1
|
Zhang L, Zhang J, Zhang X, Liu S, Qi C, Gao S. miR‑100: A key tumor suppressor regulatory factor in human malignant tumors (Review). Int J Mol Med 2025; 55:67. [PMID: 40017111 PMCID: PMC11875724 DOI: 10.3892/ijmm.2025.5508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/02/2025] [Indexed: 03/01/2025] Open
Abstract
MicroRNA (miRNA/miR)‑100 is a crucial tumor‑suppressive miRNA that serves a pivotal role in the initiation and progression of various malignancies. miR‑100 regulates cancer cell proliferation, migration, invasion and apoptosis by targeting oncogenes, and acts as a molecular sponge to regulate long non‑coding RNAs and circular RNAs, thereby influencing processes such as glycolysis, autophagy and resistance to chemotherapy/radiotherapy. Furthermore, miR‑100 suppresses tumor progression by modulating key signaling pathways, including the PI3K/AKT and Wnt/β‑catenin signaling pathways. miR‑100 exhibits potential for early cancer diagnosis, particularly in cancer types such as gastric and lung cancer, where it can serve as a non‑invasive biomarker for early screening. As a therapeutic target, restoring miR‑100 expression can enhance the efficacy of chemotherapy or targeted therapy, thereby improving patient prognosis. Although challenges remain in its clinical application, including delivery systems and safety concerns, ongoing research suggests that miR‑100 holds promise for personalized treatment and early diagnosis. Given that cancer remains a global health challenge, research on miR‑100 provides hope for cancer therapy, particularly in China, where the mortality rates of malignancies such as gastric, lung and liver cancer continue to rise, further emphasizing its potential for clinical translation.
Collapse
Affiliation(s)
- Liang Zhang
- Department of General Surgery I, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Jiuling Zhang
- Department of General Surgery I, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Xue Zhang
- School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Shuang Liu
- School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Chunyu Qi
- School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
- Department of Infection, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Shengyu Gao
- Department of General Surgery I, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| |
Collapse
|
2
|
An Eleven-microRNA Signature Related to Tumor-Associated Macrophages Predicts Prognosis of Breast Cancer. Int J Mol Sci 2022; 23:ijms23136994. [PMID: 35805995 PMCID: PMC9266835 DOI: 10.3390/ijms23136994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
The dysregulation of microRNAs (miRNAs) has been known to play important roles in tumor development and progression. However, the understanding of the involvement of miRNAs in regulating tumor-associated macrophages (TAMs) and how these TAM-related miRNAs (TRMs) modulate cancer progression is still in its infancy. This study aims to explore the prognostic value of TRMs in breast cancer via the construction of a novel TRM signature. Potential TRMs were identified from the literature, and their prognostic value was evaluated using 1063 cases in The Cancer Genome Atlas Breast Cancer database. The TRM signature was further validated in the external Gene Expression Omnibus GSE22220 dataset. Gene sets enrichment analyses were performed to gain insight into the biological functions of this TRM signature. An eleven-TRM signature consisting of mir-21, mir-24-2, mir-125a, mir-221, mir-22, mir-501, mir-365b, mir-660, mir-146a, let-7b and mir-31 was constructed. This signature significantly differentiated the high-risk group from the low-risk in terms of overall survival (OS)/ distant-relapse free survival (DRFS) (p value < 0.001). The prognostic value of the signature was further enhanced by incorporating other independent prognostic factors in a nomogram-based prediction model, yielding the highest AUC of 0.79 (95% CI: 0.72−0.86) at 5-year OS. Enrichment analyses confirmed that the differentially expressed genes were mainly involved in immune-related pathways such as adaptive immune response, humoral immune response and Th1 and Th2 cell differentiation. This eleven-TRM signature has great potential as a prognostic factor for breast cancer patients besides unravelling the dysregulated immune pathways in high-risk breast cancer.
Collapse
|
3
|
Cui L, Wang P, Ning D, Shao J, Tan G, Li D, Zhong X, Mi W, Zhang C, Jin S. Identification of a Novel Prognostic Signature for Gastric Cancer Based on Multiple Level Integration and Global Network Optimization. Front Cell Dev Biol 2021; 9:631534. [PMID: 33912555 PMCID: PMC8072341 DOI: 10.3389/fcell.2021.631534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/22/2021] [Indexed: 02/03/2023] Open
Abstract
Gastric Cancer (GC) is a common cancer worldwide with a high morbidity and mortality rate in Asia. Many prognostic signatures from genes and non-coding RNA (ncRNA) levels have been identified by high-throughput expression profiling for GC. To date, there have been no reports on integrated optimization analysis based on the GC global lncRNA-miRNA-mRNA network and the prognostic mechanism has not been studied. In the present work, a Gastric Cancer specific lncRNA-miRNA-mRNA regulatory network (GCsLMM) was constructed based on the ceRNA hypothesis by combining miRNA-target interactions and data on the expression of GC. To mine for novel prognostic signatures associated with GC, we performed topological analysis, a random walk with restart algorithm, in the GCsLMM from three levels, miRNA-, mRNA-, and lncRNA-levels. We further obtained candidate prognostic signatures by calculating the integrated score and analyzed the robustness of these signatures by combination strategy. The biological roles of key candidate signatures were also explored. Finally, we targeted the PHF10 gene and analyzed the expression patterns of PHF10 in independent datasets. The findings of this study will improve our understanding of the competing endogenous RNA (ceRNA) regulatory mechanisms and further facilitate the discovery of novel prognostic biomarkers for GC clinical guidelines.
Collapse
Affiliation(s)
- Lin Cui
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ping Wang
- Department of Interventional Radiology, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Dandan Ning
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jing Shao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Guiyuan Tan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Dajian Li
- Department of Gastroenterology and Hepatology, The First Hospital Of Harbin, Harbin, China
| | - Xiaoling Zhong
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wanqi Mi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shizhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Schaalan M, Mohamed W, Fathy S. MiRNA-200c, MiRNA-139 and ln RNA H19; new predictors of treatment response in H-pylori- induced gastric ulcer or progression to gastric cancer. Microb Pathog 2020; 149:104442. [PMID: 32795593 DOI: 10.1016/j.micpath.2020.104442] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
Recent evidence indicates that the pathogenesis of gastric ulcer and progression to gastric cancer could be attributed to altered inflammatory/immunological response and associated differential non-coding RNAs expression signatures. However, co-expression profiling of lncRNA-miRNAs in GU/GC patients are scarcely focused on. Therefore, in the present study the expression of H19 and related miRNAs including miR-139, and miR-200 were assayed in the plasma samples of treatment responsive GU vs nonresponsive GC patients. This study is a case-control study carried out on 130 subjects recruited from the Gastrointestinal Endoscopy Unit in Al-Kasr Al-Aini Hospital, in Egypt. All recruited patients were diagnosed with H-pylori infection, 50 of them were gastric cancer patients (GC), with previous H-pylori induced gastric ulcer but were treatment non-respondent. Real-time PCR was performed to evaluate the expression level of serum non-coding RNA; miRNA-200c, miR-139, Ln RNA H19 in patients with peptic ulcer treatment non-respondent, who progressed to GC vs non-progressed gastric ulcer patients (GU) (n = 50), and compared to early diagnosed H-pylori-gastric ulcer patients (n = 30). The association between these miRNAs and the FGF-18/FGF-R signaling indicators of H-pylori-GC pathogenesis were then investigated. RESULTS: showed that the H19 level was significantly elevated while miR-139 and miR-200c expression were significantly down-regulated in GC patients, compared to GU participants (P < 0.01). The herein investigated ncRNAs are correlated to the disease duration with Ln H19 being significantly correlated with all inflammatory markers; TNF-α, INF-γ, TAC, MMP-9, and FGF18/FGFR2. A significant correlation was also observed between miRNA 200c and each of miRNA 139 and FGFR2. Moreover, ROC analysis revealed that miRNA 200c showed the highest AUC (0.906) and 81.2% sensitivity and 100% specificity. Moreover, the combined analysis of miRNA 200c/miRNA 139 revealed superior AUC (0.96) and 93% sensitivity and 100% specificity, than each separately. As for discriminative accuracy between stages III to IV of gastric cancer, LncRNA H19 showed the highest diagnostic accuracy (95.5%), specificity (100%), and sensitivity (90.9%). The current study demonstrated that the combination of serum miRNA 200c/miRNA 139 expression levels (down-regulation) could provide a new potential prognostic panel for GU predictive response and potential sequelae. In conclusion, LncRNA H19 and related miRNAs, miRNA 200c/miRNA 139, could serve as a potential diagnostic biomarker for early gastric cancer diagnosis.
Collapse
Affiliation(s)
- Mona Schaalan
- Department of Clinical Pharmacy, Clinical and Translational Research Unit, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
| | - Waleed Mohamed
- Department of Internal Medicine, Kasr El Aini Teaching Hospitals, Cairo University, Cairo, Egypt.
| | - Shimaa Fathy
- Department of Clinical Pharmacy, Clinical and Translational Research Unit, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
| |
Collapse
|
5
|
Zare A, Alipoor B, Omrani MD, Zali MR, Malekpour Alamdari N, Ghaedi H. Decreased miR-155-5p, miR-15a, and miR-186 Expression in Gastric Cancer Is Associated with Advanced Tumor Grade and Metastasis. IRANIAN BIOMEDICAL JOURNAL 2019; 23. [PMID: 31103022 PMCID: PMC6661124 DOI: 10.29252/.23.5.338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Background Gastric cancer (GC) is one of the most prevalent cancers with a high rate of mortality in the world. In recent years, microRNAs (miRNAs) have been proposed to be involved in GC development. In this study, we aimed at investigating differential expression level of miR-155-5p, miR-15a, miR-15b, and miR-186 in GC. Methods For this research, we used qPCR to investigate miR-15b, miR-155, miR-15a, and miR-186 expression levels in a total of 29 normal gastric tissue, 45 gastric dysplasia, and 39 GC samples. Results We showed significant down-regulation of miR-155-5p (p = 0.0018), miR-15a (p = 0.0159), and miR-186 (p = 0.0005) expression in GC tissue. Conclusion This study provides evidence for deregulated expression of miR155-5p, miR-186, and miR-15a in GC and is providing new insights into the potential implication of these miRNAs in the pathogenesis of GC.
Collapse
Affiliation(s)
- Ali Zare
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Alipoor
- Department of Laboratory Sciences, Faculty of Paramedicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; ,Urogenital Stem Cell Research, Shahid Beheshti University of Medical Sciences, Tehran, Iran; ,Corresponding Authors: Mir Davood Omrani ,Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak st., Shahid Chamran Highway, Tehran, Iran. Tel.: (+98-21) 22439982, E-mail: , Hamid Ghaedi , Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak st., Shahid Chamran Highway, Tehran, Iran. Tel.: (+98-21) 22439982, E-mail:
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Malekpour Alamdari
- Department of General Surgery, Clinical Research and Development Unit at Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ghaedi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; ,Corresponding Authors: Mir Davood Omrani ,Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak st., Shahid Chamran Highway, Tehran, Iran. Tel.: (+98-21) 22439982, E-mail: , Hamid Ghaedi , Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak st., Shahid Chamran Highway, Tehran, Iran. Tel.: (+98-21) 22439982, E-mail:
| |
Collapse
|
6
|
Liu T, Zhang X, Du L, Wang Y, Liu X, Tian H, Wang L, Li P, Zhao Y, Duan W, Xie Y, Sun Z, Wang C. Exosome-transmitted miR-128-3p increase chemosensitivity of oxaliplatin-resistant colorectal cancer. Mol Cancer 2019; 18:43. [PMID: 30890168 PMCID: PMC6423768 DOI: 10.1186/s12943-019-0981-7] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/25/2019] [Indexed: 12/15/2022] Open
Abstract
Background Oxaliplatin resistance is a major challenge for treatment of advanced colorectal cancer (CRC). Both acquisition of epithelial-mesenchymal transition (EMT) and suppressed drug accumulation in cancer cells contributes to development of oxaliplatin resistance. Aberrant expression of small noncoding RNA, miR-128-3p, has been shown to be a key regulator in tumorigenesis and cancer development. However, its roles in the progression of CRC and oxaliplatin-resistance are largely unknown. Methods Oxaliplatin-resistant CRC and normal intestinal FHC cells were transfected with a miR-128-3p expression lentivirus. After transfection, FHC-derived exosomes were isolated and co-cultured with CRC cells. miR-128-3p expression in resistant CRC cells, FHC cells, and exosomes was quantified by quantitative real-time PCR (RT-qPCR). The mRNA and protein levels of miR-128-3p target genes in resistant CRC cells were quantified by RT-qPCR and western blot, respectively. The effects of miR-128-3p on CRC cell viability, apoptosis, EMT, motility and drug efflux were evaluated by CCK8, flow cytometry, Transwell and wound healing assays, immunofluorescence, and atomic absorption spectrophotometry. Xenograft models were used to determine whether miR-128-3p loaded exosomes can re-sensitize CRC cells to oxaliplatin in vivo. Results In our established stable oxaliplatin-resistant CRC cell lines, in vitro and vivo studies revealed miR-128-3p suppressed EMT and increased intracellular oxaliplatin accumulation. Importantly, our results indicated that lower miR-128-3p expression was associated with poor oxaliplatin response in advanced human CRC patients. Moreover, data showed that miR-128-3p-transfected FHC cells effectively packaged miR-128-3p into secreted exosomes and mediated miR-128-3p delivery to oxaliplatin-resistant cells, improving oxaliplatin response in CRC cells both in vitro and in vivo. In addition, miR-128-3p overexpression up-regulated E-cadherin levels and inhibited oxaliplatin-induced EMT by suppressing Bmi1 expression in resistant cells. Meanwhile, it also decreased oxaliplatin efflux through suppressed expression of the drug transporter MRP5. Conclusion Our results demonstrate that miR-128-3p delivery via exosomes represents a novel strategy enhancing chemosensitivity in CRC through negative regulation of Bmi1 and MRP5. Moreover, miR-128-3p may be a promising diagnostic and prognostic marker for oxaliplatin-based chemotherapy. Electronic supplementary material The online version of this article (10.1186/s12943-019-0981-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tong Liu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Jinan, 250033, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Jinan, 250033, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Jinan, 250033, China
| | - Xiaoming Liu
- Department of Preventive Medicine, Shandong Provincial Traditional Chinese Medical Hospital, Jinan, 250012, People's Republic of China
| | - Hui Tian
- Cancer Center, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Lili Wang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Jinan, 250033, China
| | - Yinghui Zhao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Jinan, 250033, China
| | - Weili Duan
- Department of Clinical Laboratory, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Jinan, 250033, China
| | - Yujiao Xie
- Department of Clinical Laboratory, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Jinan, 250033, China
| | - Zhaowei Sun
- Department of Surgery, The Affiliated Hospital of Medical College Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Jinan, 250033, China.
| |
Collapse
|
7
|
Zheng X, Wang Y, Dong L, Zhao S, Wang L, Chen H, Xu Y, Wang G. Effects of propofol-based total intravenous anesthesia on gastric cancer: a retrospective study. Onco Targets Ther 2018. [PMID: 29535538 PMCID: PMC5840299 DOI: 10.2147/ott.s156792] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Several kinds of cancer surgeries with propofol-based total intravenous anesthesia (TIVA) have been shown to have better outcomes than those with sevoflurane-based inhalational anesthesia (INHA). However, the effects of this anesthetic technique have not been investigated in patients with gastric cancer. In this study, the authors retrospectively examined the link between the choice of anesthetic technique and overall survival in patients undergoing gastric cancer resection. Methods We conducted a retrospective analysis of the database of all patients undergoing gastric cancer resection for gastric cancer between 2007 and 2012. Patients who received TIVA or INHA were administered patient-controlled intravenous analgesia for 72-120 hours postoperatively. Survival was estimated using the Kaplan-Meier log-rank test, and associations between anesthetic technique and outcomes were analyzed using Cox proportional hazards regressions after propensity matching. Results A total of 2,856 anesthetics using INHA or TIVA were delivered in the study period. After propensity matching, 897 patients remained in each group. According to Kaplan-Meier analysis, the use of TIVA was associated with improved survival (P<0.001). TIVA was associated with a hazard ratio (HR) of 0.67 (95% confidence interval [CI]: 0.58-0.77) for death in univariate analysis and 0.65 (95% CI: 0.56-0.75) after a multivariate analysis of known confounders in the matched group. Cancer stage (HR =0.74, 95% CI: 0.64-0.86, P<0.001) and degree of differentiation (HR =1.28, 95% CI: 1.11-1.47, P<0.001) were also associated with survival in the univariate analysis in the matched group. In the multivariable Cox model, cancer stage (HR =0.72, 95% CI: 0.62-0.84, P<0.001) and degree of differentiation (HR =1.23, 95% CI: 1.07-1.42, P<0.001) were associated with survival in the matched group. Conclusion These results indicate that TIVA may be associated with improved survival in gastric cancer patients who undergo resection.
Collapse
Affiliation(s)
- Xiaoyu Zheng
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yu Wang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Linlin Dong
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Su Zhao
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Liping Wang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hong Chen
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Xu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guonian Wang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
8
|
Guo J, Zhang CD, An JX, Xiao YY, Shao S, Zhou NM, Dai DQ. Expression of miR-634 in gastric carcinoma and its effects on proliferation, migration, and invasion of gastric cancer cells. Cancer Med 2018; 7:776-787. [PMID: 29464926 PMCID: PMC5852365 DOI: 10.1002/cam4.1204] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/18/2022] Open
Abstract
This study aims to observe the expression of microRNA (miR)‐634 in different gastric cancer cell lines and tissues, and to study the effects of miR‐634 on the proliferation, migration, and invasion of the gastric cancer cells. The miR‐634 mimics and miR‐634 inhibitors were transfected by lentivirus into human gastric cancer SGC‐7901 and MGC‐803 cells, and the miR‐634 cells without transfection were used as the control group (NC group). The expression of miR‐634 in the transfected cells was detected by qRT‐PCR. Cell viability was measured by the CCK8 assay. The migration and invasion ability of the cells were detected by scratch assays and Transwell® chamber assays, respectively, and the luciferase assay verified the binding of miR‐634 to the target gene JAG1. The expression level of miR‐634 in gastric cancer tissues and cell lines was significantly lower than that in normal adjacent tissues and control cells. The survival of cells was significantly decreased, and number of cells migrating and invading was decreased in the miR‐634 mimics group. However, in the miR‐634 inhibitor group, the opposite results were observed. Over‐expression of miR‐634 inhibited the proliferation, migration, and invasion of gastric cancer cell lines, and the miR‐634 target gene was JAG1.
Collapse
Affiliation(s)
- Jiao Guo
- Department of Gastrointestinal Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Chun-Dong Zhang
- Department of Gastrointestinal Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Jia-Xiang An
- Department of Gastrointestinal Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Yun-Yun Xiao
- Department of Obstetrics and Gynecology, the Shengjing Affiliated Hospital of China Medical University, Shenyang, 110004, China
| | - Shuai Shao
- Department of Gastrointestinal Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Nuo-Ming Zhou
- Department of Gastrointestinal Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Dong-Qiu Dai
- Department of Gastrointestinal Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.,Cancer Center, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| |
Collapse
|
9
|
Wang X, Zhang H, Bai M, Ning T, Ge S, Deng T, Liu R, Zhang L, Ying G, Ba Y. Exosomes Serve as Nanoparticles to Deliver Anti-miR-214 to Reverse Chemoresistance to Cisplatin in Gastric Cancer. Mol Ther 2018; 26:774-783. [PMID: 29456019 DOI: 10.1016/j.ymthe.2018.01.001] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/23/2017] [Accepted: 01/02/2018] [Indexed: 12/17/2022] Open
Abstract
Chemoresistance is one of the causes of adverse effects in gastric cancer, including a poor response to cisplatin (DDP). Exosomes loaded with microRNA (miRNA), mRNA, and other non-coding RNAs could regulate drug resistance. Exo-anti-214 was extracted and verified. A Cell Counting Kit-8 (CCK-8) cell viability assay, flow cytometry, and transwell and immunofluorescence assays were performed to determine whether exo-anti-214 could sensitize cells to DDP in vitro. A combination of intravenously injected exo-anti-214 and intraperitoneal DDP was utilized in vivo. Additionally, potential targets of miR-214 were screened by mass spectrometry (MS) and confirmed via western blotting (WB). The levels of miR-214 in the human immortalized gastric epithelial cell line ges-1 and the human gastric adenocarcinoma cell lines SGC7901 and SGC7901/DDP gradually increased. Exo-anti-214 could fuse with cells and regulate potential targets, reducing cell viability, suppressing migration, and promoting apoptosis in vitro. Caudally injected exo-anti-214 was applied to reverse chemoresistance and repress tumor growth in vivo due to the downregulation of miR-214 and overexpression of possible target proteins in tumors. Exo-anti-214 could reverse the resistance to DDP in gastric cancer, which might serve as a potential alternative for the treatment of cisplatin-refractory gastric cancer in the future.
Collapse
Affiliation(s)
- Xinyi Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Haiyang Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Ming Bai
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Tao Ning
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Shaohua Ge
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Ting Deng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Rui Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Le Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Guoguang Ying
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| | - Yi Ba
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| |
Collapse
|
10
|
MicroRNA-103 suppresses glioma cell proliferation and invasion by targeting the brain-derived neurotrophic factor. Mol Med Rep 2017; 17:4083-4089. [PMID: 29257320 DOI: 10.3892/mmr.2017.8282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/06/2017] [Indexed: 11/05/2022] Open
Abstract
Glioma is the most common and aggressive of malignant brain tumours. MicroRNAs (miRNAs/miRs) are involved in tumour development of various human cancers, including glioma. Therefore, miRNAs may have potential tumour diagnostic, prognostic and therapeutic values in human glioma. miR‑103 is abnormally expressed in various human cancer types. However, the detailed expression pattern, biological functions and underlying molecular mechanism of miR‑103 in glioma remain unclear. Therefore, the present study aimed to investigate the expression, biological roles and underlying mechanisms of miR‑103 in glioma. Results of the present study demonstrated that miR‑103 was significantly down‑regulated in glioma tissues and cell lines. Functional experiments demonstrated that miR‑103 overexpression inhibited the proliferation and invasion of glioma cells in vitro. Additionally, brain‑derived neurotrophic factor (BDNF) was identified as a direct functional target of miR‑103 in glioma. Furthermore, mRNA and protein expression levels of BDNF were highly upregulated in glioma tissues compared with normal brain tissues. Spearman's correlation analysis indicated a negative association between miR‑103 and BDNF mRNA expression levels in glioma tissues. Furthermore, rescue experiments demonstrated that BDNF up‑regulation reversed the suppressive effects of miR‑103 on glioma cell proliferation and invasion. Therefore, the authors of the present study hypothesized that the interaction between miR‑103 and BDNF serves a role in glioma progression and, in the future, may serve as a therapeutic target for glioma treatment.
Collapse
|
11
|
Tan B, Li Y, Di Y, Fan L, Zhao Q, Liu Q, Wang D, Jia N. Clinical value of peripheral blood microRNA detection in evaluation of SOX regimen as neoadjuvant chemotherapy for gastric cancer. J Clin Lab Anal 2017; 32:e22363. [PMID: 29168576 DOI: 10.1002/jcla.22363] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/31/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neoadjuvant chemotherapy has been widely applied in treating advanced gastric cancer (GC). However, little research has been conducted on evaluating the effect of neoadjuvant chemotherapy. Purpose of this study was to evaluate the effect of SOX regimen as neoadjuvant chemotherapy by detecting some microRNAs. METHODS Total 120 GC patients who had received neoadjuvant chemotherapy (SOX regimen) were recruited with 100 healthy participants as control contemporarily. Age and gender have no significant difference in both groups (P > .05). The effect of chemotherapy was evaluated by the results of CT scan and surgery. Also, adverse effects of chemotherapy were documented. Peripheral blood of GC patients was collected twice: one day before chemotherapy and surgery, respectively, whereas healthy controls' peripheral blood was collected once. Quantitative real-time PCR (qPCR) was utilized to detect expression of miR-145, miR-185, miR-381, and miR-195 of peripheral blood in both groups. RESULTS One hundred and twenty patients with advanced GC completed a total of 386 cycles of neoadjuvant chemotherapy with effective rate at 84.17% (101 of 120). Expression of miR-145, miR-185, and miR-381 of patients with GC was lower than that in the control group before chemotherapy commence (all P < .05), while the expressions of miR-145 and miR-185 elevated noticeably in CG patients after neoadjuvant chemotherapy (P < .05). The differences in the expression of miR-145 and miR-185 in advanced GC patients with different chemotherapy outcomes were detected. CONCLUSION Patients with GC at advanced stages had aberrant miRs expressions. Detection of miR-145 and miR-185 expression may assist to predict effectiveness and adverse effects of SOX regimen as neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Bibo Tan
- Department of General Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong Li
- Department of General Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Di
- Hebei Provincial Institute of Medical Science Information, Shijiazhuang, China
| | - Liqiao Fan
- Department of General Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qun Zhao
- Department of General Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qingwei Liu
- Department of General Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dong Wang
- Department of General Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Nan Jia
- Department of General Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
12
|
Qin X, Sun L, Wang J. Restoration of microRNA-708 sensitizes ovarian cancer cells to cisplatin via IGF2BP1/Akt pathway. Cell Biol Int 2017; 41:1110-1118. [PMID: 28685895 DOI: 10.1002/cbin.10819] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/05/2017] [Indexed: 01/02/2023]
Abstract
A previous study has shown that microRNA-708 (miR-708) functions as a metastasis suppressor in ovarian cancer. In this study, we aimed to explore its implication in regulating cisplatin sensitivity in ovarian cancer cells. To this end, ovarian cancer cells were transfected with miR-708-expressing plasmids or vector before treatment with different concentrations of cisplatin for 48 h. The 50% inhibitory concentration (IC50 ) value was calculated. Apoptosis was analyzed by measuring caspase-3 activity. The target gene mediating the function of miR-708 was identified. Ectopic expression of miR-708 sensitized SKOV3 and A2780 cells to cisplatin, decreasing the IC50 value by two- to threefold. miR-708 overexpression significantly augmented cisplatin-induced apoptosis in ovarian cancer cells, which was coupled with increased caspase-3 activity by two- to fourfold. Similarly, overexpression of miR-708 increased the sensitivity of cisplatin-resistant SKOV3/DDP and A2780/DDP cells to cisplatin-induced toxicity, reducing the IC50 by three- and fivefold, respectively. Delivery of miR-708 enhanced cisplatin-induced elevation in caspase-3 activity in both cisplatin-resistant and parental ovarian cancer cells. Mechanistically, miR-708 downregulated the expression of insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) and suppressed Akt phosphorylation. Silencing of IGF2BP1 markedly blocked the phosphorylation of Akt. Overexpression of IGF2BP1 restored cisplatin resistance and Akt phosphorylation in miR-708-overexpressing ovarian cancer cells. Collectively, miR-708 increases the susceptibility of ovarian cancer cells to cisplatin by targeting IGF2BP1 and inhibiting Akt signaling. Delivery of miR-708 may represent a promising strategy for improving cisplatin chemotherapy.
Collapse
Affiliation(s)
- Xuying Qin
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, People's Republic of China
| | - Linlin Sun
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, People's Republic of China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Dezhou People's Hospital, Dezhou, People's Republic of China
| |
Collapse
|
13
|
Zhang Y, Guan DH, Bi RX, Xie J, Yang CH, Jiang YH. Prognostic value of microRNAs in gastric cancer: a meta-analysis. Oncotarget 2017; 8:55489-55510. [PMID: 28903436 PMCID: PMC5589675 DOI: 10.18632/oncotarget.18590] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Previous articles have reported that expression levels of microRNAs (miRNAs) are associated with survival time of patients with gastric cancer (GC). A systematic review and meta-analysis was performed to study the outcome of it. DESIGN Meta-analysis. METHODS English studies estimating expression levels of miRNAs with any of survival curves in GC were identified up till March 19, 2017 through performing online searches in PubMed, EMBASE, Web of Science and Cochrane Database of Systematic Reviews by two authors independently. The pooled hazard ratios (HR) with 95% confidence intervals (CI) were used to estimate the correlation between miRNA expression and overall survival (OS). RESULTS Sixty-nine relevant articles about 26 miRNAs with 6148 patients were ultimately included. GC patients with high expression of miR-20b (HR=2.38, 95%CI=1.16-4.87), 21 (HR=1.77, 95%CI=1.01-3.08), 106b (HR=1.84, 95%CI=1.15-2.94), 196a (HR=2.66, 95%CI=1.94-3.63), 196b (HR=1.67, 95%CI=1.38-2.02), 214 (HR=1.84, 95%CI=1.27-2.67) or low expression of miR-125a (HR=2.06, 95%CI=1.26-3.37), 137 (HR=3.21, 95%CI=1.68-6.13), 141 (HR=2.47, 95%CI=1.34-4.56), 145 (HR=1.62, 95%CI=1.07-2.46), 146a (HR=2.60, 95%CI=1.63-4.13), 206 (HR=2.85, 95%CI=1.73-4.70), 218 (HR=2.61, 95%CI=1.74-3.92), 451 (HR=1.73, 95%CI=1.19-2.52), 486-5p (HR=2.45, 95%CI=1.65-3.65), 506 (HR=2.07, 95%CI=1.33-3.23) have significantly poor OS (P<0.05). CONCLUSIONS In summary, miR-20b, 21, 106b, 125a, 137, 141, 145, 146a, 196a, 196b, 206, 214, 218, 451, 486-5p and 506 demonstrate significantly prognostic value. Among them, miR-20b, 125a, 137, 141, 146a, 196a, 206, 218, 486-5p and 506 are strong biomarkers of prognosis in GC.
Collapse
Affiliation(s)
- Yue Zhang
- 1 First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, People's Republic of China
| | - Dong-Hui Guan
- 2 Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, People's Republic of China
| | - Rong-Xiu Bi
- 2 Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, People's Republic of China
| | - Jin Xie
- 2 Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, People's Republic of China
| | - Chuan-Hua Yang
- 3 Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, People's Republic of China
| | - Yue-Hua Jiang
- 4 Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, People's Republic of China
| |
Collapse
|