building blocks for bioplastics or biofuels, or as antioxidants, flavor agents or food preservatives. In nature, lignin is degraded by microorganisms, which results in the release of homocyclic aromatic compounds. Homocyclic aromatic compounds can also be linked to polysaccharides, tannins and even found freely in plant biomass. As these compounds are often toxic to microbes already at low concentrations, they need to be degraded or converted to less toxic forms. Prior to ring cleavage, the plant- and lignin-derived aromatic compounds are converted to seven central ring-fission intermediates, i.e. catechol, protocatechuic acid, hydroxyquinol, hydroquinone, gentisic acid, gallic acid and pyrogallol through complex aromatic metabolic pathways and used as energy source in the tricarboxylic acid cycle. Over the decades, bacterial aromatic metabolism has been described in great detail. However, the studies on fungal aromatic pathways are scattered over different pathways and species, complicating a comprehensive view of fungal aromatic metabolism. In this review, we depicted the similarities and differences of the reported aromatic metabolic pathways in fungi and bacteria. Although both microorganisms share the main conversion routes, many alternative pathways are observed in fungi. Understanding the microbial aromatic metabolic pathways could lead to metabolic engineering for strain improvement and promote valorization of lignin and related aromatic compounds.
Collapse
Affiliation(s)
- Ronnie J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| | - Kristiina S Hildén
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| |
Collapse
|
18
|
Hacısalihoğlu B, Holyavkin C, Topaloğlu A, Kısakesen Hİ, Çakar ZP. Genomic and transcriptomic analysis of a coniferyl aldehyde-resistant Saccharomyces cerevisiae strain obtained by evolutionary engineering. FEMS Yeast Res 2019; 19:5369625. [DOI: 10.1093/femsyr/foz021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/03/2019] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT
Phenolic inhibitors in lignocellulosic hydrolysates interfere with the performance of fermenting microorganisms. Among these, coniferyl aldehyde is one of the most toxic inhibitors. In this study, genetically stable Saccharomyces cerevisiae mutants with high coniferyl aldehyde resistance were successfully obtained for the first time by using an evolutionary engineering strategy, based on the systematic application of increasing coniferyl aldehyde stress in batch cultures. Among the selected coniferyl aldehyde-resistant mutants, the highly resistant strain called BH13 was also cross-resistant to other phenolic inhibitors, vanillin, ferulic acid and 4-hydroxybenzaldehyde. In the presence of 1.2 mM coniferyl aldehyde stress, BH13 had a significantly reduced lag phase, which was less than 3 h and only about 25% of that of the reference strain and converted coniferyl aldehyde faster. Additionally, there was no reduction in its growth rate, either. Comparative transcriptomic analysis of a highly coniferyl aldehyde-resistant mutant revealed upregulation of the genes involved in energy pathways, response to oxidative stress and oxidoreductase activity in the mutant strain BH13, already under non-stress conditions. Transcripts associated with pleiotropic drug resistance were also identified as upregulated. Genome re-sequencing data generally supported transcriptomic results and identified gene targets that may have a potential role in coniferyl aldehyde resistance.
Collapse
Affiliation(s)
- Burcu Hacısalihoğlu
- Department of Molecular Biology and Genetics, Faculty of Science & Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, 25050, Turkey
| | - Can Holyavkin
- Department of Molecular Biology and Genetics, Faculty of Science & Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Alican Topaloğlu
- Department of Molecular Biology and Genetics, Faculty of Science & Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Halil İbrahim Kısakesen
- Department of Molecular Biology and Genetics, Faculty of Science & Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Zeynep Petek Çakar
- Department of Molecular Biology and Genetics, Faculty of Science & Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| |
Collapse
|
19
|
Chen PC, Zhang H, Zheng P. Direct biodegradation of eugenol to coniferyl aldehyde and other higher value-added products by Gibberella fujikuroi ZH-34. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2018.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
20
|
Moreno AD, Carbone A, Pavone R, Olsson L, Geijer C. Evolutionary engineered Candida intermedia exhibits improved xylose utilization and robustness to lignocellulose-derived inhibitors and ethanol. Appl Microbiol Biotechnol 2019; 103:1405-1416. [PMID: 30498977 PMCID: PMC6394480 DOI: 10.1007/s00253-018-9528-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/25/2018] [Accepted: 11/17/2018] [Indexed: 01/27/2023]
Abstract
The development of robust microorganisms that can efficiently ferment both glucose and xylose represents one of the major challenges in achieving a cost-effective lignocellulosic bioethanol production. Candida intermedia is a non-conventional, xylose-utilizing yeast species with a high-capacity xylose transport system. The natural ability of C. intermedia to produce ethanol from xylose makes it attractive as a non-GMO alternative for lignocellulosic biomass conversion in biorefineries. We have evaluated the fermentation capacity and the tolerance to lignocellulose-derived inhibitors and the end product, ethanol, of the C. intermedia strain CBS 141442 isolated from steam-exploded wheat straw hydrolysate. In a mixed sugar fermentation medium, C. intermedia CBS 141442 co-fermented glucose and xylose, although with a preference for glucose over xylose. The strain was clearly more sensitive to inhibitors and ethanol when consuming xylose than glucose. C. intermedia CBS 141442 was also subjected to evolutionary engineering with the aim of increasing its tolerance to inhibitors and ethanol, and thus improving its fermentation capacity under harsh conditions. The resulting evolved population was able to ferment a 50% (v/v) steam-exploded wheat straw hydrolysate (which was completely inhibitory to the parental strain), improving the sugar consumption and the final ethanol concentration. The evolved population also exhibited a better tolerance to ethanol when growing in a xylose medium supplemented with 35.5 g/L ethanol. These results highlight the potential of C. intermedia CBS 141442 to become a robust yeast for the conversion of lignocellulose to ethanol.
Collapse
Affiliation(s)
- Antonio D Moreno
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, 41296, Gothenburg, Sweden
- Department of Energy, Biofuels Unit, CIEMAT, Madrid, Spain
| | - Antonella Carbone
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Rosita Pavone
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Lisbeth Olsson
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, 41296, Gothenburg, Sweden.
| | - Cecilia Geijer
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, 41296, Gothenburg, Sweden
| |
Collapse
|
21
|
Fletcher E, Gao K, Mercurio K, Ali M, Baetz K. Yeast chemogenomic screen identifies distinct metabolic pathways required to tolerate exposure to phenolic fermentation inhibitors ferulic acid, 4-hydroxybenzoic acid and coniferyl aldehyde. Metab Eng 2018; 52:98-109. [PMID: 30471359 DOI: 10.1016/j.ymben.2018.11.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 01/30/2023]
Abstract
The conversion of plant material into biofuels and high value products is a two-step process of hydrolysing plant lignocellulose and next fermenting the sugars produced. However, lignocellulosic hydrolysis not only frees sugars for fermentation it simultaneously generates toxic chemicals, including phenolic compounds which severely inhibit yeast fermentation. To understand the molecular basis of phenolic compound toxicity, we performed genome-wide chemogenomic screens in Saccharomyces cerevisiae to identify deletion mutants that were either hypersensitive or resistant to three common phenolic compounds found in plant hydrolysates: coniferyl aldehyde, ferulic acid and 4-hydroxybenzoic acid. Despite being similar in structure, our screen revealed that yeast utilizes distinct pathways to tolerate phenolic compound exposure. Furthermore, although each phenolic compound induced reactive oxygen species (ROS), ferulic acid and 4-hydroxybenzoic acid-induced a general cytoplasmic ROS distribution while coniferyl aldehyde-induced ROS partially localized to the mitochondria and to a lesser extent, the endoplasmic reticulum. We found that the glucose-6-phosphate dehydrogenase enzyme Zwf1, which catalyzes the rate limiting step of pentose phosphate pathway, is required for reducing the accummulation of coniferyl aldehyde-induced ROS, potentially through the sequestering of Zwf1 to sites of ROS accumulation. Our novel insights into biological impact of three common phenolic inhibitors will inform the engineering of yeast strains with improved efficiency of biofuel and biochemical production in the presence hydrolysate-derived phenolic compounds.
Collapse
Affiliation(s)
- Eugene Fletcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Kai Gao
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Kevin Mercurio
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Mariam Ali
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Kristin Baetz
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5.
| |
Collapse
|
22
|
Cunha JT, Romaní A, Costa CE, Sá-Correia I, Domingues L. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions. Appl Microbiol Biotechnol 2018; 103:159-175. [PMID: 30397768 DOI: 10.1007/s00253-018-9478-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 11/27/2022]
Abstract
Lignocellulose-based biorefineries have been gaining increasing attention to substitute current petroleum-based refineries. Biomass processing requires a pretreatment step to break lignocellulosic biomass recalcitrant structure, which results in the release of a broad range of microbial inhibitors, mainly weak acids, furans, and phenolic compounds. Saccharomyces cerevisiae is the most commonly used organism for ethanol production; however, it can be severely distressed by these lignocellulose-derived inhibitors, in addition to other challenging conditions, such as pentose sugar utilization and the high temperatures required for an efficient simultaneous saccharification and fermentation step. Therefore, a better understanding of the yeast response and adaptation towards the presence of these multiple stresses is of crucial importance to design strategies to improve yeast robustness and bioconversion capacity from lignocellulosic biomass. This review includes an overview of the main inhibitors derived from diverse raw material resultants from different biomass pretreatments, and describes the main mechanisms of yeast response to their presence, as well as to the presence of stresses imposed by xylose utilization and high-temperature conditions, with a special emphasis on the synergistic effect of multiple inhibitors/stressors. Furthermore, successful cases of tolerance improvement of S. cerevisiae are highlighted, in particular those associated with other process-related physiologically relevant conditions. Decoding the overall yeast response mechanisms will pave the way for the integrated development of sustainable yeast cell-based biorefineries.
Collapse
Affiliation(s)
- Joana T Cunha
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal
| | - Aloia Romaní
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal
| | - Carlos E Costa
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Lucília Domingues
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
23
|
Yaguchi A, Spagnuolo M, Blenner M. Engineering yeast for utilization of alternative feedstocks. Curr Opin Biotechnol 2018; 53:122-129. [DOI: 10.1016/j.copbio.2017.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 11/16/2022]
|
24
|
Serra Colomer M, Funch B, Forster J. The raise of Brettanomyces yeast species for beer production. Curr Opin Biotechnol 2018; 56:30-35. [PMID: 30173102 DOI: 10.1016/j.copbio.2018.07.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
Abstract
The adequate application of Brettanomyces species could raise a potential opportunity for the beer industry, generating new products and optimizing production processes. Several valuable properties like high ethanol yield, tolerance to low pH and production of unique flavors have brought this yeast species into the spotlight. Aroma and flavor production of Brettanomyces in beer is currently under discussion, and it can be adjusted if the mechanism insights are understood. This review summarizes the recent findings in physiological, genetic and biochemical traits related to the application of Brettanomyces species for brewing.
Collapse
Affiliation(s)
- Marc Serra Colomer
- Carlsberg Research Laboratory, Carlsberg A/S, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Birgitte Funch
- Carlsberg Research Laboratory, Carlsberg A/S, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Jochen Forster
- Carlsberg Research Laboratory, Carlsberg A/S, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark.
| |
Collapse
|
25
|
Mertens S, Steensels J, Gallone B, Souffriau B, Malcorps P, Verstrepen KJ. Rapid Screening Method for Phenolic Off-Flavor (POF) Production in Yeast. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2017-4142-01] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Stijn Mertens
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Centre for Microbiology, Bio-Incubator, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Leuven Institute for Beer Research (LIBR), KU Leuven, Bio-Incubator, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Jan Steensels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Centre for Microbiology, Bio-Incubator, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Leuven Institute for Beer Research (LIBR), KU Leuven, Bio-Incubator, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Brigida Gallone
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Centre for Microbiology, Bio-Incubator, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Leuven Institute for Beer Research (LIBR), KU Leuven, Bio-Incubator, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Ben Souffriau
- AB-InBev SA/NV, Brouwerijplein 1, B-3000 Leuven, Belgium
| | | | - Kevin J. Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Centre for Microbiology, Bio-Incubator, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Leuven Institute for Beer Research (LIBR), KU Leuven, Bio-Incubator, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| |
Collapse
|
26
|
Yaguchi A, Robinson A, Mihealsick E, Blenner M. Metabolism of aromatics by Trichosporon oleaginosus while remaining oleaginous. Microb Cell Fact 2017; 16:206. [PMID: 29149902 PMCID: PMC5693591 DOI: 10.1186/s12934-017-0820-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/11/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The oleaginous yeast, Trichosporon oleaginosus, has been extensively studied for its ability to metabolize non-conventional feedstocks. These include phenol-containing waste streams, such as distillery wastewater, or streams consisting of non-conventional sugars, such as hydrolyzed biomass and various bagasse. An initial BLAST search suggests this yeast has putative aromatic metabolizing genes. Given the desirability to valorize underutilized feedstocks such as lignin, we investigated the ability of T. oleaginosus to tolerate and metabolize lignin-derived aromatic compounds. RESULTS Trichosporon oleaginosus can tolerate and metabolize model lignin monoaromatics and associated intermediates within funneling pathways. Growth rates and biomass yield were similar to glucose when grown in 4-hydroxybenzoic acid (pHBA) and resorcinol, but had an increased lag phase when grown in phenol. Oleaginous behavior was observed using resorcinol as a sole carbon source. Fed-batch feeding resulted in lipid accumulation of 69.5% on a dry weight basis. CONCLUSIONS Though the exact pathway of aromatic metabolism remains to be determined for T. oleaginosus, the results presented in this work motivate use of this organism for lignin valorization and phenolic wastewater bioremediation. Trichosporon oleaginosus is the first yeast shown to be oleaginous while growing on aromatic substrates, and shows great promise as a model industrial microbe for biochemical and biofuel production from depolymerized lignin.
Collapse
Affiliation(s)
- Allison Yaguchi
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC 29634 USA
| | - Alana Robinson
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC 29634 USA
| | - Erin Mihealsick
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC 29634 USA
| | - Mark Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC 29634 USA
| |
Collapse
|
27
|
Jansen MLA, Bracher JM, Papapetridis I, Verhoeven MD, de Bruijn H, de Waal PP, van Maris AJA, Klaassen P, Pronk JT. Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation. FEMS Yeast Res 2017; 17:3868933. [PMID: 28899031 PMCID: PMC5812533 DOI: 10.1093/femsyr/fox044] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/15/2017] [Indexed: 11/18/2022] Open
Abstract
The recent start-up of several full-scale 'second generation' ethanol plants marks a major milestone in the development of Saccharomyces cerevisiae strains for fermentation of lignocellulosic hydrolysates of agricultural residues and energy crops. After a discussion of the challenges that these novel industrial contexts impose on yeast strains, this minireview describes key metabolic engineering strategies that have been developed to address these challenges. Additionally, it outlines how proof-of-concept studies, often developed in academic settings, can be used for the development of robust strain platforms that meet the requirements for industrial application. Fermentation performance of current engineered industrial S. cerevisiae strains is no longer a bottleneck in efforts to achieve the projected outputs of the first large-scale second-generation ethanol plants. Academic and industrial yeast research will continue to strengthen the economic value position of second-generation ethanol production by further improving fermentation kinetics, product yield and cellular robustness under process conditions.
Collapse
Affiliation(s)
- Mickel L. A. Jansen
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613 AX Delft, The
Netherlands
| | - Jasmine M. Bracher
- Department of Biotechnology, Delft University of Technology, Van der Maasweg
9, 2629 HZ Delft, The Netherlands
| | - Ioannis Papapetridis
- Department of Biotechnology, Delft University of Technology, Van der Maasweg
9, 2629 HZ Delft, The Netherlands
| | - Maarten D. Verhoeven
- Department of Biotechnology, Delft University of Technology, Van der Maasweg
9, 2629 HZ Delft, The Netherlands
| | - Hans de Bruijn
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613 AX Delft, The
Netherlands
| | - Paul P. de Waal
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613 AX Delft, The
Netherlands
| | - Antonius J. A. van Maris
- Department of Biotechnology, Delft University of Technology, Van der Maasweg
9, 2629 HZ Delft, The Netherlands
| | - Paul Klaassen
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613 AX Delft, The
Netherlands
| | - Jack T. Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg
9, 2629 HZ Delft, The Netherlands
| |
Collapse
|