2
|
Bindi L, Shim SH, Sharp TG, Xie X. Evidence for the charge disproportionation of iron in extraterrestrial bridgmanite. SCIENCE ADVANCES 2020; 6:eaay7893. [PMID: 31950086 PMCID: PMC6954055 DOI: 10.1126/sciadv.aay7893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Bridgmanite, MgSiO3 with perovskite structure, is considered the most abundant mineral on Earth. On the lower mantle, it contains Fe and Al that strongly influence its behavior. Experimentalists have debated whether iron may exist in a mixed valence state, coexistence of Fe2+ and Fe3+ in bridgmanite, through charge disproportionation. Here, we report the discovery of Fe-rich aluminous bridgmanite coexisting with metallic iron in a shock vein of the Suizhou meteorite. This is the first direct evidence in nature of the Fe disproportionation reaction, which so far has only been observed in some high-pressure experiments. Furthermore, our discovery supports the idea that the disproportionation reaction would have played a key role in redox processes and the evolution of Earth.
Collapse
Affiliation(s)
- Luca Bindi
- Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via La Pira 4, I-50121 Firenze, Italy
| | - Sang-Heon Shim
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Thomas G. Sharp
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Xiande Xie
- Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
3
|
High pressure minerals in the Château-Renard (L6) ordinary chondrite: implications for collisions on its parent body. Sci Rep 2018; 8:9851. [PMID: 29959423 PMCID: PMC6026127 DOI: 10.1038/s41598-018-28191-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 06/19/2018] [Indexed: 11/08/2022] Open
Abstract
We report the first discoveries of high-pressure minerals in the historical L6 chondrite fall Château-Renard, based on co-located Raman spectroscopy, scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy and electron backscatter diffraction, electron microprobe analysis, and transmission electron microscopy (TEM) with selected-area electron diffraction. A single polished section contains a network of melt veins from ~40 to ~200 μm wide, with no cross-cutting features requiring multiple vein generations. We find high-pressure minerals in veins greater than ~50 μm wide, including assemblages of ringwoodite + wadsleyite, ringwoodite + wadsleyite + majorite-pyropess, and ahrensite + wadsleyite. In association with ahrensite + wadsleyite at both SEM and TEM scale, we find a sodic pyroxene whose Raman spectrum is indistinguishable from that of jadeite but whose composition and structure are those of omphacite. We discuss constraints on the impact record of this meteorite and the L-chondrites in general.
Collapse
|
4
|
Gleason AE, Bolme CA, Lee HJ, Nagler B, Galtier E, Kraus RG, Sandberg R, Yang W, Langenhorst F, Mao WL. Time-resolved diffraction of shock-released SiO 2 and diaplectic glass formation. Nat Commun 2017; 8:1481. [PMID: 29133910 PMCID: PMC5684137 DOI: 10.1038/s41467-017-01791-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/13/2017] [Indexed: 11/18/2022] Open
Abstract
Understanding how rock-forming minerals transform under shock loading is critical for modeling collisions between planetary bodies, interpreting the significance of shock features in minerals and for using them as diagnostic indicators of impact conditions, such as shock pressure. To date, our understanding of the formation processes experienced by shocked materials is based exclusively on ex situ analyses of recovered samples. Formation mechanisms and origins of commonly observed mesoscale material features, such as diaplectic (i.e., shocked) glass, remain therefore controversial and unresolvable. Here we show in situ pump-probe X-ray diffraction measurements on fused silica crystallizing to stishovite on shock compression and then converting to an amorphous phase on shock release in only 2.4 ns from 33.6 GPa. Recovered glass fragments suggest permanent densification. These observations of real-time diaplectic glass formation attest that it is a back-transformation product of stishovite with implications for revising traditional shock metamorphism stages. Our understanding of shock metamorphism and thus the collision of planetary bodies is limited by a dependence on ex situ analyses. Here, the authors perform in situ analysis on shocked-produced densified glass and show that estimates of impactor size based on traditional techniques are likely inflated.
Collapse
Affiliation(s)
- A E Gleason
- Shock and Detonation Physics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545, USA. .,Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA.
| | - C A Bolme
- Shock and Detonation Physics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545, USA
| | - H J Lee
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
| | - B Nagler
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
| | - E Galtier
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
| | - R G Kraus
- Shock Physics, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, 94550, USA
| | - R Sandberg
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545, USA
| | - W Yang
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China.,HPSynC, Carnegie Institution of Washington, Argonne, IL, 60439, USA
| | - F Langenhorst
- Institut für Geowissenschaften, Friedrich-Schiller-Universität Jena, D-07745, Jena, Germany
| | - W L Mao
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA.,Geological Sciences, Stanford University, 367 Panama St., Stanford, CA, 94305, USA
| |
Collapse
|