1
|
Crociani L. Metal-Free Graphene-Based Derivatives as Oxygen Reduction Reaction Electrocatalysts in Energy Conversion and Storage Systems: An Overview. Molecules 2025; 30:2248. [PMID: 40430420 DOI: 10.3390/molecules30102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/29/2025] Open
Abstract
Oxygen reduction reaction (ORR) is one of the most important reactions in electrochemical energy storage and conversion devices. To overcome the slow kinetics, minimize the overpotential, and make this reaction feasible, efficient, and stable, electrocatalysts are needed. Metal-free graphene-based systems are considered promising and cost-effective ORR catalysts with adjustable structures. This review is meant to give a rational overview of the graphene-based metal-free ORR electrocatalysts, illustrating the huge amount of related research developed particularly in the field of fuel cells and metal-air batteries, with particular attention to the synthesis procedures. The novelty of this review is that, beyond general aspects regarding the synthesis and characterization of graphene, above 90% of the various graphene (doped and undoped species, composites)-based ORR electrocatalysts have been reported, which represents an unprecedented thorough collection of both experimental and theoretical studies. Hundreds of references are included in the review; therefore, it can be considered as a vademecum in the field.
Collapse
Affiliation(s)
- Laura Crociani
- Institute of Condensed Matter Chemistry and Technologies for Energy, ICMATE, National Research Council of Italy, CNR, Corso Stati Uniti, 4, 35127 Padua, Italy
| |
Collapse
|
2
|
Afsharpour M, Seifikar Gomi L, Elyasi M. Novel metal-free N-doped bio-graphenes and their MoO3 bifunctional catalysts for ultra-deep oxidative desulfurization of heavy fuel. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Magne TM, de Oliveira Vieira T, Alencar LMR, Junior FFM, Gemini-Piperni S, Carneiro SV, Fechine LMUD, Freire RM, Golokhvast K, Metrangolo P, Fechine PBA, Santos-Oliveira R. Graphene and its derivatives: understanding the main chemical and medicinal chemistry roles for biomedical applications. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2021; 12:693-727. [PMID: 34512930 PMCID: PMC8419677 DOI: 10.1007/s40097-021-00444-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 05/05/2023]
Abstract
Over the past few years, there has been a growing potential use of graphene and its derivatives in several biomedical areas, such as drug delivery systems, biosensors, and imaging systems, especially for having excellent optical, electronic, thermal, and mechanical properties. Therefore, nanomaterials in the graphene family have shown promising results in several areas of science. The different physicochemical properties of graphene and its derivatives guide its biocompatibility and toxicity. Hence, further studies to explain the interactions of these nanomaterials with biological systems are fundamental. This review has shown the applicability of the graphene family in several biomedical modalities, with particular attention for cancer therapy and diagnosis, as a potent theranostic. This ability is derivative from the considerable number of forms that the graphene family can assume. The graphene-based materials biodistribution profile, clearance, toxicity, and cytotoxicity, interacting with biological systems, are discussed here, focusing on its synthesis methodology, physicochemical properties, and production quality. Despite the growing increase in the bioavailability and toxicity studies of graphene and its derivatives, there is still much to be unveiled to develop safe and effective formulations. Graphic abstract
Collapse
Affiliation(s)
- Tais Monteiro Magne
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906 Brazil
| | | | - Luciana Magalhães Rebelo Alencar
- Biophysics and Nanosystems Laboratory, Department of Physics, Federal University of Maranhão, São Luis, Maranhão 65080805 Brazil
| | - Francisco Franciné Maia Junior
- Department of Natural Sciences, Mathematics and Statistics, Federal Rural University of the Semi-Arid, Mossoró, RN 59625-900 Brazil
| | - Sara Gemini-Piperni
- Laboratory of Advanced Science, Universidade Unigranrio, Duque de Caxias, RJ 25071-202 Brazil
| | - Samuel V. Carneiro
- Group of Chemistry of Advanced Materials (GQMat)-Department of Analytical Chemistry and Physic-Chemistry, Federal University of Ceará-Campus do Pici, Fortaleza, Ceará 60451-970 Brazil
| | - Lillian M. U. D. Fechine
- Group of Chemistry of Advanced Materials (GQMat)-Department of Analytical Chemistry and Physic-Chemistry, Federal University of Ceará-Campus do Pici, Fortaleza, Ceará 60451-970 Brazil
| | - Rafael M. Freire
- Institute of Applied Chemical Sciences, Universidad Autónoma de Chile, 8910060 Santiago, Chile
| | - Kirill Golokhvast
- Education and Scientific Center of Nanotechnology, School of Engineering, Far Eastern Federal University, Vladivostok, Russia
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint-Petersburg, Russia
| | - Pierangelo Metrangolo
- Laboratory of Supramolecular and Bio-Nanomaterials, Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta” Politecnico Di Milano, Via L. Mancinelli 7, 20131 Milano, Italy
| | - Pierre B. A. Fechine
- Group of Chemistry of Advanced Materials (GQMat)-Department of Analytical Chemistry and Physic-Chemistry, Federal University of Ceará-Campus do Pici, Fortaleza, Ceará 60451-970 Brazil
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906 Brazil
- Laboratory of Nanoradiopharmacy and Synthesis of Radiopharmaceuticals, Zona Oeste State University, Av Manuel Caldeira de Alvarenga, 200, Campo Grande, Rio de Janeiro, 2100000 Brazil
| |
Collapse
|
4
|
Tounici A, Martín-Martínez JM. Influence of the Surface Chemistry of Graphene Oxide on the Structure-Property Relationship of Waterborne Poly(urethane urea) Adhesive. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4377. [PMID: 34442900 PMCID: PMC8399831 DOI: 10.3390/ma14164377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Small amounts-0.04 wt.%-graphene oxide derivatives with different surface chemistry (graphene oxide-GO-, amine-functionalized GO-A-GO-, reduced GO-r-GO) were added during prepolymer formation in the synthesis of waterborne poly(urethane urea) dispersions (PUDs). Covalent interactions between the surface groups on the graphene oxide derivatives and the end NCO groups of the prepolymer were created, these interactions differently altered the degree of micro-phase separation of the PUDs and their structure-properties relationships. The amine functional groups on the A-GO surface reacted preferentially with the prepolymer, producing new urea hard domains and higher percentage of soft segments than in the PUD without GO derivative. All GO derivatives were well dispersed into the PU matrix. The PUD without GO derivative showed the most noticeable shear thinning and the addition of the GO derivative reduced the extent of shear thinning differently depending on its functional chemistry. The free urethane groups were dominant in all PUs and the addition of the GO derivative increased the percentage of the associated by hydrogen bond urethane groups. As a consequence, the addition of GO derivative caused a lower degree of micro-phase separation. All PUs containing GO derivatives exhibited an additional thermal decomposition at 190-206 °C which was ascribed to the GO derivative-poly(urethane urea) interactions, the lowest temperature corresponded to PU+A-GO. The PUs exhibited two structural relaxations, their temperatures decreased by adding the GO derivative, and the values of the maximum of tan delta in PU+r-GO and PU+A-GO were significantly higher than in the rest. The addition of the GO derivative increased the elongation-at-break, imparted some toughening, and increased the adhesion of the PUD. The highest T-peel strength values corresponded to the joints made with PUD+GO and PUD+r-GO, and a rupture of the substrate was obtained.
Collapse
Affiliation(s)
| | - José Miguel Martín-Martínez
- Adhesion and Adhesives Laboratory, Department of Inorganic Chemistry, University of Alicante, 03080 Alicante, Spain;
| |
Collapse
|
5
|
Ingavale S, Marbaniang P, Kakade B, Swami A. Starbon with Zn-N and Zn-O active sites: An efficient electrocatalyst for oxygen reduction reaction in energy conversion devices. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Worm-like Au nanoparticles anchored to 3D graphene foam for efficient and selective CO2 reduction. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Lin Y, Tian Y, Sun H, Hagio T. Progress in modifications of 3D graphene-based adsorbents for environmental applications. CHEMOSPHERE 2021; 270:129420. [PMID: 33423000 DOI: 10.1016/j.chemosphere.2020.129420] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
3D graphene-based materials are promising adsorbents for environmental applications. Furthermore, increasing attention has been paid to the improvement of 3D graphene adsorbents for removing pollutants. In this article, the progress in the modification of 3D graphene materials and their performance for removing pollutants were reviewed. The modification strategies, which were classified as (1) the activation with CO2 (steam and other oxidants) and (2) the surface functionalization with polymers (metals, and metal oxides), were evaluated. The performances of modified 3D graphene materials were assessed for the removal of waste gases (such as CO2), refractory organics, and heavy metals. The challenges and future research directions were discussed for the environmental applications of 3D graphene materials.
Collapse
Affiliation(s)
- Yan Lin
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Yanqin Tian
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Hefei Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Takeshi Hagio
- Institute of Materials Innovation, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan.
| |
Collapse
|
8
|
Kwon S, Lee HT, Lee JH. Exfoliated Single Layers of Layered Cobalt Hydroxide for Ultrafine Co 3 O 4 Nanoparticles on Graphene Nanosheets as an Efficient Electrocatalyst for Oxygen Reduction. Chemistry 2020; 26:14359-14365. [PMID: 32557928 DOI: 10.1002/chem.202001323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/30/2020] [Indexed: 11/11/2022]
Abstract
A highly effective way to produce an oxygen reduction electrocatalyst was developed through the self-assembly of exfoliated single layers of cobalt hydroxide (Co(OH)2 ) and graphene oxide (GO). These 2D materials have complete contact with one another because of their physical flexibility and the electrostatic attraction between negatively charged GO and positively charged Co(OH)2 layers. The strong coupling induces transformation of the Co(OH)2 single layer into a discrete nanocrystal of spinel Co3 O4 with an average size of 8 nm on reduced GO (RGO) during calcination, which could not be obtained with bulk-layered cobalt hydroxide because of its rapid layer collapse. The ultrafine Co3 O4 /RGO hybrid exhibited not only comparable performance in the oxygen reduction reaction but also higher durability compared with the commercial 20 wt % Pt/C catalyst.
Collapse
Affiliation(s)
- Sunglun Kwon
- Department of Chemistry, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Hyung Tae Lee
- Department of Chemistry, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Jong Hyeon Lee
- Department of Chemistry, The Catholic University of Korea, Bucheon, 14662, South Korea
| |
Collapse
|
9
|
Akbari S, Jahani S, Foroughi MM, Hassani Nadiki H. Simultaneous determination of methadone and morphine at a modified electrode with 3D β-MnO 2 nanoflowers: application for pharmaceutical sample analysis. RSC Adv 2020; 10:38532-38545. [PMID: 35517539 PMCID: PMC9057335 DOI: 10.1039/d0ra06480g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/01/2020] [Indexed: 11/22/2022] Open
Abstract
The present research synthesized manganese dioxide nano-flowers (β-MnO2-NF) via a simplified technique for electro-catalytic utilization. Moreover, morphological characteristics and X-ray analyses showed Mn in the oxide form with β-type crystallographic structure. In addition, the research proposed a new efficient electro-chemical sensor to detect methadone at the modified glassy carbon electrode (β-MnO2-NF/GCE). It has been found that oxidizing methadone is irreversible and shows a diffusion controlled procedure at the β-MnO2-NF/GCE. Moreover, β-MnO2-NF/GCE was considerably enhanced in the anodic peak current of methadone related to the separation of morphine and methadone overlapping voltammetric responses with probable difference of 510 mV. In addition, a linear increase has been observed between the catalytic peak currents gained by the differential pulse voltammetry (DPV) of morphine and methadone and their concentrations in the range between 0.1–200.0 μM and 0.1–250.0 μM, respectively. Furthermore, the limits of detection (LOD) for methadone and morphine were found to be 5.6 nM and 8.3 nM, respectively. It has been found that our electrode could have a successful application for detecting methadone and morphine in the drug dose form, urine, and saliva samples. Thus, this condition demonstrated that β-MnO2-NF/GCE displays good analytical performances for the detection of methadone. Electrochemical sensor based on β-MnO2 nanoflower-modified glassy carbon electrode for the simultaneous detection of methadone and morphine was fabricated.![]()
Collapse
Affiliation(s)
- Sedigheh Akbari
- Department of Chemistry, Islamic Azad University Kerman Branch Kerman Iran +98 34331321750
| | - Shohreh Jahani
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences Bam Iran.,Student Research Committee, School of Public Health, Bam University of Medical Sciences Bam Iran
| | | | | |
Collapse
|
10
|
Kim S, Lee SM, Yoon JP, Lee N, Chung J, Chung WJ, Shin DS. Robust Magnetized Graphene Oxide Platform for In Situ Peptide Synthesis and FRET-Based Protease Detection. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5275. [PMID: 32942708 PMCID: PMC7570466 DOI: 10.3390/s20185275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 11/17/2022]
Abstract
Graphene oxide (GO)/peptide complexes as a promising disease biomarker analysis platform have been used to detect proteolytic activity by observing the turn-on signal of the quenched fluorescence upon the release of peptide fragments. However, the purification steps are often cumbersome during surface modification of nano-/micro-sized GO. In addition, it is still challenging to incorporate the specific peptides into GO with proper orientation using conventional immobilization methods based on pre-synthesized peptides. Here, we demonstrate a robust magnetic GO (MGO) fluorescence resonance energy transfer (FRET) platform based on in situ sequence-specific peptide synthesis of MGO. The magnetization of GO was achieved by co-precipitation of an iron precursor solution. Magnetic purification/isolation enabled efficient incorporation of amino-polyethylene glycol spacers and subsequent solid-phase peptide synthesis of MGO to ensure the oriented immobilization of the peptide, which was evaluated by mass spectrometry after photocleavage. The FRET peptide MGO responded to proteases such as trypsin, thrombin, and β-secretase in a concentration-dependent manner. Particularly, β-secretase, as an important Alzheimer's disease marker, was assayed down to 0.125 ng/mL. Overall, the MGO platform is applicable to the detection of other proteases by using various peptide substrates, with a potential to be used in an automated synthesis system operating in a high throughput configuration.
Collapse
Affiliation(s)
- Seongsoo Kim
- Division of Chemical and Bioengineering, Kangwon National University, Gangwon-do 24341, Korea; (S.K.); (S.-M.L.); (J.P.Y.); (N.L.)
| | - Sang-Myung Lee
- Division of Chemical and Bioengineering, Kangwon National University, Gangwon-do 24341, Korea; (S.K.); (S.-M.L.); (J.P.Y.); (N.L.)
- Department of Research and Development, Cantis Inc., Ansan-si, Gyeonggi-do 15588, Korea
| | - Je Pil Yoon
- Division of Chemical and Bioengineering, Kangwon National University, Gangwon-do 24341, Korea; (S.K.); (S.-M.L.); (J.P.Y.); (N.L.)
| | - Namhun Lee
- Division of Chemical and Bioengineering, Kangwon National University, Gangwon-do 24341, Korea; (S.K.); (S.-M.L.); (J.P.Y.); (N.L.)
| | - Jinhyo Chung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea;
| | - Woo-Jae Chung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea;
| | - Dong-Sik Shin
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea
- Industry Collaboration Center, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea
| |
Collapse
|
11
|
Pruna AI, Barjola A, Cárcel AC, Alonso B, Giménez E. Effect of Varying Amine Functionalities on CO 2 Capture of Carboxylated Graphene Oxide-Based Cryogels. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1446. [PMID: 32722061 PMCID: PMC7466278 DOI: 10.3390/nano10081446] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/09/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022]
Abstract
Graphene cryogels synthesis is reported by amine modification of carboxylated graphene oxide via aqueous carbodiimide chemistry. The effect of the amine type on the formation of the cryogels and their properties is presented. In this respect, ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), were selected. The obtained cryogels were characterized by Fourier Transformed Infrared spectroscopy, thermogravimetric analysis, X-ray spectroscopy, and Scanning electron microscopy. The CO2 adsorption performance was evaluated as a function of amine modification. The results showed the best CO2 adsorption performance was exhibited by ethylenediamine modified aerogel, reaching 2 mmol g-1 at 1 bar and 298 K. While the total N content of the cryogels increased with increasing amine groups, the nitrogen configuration and contributions were determined to have more important influence on the adsorption properties. It is also revealed that the residual oxygen functionalities in the obtained cryogels represent another paramount factor to take into account for improving the CO2 capture properties of amine-modified graphene oxide (GO)-based cryogels.
Collapse
Affiliation(s)
- Alina I. Pruna
- Instituto de Tecnología de Materiales, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.I.P.); (A.B.); (A.C.C.)
| | - Arturo Barjola
- Instituto de Tecnología de Materiales, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.I.P.); (A.B.); (A.C.C.)
| | - Alfonso C. Cárcel
- Instituto de Tecnología de Materiales, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.I.P.); (A.B.); (A.C.C.)
| | - Beatriz Alonso
- Graphenea S.A., Paseo Mikeletegi 83, 20009 San Sebastián, Spain;
| | - Enrique Giménez
- Instituto de Tecnología de Materiales, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.I.P.); (A.B.); (A.C.C.)
| |
Collapse
|
12
|
Begum H, Ahmed MS, Kim YB. Nitrogen-rich graphitic-carbon@graphene as a metal-free electrocatalyst for oxygen reduction reaction. Sci Rep 2020; 10:12431. [PMID: 32709940 PMCID: PMC7381605 DOI: 10.1038/s41598-020-68260-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
The metal-free nitrogen-doped graphitic-carbon@graphene (Ng-C@G) is prepared from a composite of polyaniline and graphene by a facile polymerization following by pyrolysis for electrochemical oxygen reduction reaction (ORR). Pyrolysis creates a sponge-like with ant-cave-architecture in the polyaniline derived nitrogenous graphitic-carbon on graphene. The nitrogenous carbon is highly graphitized and most of the nitrogen atoms are in graphitic and pyridinic forms with less oxygenated is found when pyrolyzed at 800 °C. The electrocatalytic activity of Ng-C@G-800 is even better than the benchmarked Pt/C catalyst resulting in the higher half-wave potential (8 mV) and limiting current density (0.74 mA cm-2) for ORR in alkaline medium. Higher catalytic performance is originated from the special porous structure at microscale level and the abundant graphitic- and pyridinic-N active sites at the nanoscale level on carbon-graphene matrix which are beneficial to the high O2-mass transportation to those accessible sites. Also, it possesses a higher cycle stability resulting in the negligible potential shift and slight oxidation of pyridinic-N with better tolerance to the methanol.
Collapse
Affiliation(s)
- Halima Begum
- Department of Mechanical Engineering, Chonnam National University, Gwangju, Republic of Korea
| | | | - Young-Bae Kim
- Department of Mechanical Engineering, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
13
|
N–S-codoped mesoporous carbons from melamine-2-thenaldehyde polymers on carbon nanotubes for oxygen reduction and Zn-air batteries. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Li OL, Prabakar K, Kaneko A, Park H, Ishizaki T. Exploration of Lewis basicity and oxygen reduction reaction activity in plasma-tailored nitrogen-doped carbon electrocatalysts. Catal Today 2019. [DOI: 10.1016/j.cattod.2019.02.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Improvement of Catalytic Activity of Platinum Nanoparticles Decorated Carbon Graphene Composite on Oxygen Electroreduction for Fuel Cells. Processes (Basel) 2019. [DOI: 10.3390/pr7090586] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
High-performance platinum (Pt)-based catalyst development is crucially important for reducing high overpotential of sluggish oxygen reduction reaction (ORR) at Pt-based electrocatalysts, although the high cost and scarcity in nature of Pt are profoundly hampering the practical use of it in fuel cells. Thus, the enhancing activity of Pt-based electrocatalysts with minimal Pt-loading through alloy, core−shell or composite making has been implemented. This article deals with enhancing electrocatalytic activity on ORR of commercially available platinum/carbon (Pt/C) with graphene sheets through a simple composite making. The Pt/C with graphene sheets composite materials (denoted as Pt/Cx:G10−x) have been characterized by several instrumental measurements. It shows that the Pt nanoparticles (NPs) from the Pt/C have been transferred towards the π-conjugated systems of the graphene sheets with better monolayer dispersion. The optimized Pt/C8:G2 composite has higher specific surface area and better degree of graphitization with better dispersion of NPs. As a result, it shows not only stable electrochemical surface area but also enhanced ORR catalytic activity in respect to the onset potential, mass activity and electron transfer kinetics. As shown by the ORR, the Pt/C8:G2 composite is also better resistive to the alcohol crossover effect and more durable than the Pt/C.
Collapse
|
16
|
Begum H, Ahmed MS, Lee DW, Kim YB. Carbon nanotubes-based PdM bimetallic catalysts through N 4-system for efficient ethanol oxidation and hydrogen evolution reaction. Sci Rep 2019; 9:11051. [PMID: 31363157 PMCID: PMC6667450 DOI: 10.1038/s41598-019-47575-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/12/2019] [Indexed: 11/27/2022] Open
Abstract
Transitional metal-nitrogen-carbon system is a promising candidate to replace the Pt-based electrocatalyst due to its superior activity, durability and cost effectiveness. In this study, we have designed a simple strategy to fabricate carbon nanotubes-supported binary-nitrogen-carbon catalyst via wet-chemical method. Palladium and transitional metals (M, i.e. manganese cobalt and copper) nanoparticles are anchored through four-nitrogen system onto carbon nanotubes (denoted as PdM-N4/CNTs). This material has been used as bifunctional electrocatalyst for electrochemical ethanol oxidation reaction and hydrogen evolution reaction for the first time. The N4-linked nanoparticles onto carbon nanotubes plays a crucial role in intrinsic catalytic activity for both reactions in 1 M KOH electrolyte. Among three PdM-N4/CNTs catalysts, the PdMn-N4/CNTs catalyst exhibits higher catalytic activity in terms of current density, mass activity and stability compared to the benchmark Pt/C. The robust electrocatalysis are inherited from the better attachment of PdMn through N4-system onto carbon nanotubes, comparatively smaller particles formation with better dispersion and higher electrical conductivity.
Collapse
Affiliation(s)
- Halima Begum
- Department of Mechanical Engineering, Chonnam National University, Gwangju, Republic of Korea
| | | | - Dong-Weon Lee
- Department of Mechanical Engineering, Chonnam National University, Gwangju, Republic of Korea
| | - Young-Bae Kim
- Department of Mechanical Engineering, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
17
|
Green synthesis of nitrogen-doped self-assembled porous carbon-metal oxide composite towards energy and environmental applications. Sci Rep 2019; 9:5187. [PMID: 30914729 PMCID: PMC6435743 DOI: 10.1038/s41598-019-41700-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 02/26/2019] [Indexed: 11/09/2022] Open
Abstract
Increasing environmental pollution, shortage of efficient energy conversion and storage devices and the depletion of fossil fuels have triggered the research community to look for advanced multifunctional materials suitable for different energy-related applications. Herein, we have discussed a novel and facile synthesis mechanism of such a carbon-based nanocomposite along with its energy and environmental applications. In this present work, nitrogen-doped carbon self-assembled into ordered mesoporous structure has been synthesized via an economical and environment-friendly route and its pore generating mechanism depending on the hydrogen bonding interaction has been highlighted. Incorporation of metal oxide nanoparticles in the porous carbon network has significantly improved CO2 adsorption and lithium storage capacity along with an improvement in the catalytic activity towards Oxygen Reduction Reaction (ORR). Thus our present study unveils a multifunctional material that can be used in three different fields without further modifications.
Collapse
|
18
|
δ-MnO2 nanoflowers on sulfonated graphene sheets for stable oxygen reduction and hydrogen evolution reaction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.073] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Lu Y, Ma Y, Zhang T, Yang Y, Wei L, Chen Y. Monolithic 3D Cross-Linked Polymeric Graphene Materials and the Likes: Preparation and Their Redox Catalytic Applications. J Am Chem Soc 2018; 140:11538-11550. [DOI: 10.1021/jacs.8b06414] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yanhong Lu
- School of Chemistry & Material Science, Langfang Normal University, Langfang 065000, China
| | - Yanfeng Ma
- Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tengfei Zhang
- Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yang Yang
- Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lei Wei
- School of Chemistry & Material Science, Langfang Normal University, Langfang 065000, China
| | - Yongsheng Chen
- Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
20
|
Ahmed MS, Choi B, Kim YB. Development of Highly Active Bifunctional Electrocatalyst Using Co 3O 4 on Carbon Nanotubes for Oxygen Reduction and Oxygen Evolution. Sci Rep 2018; 8:2543. [PMID: 29416089 PMCID: PMC5803219 DOI: 10.1038/s41598-018-20974-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/26/2018] [Indexed: 11/28/2022] Open
Abstract
Replacement of precious platinum catalyst with efficient and cheap bifunctional alternatives would be significantly beneficial for electrocatalytic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) and the application of these catalysts in fuel cells is highly crucial. Despite numerous studies on electrocatalysts, the development of bifunctional electrocatalysts with comparatively better activity and low cost remains a big challenge. In this paper, we report a nanomaterial consisting of nanocactus-shaped Co3O4 grown on carbon nanotubes (Co3O4/CNTs) and employed as a bifunctional electrocatalyst for the simultaneous catalysis on ORR, and OER. The Co3O4/CNTs exhibit superior catalytic activity toward ORR and OER with the smallest potential difference (0.72 V) between the [Formula: see text] (1.55 V) for OER and E1/2 (0.83 V) for ORR. Thus, Co3O4/CNTs are promising high-performance and cost-effective bifunctional catalysts for ORR and OER because of their overall superior catalytic activity and stability compared with 20 wt% Pt/C and RuO2, respectively. The superior catalytic activity arises from the unique nanocactus-like structure of Co3O4 and the synergetic effects of Co3O4 and CNTs.
Collapse
Affiliation(s)
| | - Byungchul Choi
- Department of Mechanical Engineering, Chonnam National University, Gwangju, Republic of Korea
| | - Young-Bae Kim
- Department of Mechanical Engineering, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
21
|
Begum H, Ahmed MS, Jeon S. Highly Efficient Dual Active Palladium Nanonetwork Electrocatalyst for Ethanol Oxidation and Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39303-39311. [PMID: 29068660 DOI: 10.1021/acsami.7b09855] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tunable palladium nanonetwork (PdNN) has been developed for catalyzing ethanol oxidation reaction (EOR) and hydrogen evolution reaction (HER) in alkaline electrolyte. 3D PdNN is regarded as a dual active electrocatalyst for both EOR and HER for energy conversion application. The PdNN has been synthesized by the simple chemical route with the assistance of zinc precursor and a surfactant (i.e., cetyltrimethylammonium bromide, CTAB). The thickness of the network can be tuned by simply adjusting the concentration of CTAB. Both EOR and HER have been performed in an alkaline electrolyte, and characterized by different voltammetric methods. The 3D PdNN has shown 2.2-fold higher electrochemical surface area than the commercially available Pt/C including other tested catalysts with minimal Pd loading. As a result, it provides a higher density of EOR and HER active sites and facilitated the electron transport. For example, it shows 2.6-fold higher mass activity with significantly lower CO2 production for EOR and the similar overpotential (110 mV @ 10 mA cm-2) for HER compared to Pt/C with better reaction kinetics for both reactions. Thus, the PdNN is proved as an efficient electrocatalyst with better electrocatalytic activity and stability than state-of-the-art Pt/C for both EOR and HER because of the crystalline, monodispersed, and support-free porous nanonetwork.
Collapse
Affiliation(s)
- Halima Begum
- Department of Chemistry and Institute of Basic Science, Chonnam National University , Gwangju 500-757, Republic of Korea
| | - Mohammad Shamsuddin Ahmed
- Department of Chemistry and Institute of Basic Science, Chonnam National University , Gwangju 500-757, Republic of Korea
| | - Seungwon Jeon
- Department of Chemistry and Institute of Basic Science, Chonnam National University , Gwangju 500-757, Republic of Korea
| |
Collapse
|
22
|
Begum H, Ahmed MS, Jeon S. New Approach for Porous Chitosan-Graphene Matrix Preparation through Enhanced Amidation for Synergic Detection of Dopamine and Uric Acid. ACS OMEGA 2017; 2:3043-3054. [PMID: 31457638 PMCID: PMC6640929 DOI: 10.1021/acsomega.7b00331] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/16/2017] [Indexed: 05/14/2023]
Abstract
Amide-functionalized materials have emerged as promising nonprecious catalysts for electrochemical sensing and catalysis. The covalent immobilization of chitosan (CS) onto graphene sheet (GS) (denoted as CS-GS) has been done via higher degree of amidation reaction to develop an electrochemical sensing matrix for simultaneous determination of dopamine (DA) and uric acid (UA). The enhanced amidation between CS and GS has not been reported previously. However, electrochemical results have revealed that the CS-GS enhances the electrocatalytic performance in terms of the oxidation potential and peak current due to the higher degree of amide functionalization compared to that of CS/GS, which has a lower amidation. Differential pulse voltammetry-based studies have indicated that the CS-GS matrix works at a lower detection limit (0.14 and 0.17 μM) (S/N = 3) and over a longer linear range (1-700 and 1-800 μM), with a comparatively higher sensitivity (2.5 and 2.0 μA μM-1 cm-2), for DA and UA, respectively. In addition, the CS-GS matrix demonstrates good selectivity toward the detection of DA and UA in the presence of a 10-fold higher concentration of AA and glucose. The as-prepared three-dimensional porous CS-GS also endows selective determination toward DA and UA in various real samples.
Collapse
Affiliation(s)
| | | | - Seungwon Jeon
- E-mail: . Tel: +82 62 530 0064. Fax: +82 62 530 3389
| |
Collapse
|