1
|
Arce-Aceves MF, Espinosa-Neira R, Mata-Espinosa DA, Barrios-Payan JA, Castelán-Sánchez HG, Alcaraz-Estrada SL, Castañón-Arreola M, Hernández-Pando R. Fitness costs of Mycobacterium tuberculosis resistant to rifampicin is compensated by rapid Th2 polarization mediated by early and high IL-4 production during mice infection. Sci Rep 2025; 15:2811. [PMID: 39843896 PMCID: PMC11754857 DOI: 10.1038/s41598-024-81446-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/26/2024] [Indexed: 01/24/2025] Open
Abstract
It was a general belief that drug resistance in Mycobacterium tuberculosis (Mtb) was associated with lesser virulence, particularly rifampicin resistance, which is usually produced by mutations in the RNA polymerase Beta subunit (RpoB). Interestingly, this kind of bacterial mutations affect gene transcription with significant effects on bacterial physiology and metabolism, affecting also the bacterial antigenic constitution that in consequence can produce diverse immune responses and disease outcome. In the present study, we show the results of the Mtb clinical isolate A96, which is resistant to rifampicin and when used to infect BALB/c mice showed hypervirulence, apparently by rapidly polarization of the Th2 immune response through early and high production of IL-4. The 2D-PAGE analysis of the secretome of Mtb A96 showed 204 spots, and by immunoproteome, seven proteins that were differentially recognized with the sera of infected mice on day 28 were identified by LC-MS/MS. The proteins correspond to surface antigens, virulence factors, and energy metabolism enzymes. Some of them are immunodominant antigens, such as LpqH lipoprotein that induces IL-4 secretion in cell suspensions from the lung and spleen of mice infected with Mtb A96 at 28 days postinfection, suggesting that LpqH could be one of the main antigens involved in the Th2 polarization. The reduction of Mtb A96 hypervirulence in IL-4Rα-/- BALB/c mice highlights the importance of IL-4 induction and Th2 response polarization and the immunopathological response. Thus, high and rapid bias to Th2 response is a mechanism of Mtb virulence, which could be mediated by rifampicin-resistant Mtb isolates, probably by high production and secretion of specific antigens.
Collapse
Affiliation(s)
- Ma Fernanda Arce-Aceves
- Experimental Pathology Department, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico
| | - Roberto Espinosa-Neira
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290, Colonia Del Valle Sur, Alcaldía Benito Juárez, Ciudad de México, CP. 03100, Mexico
| | - Dulce A Mata-Espinosa
- Experimental Pathology Department, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico
| | - Jorge A Barrios-Payan
- Experimental Pathology Department, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico
| | - Hugo G Castelán-Sánchez
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
| | - Sofía L Alcaraz-Estrada
- Virological Analysis and Reference Unit, Institute for Social Security and Services for State Workers, National Medical Center "20 de Noviembre", Mexico City, Mexico
| | - Mauricio Castañón-Arreola
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290, Colonia Del Valle Sur, Alcaldía Benito Juárez, Ciudad de México, CP. 03100, Mexico.
| | - Rogelio Hernández-Pando
- Experimental Pathology Department, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico.
- Experimental Pathology Department, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Alcaldía Tlalpan, 14080, Ciudad de México, CDMX, Mexico.
| |
Collapse
|
2
|
Parkin LA, Maceren JP, Palande A, Previti ML, Seeliger JC. Metabolic tagging reveals surface-associated lipoproteins in mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631728. [PMID: 39829771 PMCID: PMC11741404 DOI: 10.1101/2025.01.07.631728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Mycobacteria such as the causative agent of tuberculosis, Mycobacterium tuberculosis, encode over 100 bioinformatically predicted lipoproteins. Despite the importance of these post-translationally modified proteins for mycobacterial survival, many remain experimentally unconfirmed. Here we characterized metabolic incorporation of diverse fatty acid analogues as a facile method of adding chemical groups that enable downstream applications such as detection, crosslinking and enrichment, of not only lipid-modified proteins, but also their protein interactors. Having shown that incorporation is an active process dependent on the lipoprotein biosynthesis pathway, we discovered that lipid-modified proteins are also located at the mycobacterial cell surface. These data counter the commonly held assumption that mycobacteria do not move lipoproteins across the cell envelope and thus have implications for uncovering a novel transport pathway and the roles of lipoproteins at the interface with the host environment. Our findings and the tools we developed will enable the further study of pathways related to lipoprotein function and metabolism in mycobacteria and other bacteria in which lipoproteins remain poorly understood.
Collapse
Affiliation(s)
- Lia A. Parkin
- Department of Microbiology and Immunology, Stony Brook, NY 11794, U.S.A
| | | | - Aseem Palande
- Department of Pharmacological Sciences Stony Brook University, Stony Brook, NY 11794, U.S.A
| | - Mary L. Previti
- Department of Pharmacological Sciences Stony Brook University, Stony Brook, NY 11794, U.S.A
| | - Jessica C. Seeliger
- Department of Pharmacological Sciences Stony Brook University, Stony Brook, NY 11794, U.S.A
| |
Collapse
|
3
|
Géraud N, Falcou C, Parra J, Froment C, Rengel D, Burlet-Schiltz O, Marcoux J, Nigou J, Rivière M, Fabre E. Development of a novel target-based cell assay, reporter of the activity of Mycobacterium tuberculosis protein-O-mannosyltransferase. Glycobiology 2023; 33:1139-1154. [PMID: 37698262 DOI: 10.1093/glycob/cwad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023] Open
Abstract
The Protein-O-mannosyltransferase is crucial for the virulence of Mycobacterium tuberculosis, the etiological agent of tuberculosis. This enzyme, called MtPMT (Rv1002c), is responsible for the post-translational O-mannosylation of mycobacterial proteins. It catalyzes the transfer of a single mannose residue from a polyprenol phospho-mannosyl lipidic donor to the hydroxyl groups of selected Ser/Thr residues in acceptor proteins during their translocation across the membrane. Previously, we provided evidence that the loss of MtPMT activity causes the absence of mannoproteins in Mycobacterium tuberculosis, severely impacting its intracellular growth, as well as a strong attenuation of its pathogenicity in immunocompromised mice. Therefore, it is of interest to develop specific inhibitors of this enzyme to better understand mycobacterial infectious diseases. Here we report the development of a "target-based" phenotypic assay for this enzyme, assessing its O-mannosyltransferase activity in bacteria, in the non-pathogenic Mycobacterium smegmatis strain. Robustness of the quantitative contribution of this assay was evaluated by intact protein mass spectrometry, using a panel of control strains, overexpressing the MtPMT gene, carrying different key point-mutations. Then, screening of a limited library of 30 compounds rationally chosen allowed us to identify 2 compounds containing pyrrole analogous rings, as significant inhibitors of MtPMT activity, affecting neither the growth of the mycobacterium nor its secretion of mannoproteins. These molecular cores could therefore serve as scaffold for the design of new pharmaceutical agents that could improve treatment of mycobacterial diseases. We report here the implementation of a miniaturized phenotypic activity assay for a glycosyltransferase of the C superfamily.
Collapse
Affiliation(s)
- Nicolas Géraud
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), 31400 Toulouse, France
| | - Camille Falcou
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), 31400 Toulouse, France
| | - Julien Parra
- Infrastructure nationale de protéomique, ProFI, 205 Rte de Narbonne, 31400 Toulouse, France
| | - Carine Froment
- Infrastructure nationale de protéomique, ProFI, 205 Rte de Narbonne, 31400 Toulouse, France
| | - David Rengel
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), 31400 Toulouse, France
| | - Odile Burlet-Schiltz
- Infrastructure nationale de protéomique, ProFI, 205 Rte de Narbonne, 31400 Toulouse, France
| | - Julien Marcoux
- Infrastructure nationale de protéomique, ProFI, 205 Rte de Narbonne, 31400 Toulouse, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), 31400 Toulouse, France
| | - Michel Rivière
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), 31400 Toulouse, France
| | - Emeline Fabre
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), 31400 Toulouse, France
| |
Collapse
|
4
|
Malakar B, Chauhan K, Sanyal P, Naz S, Kalam H, Vivek-Ananth RP, Singh LV, Samal A, Kumar D, Nandicoori VK. Phosphorylation of CFP10 modulates Mycobacterium tuberculosis virulence. mBio 2023; 14:e0123223. [PMID: 37791794 PMCID: PMC10653824 DOI: 10.1128/mbio.01232-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/25/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE Secreted virulence factors play a critical role in bacterial pathogenesis. Virulence effectors not only help bacteria to overcome the host immune system but also aid in establishing infection. Mtb, which causes tuberculosis in humans, encodes various virulence effectors. Triggers that modulate the secretion of virulence effectors in Mtb are yet to be fully understood. To gain mechanistic insight into the secretion of virulence effectors, we performed high-throughput proteomic studies. With the help of system-level protein-protein interaction network analysis and empirical validations, we unravelled a link between phosphorylation and secretion. Taking the example of the well-known virulence factor of CFP10, we show that the dynamics of CFP10 phosphorylation strongly influenced bacterial virulence and survival ex vivo and in vivo. This study presents the role of phosphorylation in modulating the secretion of virulence factors.
Collapse
Affiliation(s)
- Basanti Malakar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Komal Chauhan
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Priyadarshini Sanyal
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Centre for Cellular and Molecular Biology Campus, Hyderabad, India
| | - Saba Naz
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Haroon Kalam
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - R. P. Vivek-Ananth
- The Institute of Mathematical Sciences (IMSc), Homi Bhabha National Institute (HBNI), Chennai, India
| | - Lakshya Veer Singh
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Areejit Samal
- The Institute of Mathematical Sciences (IMSc), Homi Bhabha National Institute (HBNI), Chennai, India
| | - Dhiraj Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Vinay Kumar Nandicoori
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Centre for Cellular and Molecular Biology Campus, Hyderabad, India
| |
Collapse
|
5
|
Krishnananthasivam S, Li H, Bouzeyen R, Shunmuganathan B, Purushotorman K, Liao X, Du F, Friis CGK, Crawshay-Williams F, Boon LH, Xinlei Q, Chan CEZ, Sobota R, Kozma M, Barcelli V, Wang G, Huang H, Floto A, Bifani P, Javid B, MacAry PA. An anti-LpqH human monoclonal antibody from an asymptomatic individual mediates protection against Mycobacterium tuberculosis. NPJ Vaccines 2023; 8:127. [PMID: 37626082 PMCID: PMC10457302 DOI: 10.1038/s41541-023-00710-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/11/2023] [Indexed: 08/27/2023] Open
Abstract
Tuberculosis (TB) is an airborne disease caused by Mycobacterium tuberculosis (Mtb). Whilst a functional role for humoral immunity in Mtb protection remains poorly defined, previous studies have suggested that antibodies can contribute towards host defense. Thus, identifying the critical components in the antibody repertoires from immune, chronically exposed, healthy individuals represents an approach for identifying new determinants for natural protection. In this study, we performed a thorough analysis of the IgG/IgA memory B cell repertoire from occupationally exposed, immune volunteers. We detail the identification and selection of a human monoclonal antibody that exhibits protective activity in vivo and show that it targets a virulence factor LpqH. Intriguingly, protection in both human ex vivo and murine challenge experiments was isotype dependent, with most robust protection being mediated via IgG2 and IgA. These data have important implications for our understanding of natural mucosal immunity for Mtb and highlight a new target for future vaccine development.
Collapse
Affiliation(s)
- Shivankari Krishnananthasivam
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hao Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Rania Bouzeyen
- Division of Experimental Medicine, University of California, San Francisco, USA
| | | | - Kiren Purushotorman
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Xinlei Liao
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, P.R. China
| | - Fengjiao Du
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, P.R. China
| | - Claudia Guldager Kring Friis
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Felicity Crawshay-Williams
- Molecular Immunity Unit, University of Cambridge, Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Low Heng Boon
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Qian Xinlei
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Conrad En Zuo Chan
- National Centre for Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Radoslaw Sobota
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mary Kozma
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Valeria Barcelli
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Guirong Wang
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, P.R. China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, P.R. China
| | - Andreas Floto
- Molecular Immunity Unit, University of Cambridge, Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Pablo Bifani
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Babak Javid
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China.
- Division of Experimental Medicine, University of California, San Francisco, USA.
| | - Paul A MacAry
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Dafun AS, Živković D, Leon-Icaza SA, Möller S, Froment C, Bonnet D, de Jesus AA, Alric L, Quaranta-Nicaise M, Ferrand A, Cougoule C, Meunier E, Burlet-Schiltz O, Ebstein F, Goldbach-Mansky R, Krüger E, Bousquet MP, Marcoux J. Establishing 20S Proteasome Genetic, Translational and Post-Translational Status from Precious Biological and Patient Samples with Top-Down MS. Cells 2023; 12:cells12060844. [PMID: 36980185 PMCID: PMC10047880 DOI: 10.3390/cells12060844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
The mammalian 20S catalytic core of the proteasome is made of 14 different subunits (α1-7 and β1-7) but exists as different subtypes depending on the cell type. In immune cells, for instance, constitutive catalytic proteasome subunits can be replaced by the so-called immuno-catalytic subunits, giving rise to the immunoproteasome. Proteasome activity is also altered by post-translational modifications (PTMs) and by genetic variants. Immunochemical methods are commonly used to investigate these PTMs whereby protein-tagging is necessary to monitor their effect on 20S assembly. Here, we present a new miniaturized workflow combining top-down and bottom-up mass spectrometry of immunopurified 20S proteasomes that analyze the proteasome assembly status as well as the full proteoform footprint, revealing PTMs, mutations, single nucleotide polymorphisms (SNPs) and induction of immune-subunits in different biological samples, including organoids, biopsies and B-lymphoblastoid cell lines derived from patients with proteasome-associated autoinflammatory syndromes (PRAAS). We emphasize the benefits of using top-down mass spectrometry in preserving the endogenous conformation of protein modifications, while enabling a rapid turnaround (1 h run) and ensuring high sensitivity (1–2 pmol) and demonstrate its capacity to semi-quantify constitutive and immune proteasome subunits.
Collapse
Affiliation(s)
- Angelique Sanchez Dafun
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Dušan Živković
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Stephen Adonai Leon-Icaza
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Sophie Möller
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Carine Froment
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Delphine Bonnet
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Université de Toulouse III—Paul Sabatier (UPS), 31300 Toulouse, France
- Internal Medicine Department of Digestive Disease, Rangueil Hospital, Université de Toulouse III—Paul Sabatier (UPS), 31400 Toulouse, France
| | - Adriana Almeida de Jesus
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laurent Alric
- Internal Medicine Department of Digestive Disease, Rangueil Hospital, Université de Toulouse III—Paul Sabatier (UPS), 31400 Toulouse, France
| | - Muriel Quaranta-Nicaise
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Université de Toulouse III—Paul Sabatier (UPS), 31300 Toulouse, France
| | - Audrey Ferrand
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Université de Toulouse III—Paul Sabatier (UPS), 31300 Toulouse, France
| | - Céline Cougoule
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Etienne Meunier
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
- Correspondence: (M.-P.B.); (J.M.)
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
- Correspondence: (M.-P.B.); (J.M.)
| |
Collapse
|
7
|
Dafun AS, Marcoux J. Structural mass spectrometry of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140813. [PMID: 35750312 DOI: 10.1016/j.bbapap.2022.140813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The analysis of proteins and protein complexes by mass spectrometry (MS) has come a long way since the invention of electrospray ionization (ESI) in the mid 80s. Originally used to characterize small soluble polypeptide chains, MS has progressively evolved over the past 3 decades towards the analysis of samples of ever increasing heterogeneity and complexity, while the instruments have become more and more sensitive and resolutive. The proofs of concepts and first examples of most structural MS methods appeared in the early 90s. However, their application to membrane proteins, key targets in the biopharma industry, is more recent. Nowadays, a wealth of information can be gathered from such MS-based methods, on all aspects of membrane protein structure: sequencing (and more precisely proteoform characterization), but also stoichiometry, non-covalent ligand binding (metals, drug, lipids, carbohydrates), conformations, dynamics and distance restraints for modelling. In this review, we present the concept and some historical and more recent applications on membrane proteins, for the major structural MS methods.
Collapse
Affiliation(s)
- Angelique Sanchez Dafun
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
8
|
Garcia-Rodriguez KM, Goenka A, Thomson DD, Bahri R, Tontini C, Salcman B, Hernandez-Pando R, Bulfone-Paus S. Bacillus Calmette-Guérin-Induced Human Mast Cell Activation Relies on IL-33 Priming. Int J Mol Sci 2022; 23:7549. [PMID: 35886897 PMCID: PMC9320129 DOI: 10.3390/ijms23147549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Bacillus Calmette-Guérin (BCG) vaccine is an attenuated strain of Mycobacterium bovis that provides weak protection against tuberculosis (TB). Mast cells (MCs) are tissue-resident immune cells strategically that serve as the first line of defence against pathogenic threats. In this study, we investigated the response of human MCs (hMCs) to BCG. We found that naïve hMCs exposed to BCG did not secrete cytokines, degranulate, or support the uptake and intracellular growth of bacteria. Since we could show that in hMCs IL-33 promotes the transcription of host-pathogen interaction, cell adhesion and activation genes, we used IL-33 for cell priming. The treatment of hMCs with IL-33, but not IFN-γ, before BCG stimulation increased IL-8, MCP-1 and IL-13 secretion, and induced an enhanced expression of the mycobacteria-binding receptor CD48. These effects were comparable to those caused by the recombinant Mycobacterium tuberculosis (Mtb) 19-KDa lipoprotein. Finally, stimulation of hMCs with IL-33 incremented MC-BCG interactions. Thus, we propose that IL-33 may improve the immunogenicity of BCG vaccine by sensitising hMCs.
Collapse
Affiliation(s)
- Karen M. Garcia-Rodriguez
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (K.M.G.-R.); (D.D.T.); (R.B.); (C.T.); (B.S.)
- School of Materials, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PL, UK
| | - Anu Goenka
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TH, UK;
| | - Darren D. Thomson
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (K.M.G.-R.); (D.D.T.); (R.B.); (C.T.); (B.S.)
- MRC Centre for Medical Mycology, University of Exeter, Exeter EX4 4PY, UK
| | - Rajia Bahri
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (K.M.G.-R.); (D.D.T.); (R.B.); (C.T.); (B.S.)
| | - Chiara Tontini
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (K.M.G.-R.); (D.D.T.); (R.B.); (C.T.); (B.S.)
| | - Barbora Salcman
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (K.M.G.-R.); (D.D.T.); (R.B.); (C.T.); (B.S.)
| | - Rogelio Hernandez-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition “Salvador Zubirán”, Mexico City 14080, Mexico;
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (K.M.G.-R.); (D.D.T.); (R.B.); (C.T.); (B.S.)
| |
Collapse
|
9
|
High-resolution crystal structure of LpqH, an immunomodulatory surface lipoprotein of Mycobacterium tuberculosis reveals a distinct fold and a conserved cleft on its surface. Int J Biol Macromol 2022; 210:494-503. [PMID: 35504420 DOI: 10.1016/j.ijbiomac.2022.04.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/07/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, is predominantly a disease of the lungs acquired by inhaling mycobacteria from infected individuals via airborne droplets. In order to facilitate their entry into the alveolar macrophages, mycobacteria have a collection of pathogen-associated molecular patterns (PAMPs) on their surface that are known to detect certain pattern recognition receptors present on the surface of host cells. A major group of these PAMPs includes mycobacterial lipoproteins, of which, the 19 kDa surface antigen LpqH, has been reported to play a critical role in both host-pathogen interactions as well as pleiotropic immune regulation. Despite its crucial involvement in tuberculosis, the detailed structure-function relationship of this protein remains to be explored. Here, we report the high-resolution crystal structure of the non-acylated LpqH (LpqH48-159) at a resolution of 1.26 Å, which adopts a unique fold. Flow cytometry-based experiments show that the protein can bind and induce apoptosis in PMA-activated human monocytic cell line THP-1, indicative of the preservation of functionality of the protein. Furthermore, analysis of conservation of LpqH sequences from Mycobacterium species reveals a patch of conserved residues on the surface which may play a role in its binding partner recognition and hence in host-pathogen interaction.
Collapse
|
10
|
Yang S, Sui S, Qin Y, Chen H, Sha S, Liu X, Deng G, Ma Y. Protein O-mannosyltransferase Rv1002c contributes to low cell permeability, biofilm formation in vitro, and mycobacterial survival in mice. APMIS 2022; 130:181-192. [PMID: 34978741 DOI: 10.1111/apm.13204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/28/2021] [Indexed: 01/05/2023]
Abstract
Mycobacterium tuberculosis (M. tuberculosis) Rv1002c encodes the protein O-mannosyltransferase (PMT), which catalyzes the transfer of mannose to serine or threonine residues of proteins. We explored the function of PMT in vitro and in vivo. Rv1002c protein was heterogeneously overexpressed in nonpathogenic Mycobacterium smegmatis (named as MS_Rv1002c). A series of trials including mass spectrometry, transmission electron microscope, biofilm formation and antibiotics susceptibility were performed to explore the function of PMT on bacterial survival in vitro. Mouse experiments were carried out to evaluate the virulence of PMT in vivo. PMT decreased the cell envelope permeability and promoted microbial biofilm formation. PMT enhanced the mycobacterial survival in vivo and inhibited the release of pro-inflammatory cytokines in serum. The function might be associated with an increased abundance of some mannoproteins in culture filtrate (CF). PMT is likely to be involved in mycobacterial survival both in vivo and in vitro due to increasing the mannoproteins abundance in CF.
Collapse
Affiliation(s)
- Shufeng Yang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shaoguang Sui
- Department of Emergency, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yuanhua Qin
- Department of Parasitology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Haibo Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Shanshan Sha
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xin Liu
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Guoying Deng
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yufang Ma
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Hoel IM, Ali IAM, Ishtiaq S, Sviland L, Wiker H, Mustafa T. Immunochemistry-Based Diagnosis of Extrapulmonary Tuberculosis: A Strategy for Large-Scale Production of MPT64-Antibodies for Use in the MPT64 Antigen Detection Test. Antibodies (Basel) 2021; 10:34. [PMID: 34462410 PMCID: PMC8406093 DOI: 10.3390/antib10030034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 02/04/2023] Open
Abstract
Tuberculosis (TB) is a global health problem. The immunohistochemistry (IHC)-based MPT64 antigen detection test has shown promising results for diagnosing extrapulmonary TB in previous studies. However, the anti-MPT64 antibody currently used in the test is in limited supply, and reproduction of a functional antibody is a prerequisite for further large-scale use. Various antigen-adjuvant combinations and immunisation protocols were tested in mice and rabbits to generate monoclonal and polyclonal antibodies. Antibodies were screened in IHC, and the final new antibody was validated on clinical human specimens. We were not able to generate monoclonal antibodies that were functional in IHC, but we obtained multiple functional polyclonal antibodies through careful selection of antigen-adjuvant and comprehensive screening in IHC of both pre-immune sera and antisera. To overcome the limitation of batch-to-batch variability with polyclonal antibodies, the best performing individual polyclonal antibodies were pooled to one final large-volume new anti-MPT64 antibody. The sensitivity of the new antibody was in the same range as the reference antibody, while the specificity was somewhat reduced. Our results suggest that it possible to reproduce a large-volume functional polyclonal antibody with stable performance, thereby securing stable supplies and reproducibility of the MPT64 test, albeit further validation remains to be done.
Collapse
Affiliation(s)
- Ida Marie Hoel
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (I.A.M.A.); (T.M.)
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway;
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway;
| | - Iman A Mohammed Ali
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (I.A.M.A.); (T.M.)
| | - Sheeba Ishtiaq
- Department of Histopathology, Gulab Devi Chest Hospital Lahore, Lahore 54000, Pakistan;
| | - Lisbet Sviland
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway;
- Department of Pathology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Harald Wiker
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway;
| | - Tehmina Mustafa
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (I.A.M.A.); (T.M.)
- Department of Thoracic Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
12
|
Layre E. Targeted Lipidomics of Mycobacterial Lipids and Glycolipids. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2314:549-577. [PMID: 34235670 DOI: 10.1007/978-1-0716-1460-0_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Decades of study have highlighted the richness and uniqueness of the repertoire of lipid and glycolipid families produced by mycobacteria. Many of these families potently regulate host immune responses, in stimulatory or suppressive ways. Thus, the global study of this repertoire in different genetic backgrounds or under model conditions of infection is gaining interest. Despite the difficulties associated with the specificities of this repertoire, the field of mass spectrometry-based lipidomics of mycobacteria has recently made considerable progress, particularly at the analytical level. There is still considerable scope for further progress, especially with regard to the development of an efficient bioinfomatics pipeline for the analysis of the large datasets generated. This chapter describes an HPLC-MS methodology allowing the simultaneous screening of more than 20 of the lipid families produced by mycobacteria and provides recommendations to analyze the generated data given the state-of-the-art.
Collapse
Affiliation(s)
- Emilie Layre
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
13
|
Methods for Proteomic Analyses of Mycobacteria. Methods Mol Biol 2021. [PMID: 34235669 DOI: 10.1007/978-1-0716-1460-0_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The use of proteomic technologies to characterize and study the proteome of mycobacteria has provided important information in terms of function, diversity, protein-protein interactions, and host-pathogen interactions in Mycobacterium spp. There are many different mass spectrometry methodologies that can be applied to proteomics studies of mycobacteria and microorganisms in general. Sample processing and appropriate study design are critical to generating high-quality data regardless of the mass spectrometry method applied. Appropriate study design relies on statistical rigor and data curation using bioinformatics approaches that are widely applicable regardless of the organism or system studied. Sample processing, on the other hand, is often a niched process specific to the physiology of the organism or system under investigation. Therefore, in this chapter, we will provide protocols for processing mycobacterial protein samples for the specific application of Top-down and Bottom-up proteomic analyses.
Collapse
|
14
|
Allué-Guardia A, García JI, Torrelles JB. Evolution of Drug-Resistant Mycobacterium tuberculosis Strains and Their Adaptation to the Human Lung Environment. Front Microbiol 2021; 12:612675. [PMID: 33613483 PMCID: PMC7889510 DOI: 10.3389/fmicb.2021.612675] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
In the last two decades, multi (MDR), extensively (XDR), extremely (XXDR) and total (TDR) drug-resistant Mycobacterium tuberculosis (M.tb) strains have emerged as a threat to public health worldwide, stressing the need to develop new tuberculosis (TB) prevention and treatment strategies. It is estimated that in the next 35 years, drug-resistant TB will kill around 75 million people and cost the global economy $16.7 trillion. Indeed, the COVID-19 pandemic alone may contribute with the development of 6.3 million new TB cases due to lack of resources and enforced confinement in TB endemic areas. Evolution of drug-resistant M.tb depends on numerous factors, such as bacterial fitness, strain's genetic background and its capacity to adapt to the surrounding environment, as well as host-specific and environmental factors. Whole-genome transcriptomics and genome-wide association studies in recent years have shed some insights into the complexity of M.tb drug resistance and have provided a better understanding of its underlying molecular mechanisms. In this review, we will discuss M.tb phenotypic and genotypic changes driving resistance, including changes in cell envelope components, as well as recently described intrinsic and extrinsic factors promoting resistance emergence and transmission. We will further explore how drug-resistant M.tb adapts differently than drug-susceptible strains to the lung environment at the cellular level, modulating M.tb-host interactions and disease outcome, and novel next generation sequencing (NGS) strategies to study drug-resistant TB.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| | | | - Jordi B. Torrelles
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
15
|
Liu F, Liang J, Zhang B, Gao Y, Yang X, Hu T, Yang H, Xu W, Guddat LW, Rao Z. Structural basis of trehalose recycling by the ABC transporter LpqY-SugABC. SCIENCE ADVANCES 2020; 6:6/44/eabb9833. [PMID: 33127676 PMCID: PMC7608808 DOI: 10.1126/sciadv.abb9833] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/10/2020] [Indexed: 05/04/2023]
Abstract
In bacteria, adenosine 5'-triphosphate (ATP)-binding cassette (ABC) importers are essential for the uptake of nutrients including the nonreducing disaccharide trehalose, a metabolite that is crucial for the survival and virulence of several human pathogens including Mycobacterium tuberculosis SugABC is an ABC transporter that translocates trehalose from the periplasmic lipoprotein LpqY into the cytoplasm of mycobacteria. Here, we report four high-resolution cryo-electron microscopy structures of the mycobacterial LpqY-SugABC complex to reveal how it binds and passes trehalose through the membrane to the cytoplasm. A unique feature observed in this system is the initial mode of capture of the trehalose at the LpqY interface. Uptake is achieved by a pivotal rotation of LpqY relative to SugABC, moving from an open and accessible conformation to a clamped conformation upon trehalose binding. These findings enrich our understanding as to how ABC transporters facilitate substrate transport across the membrane in Gram-positive bacteria.
Collapse
Affiliation(s)
- Fengjiang Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jingxi Liang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tianyu Hu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenqing Xu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
16
|
Potential Plasticity of the Mannoprotein Repertoire Associated to Mycobacterium tuberculosis Virulence Unveiled by Mass Spectrometry-Based Glycoproteomics. Molecules 2020; 25:molecules25102348. [PMID: 32443484 PMCID: PMC7287972 DOI: 10.3390/molecules25102348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
To date, Mycobacterium tuberculosis (Mtb) remains the world’s greatest infectious killer. The rise of multidrug-resistant strains stresses the need to identify new therapeutic targets to fight the epidemic. We previously demonstrated that bacterial protein-O-mannosylation is crucial for Mtb infectiousness, renewing the interest of the bacterial-secreted mannoproteins as potential drug-targetable virulence factors. The difficulty of inventorying the mannoprotein repertoire expressed by Mtb led us to design a stringent multi-step workflow for the reliable identification of glycosylated peptides by large-scale mass spectrometry-based proteomics. Applied to the differential analyses of glycoproteins secreted by the wild-type Mtb strain—and by its derived mutant invalidated for the protein-O-mannosylating enzyme PMTub—this approach led to the identification of not only most already known mannoproteins, but also of yet-unknown mannosylated proteins. In addition, analysis of the glycoproteome expressed by the isogenic recombinant Mtb strain overexpressing the PMTub gene revealed an unexpected mannosylation of proteins, with predicted or demonstrated functions in Mtb growth and interaction with the host cell. Since in parallel, a transient increased expression of the PMTub gene has been observed in the wild-type bacilli when infecting macrophages, our results strongly suggest that the Mtb mannoproteome may undergo adaptive regulation during infection of the host cells. Overall, our results provide deeper insights into the complexity of the repertoire of mannosylated proteins expressed by Mtb, and open the way to novel opportunities to search for still-unexploited potential therapeutic targets.
Collapse
|
17
|
Seniya SP, Yadav P, Jain V. Construction of E. coli-Mycobacterium shuttle vectors with a variety of expression systems and polypeptide tags for gene expression in mycobacteria. PLoS One 2020; 15:e0230282. [PMID: 32160243 PMCID: PMC7065818 DOI: 10.1371/journal.pone.0230282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/25/2020] [Indexed: 01/23/2023] Open
Abstract
Cloning and expression of a desired gene is indispensable in molecular biology studies. Expression vectors, in this regard, should offer much needed flexibility and choice of cloning strategies for both in vivo and in vitro protein expression experiments. Furthermore, availability of option to choose from various reporter tags allows one to be flexible during designing of an experiment in a more relevant manner. Thus, the need of a versatile expression system cannot be ignored. Although several different expression vectors are available for gene expression in mycobacteria, they lack the required versatility of expression and the inclusion of reporter tags. We here present the construction of a set of nine E. coli-Mycobacterium shuttle plasmids, which offer a combination of three mycobacterial promoter systems (heat shock inducible-hsp60, tetracycline-, and acetamide-inducible) along with three polypeptide tags (Green Fluorescent Protein (GFP), Glutathione S-transferase (GST) and hexa-histidine tag). These vectors offer the cloning of a target gene in all the nine given vectors in parallel, thus allowing the generation of recombinant plasmids that will express the target gene from different promoters with different tags. Here, while the hexa-histidine and GST tags can be used for protein purification and pull-down experiments, the GFP-tag can be used for protein localization within the cell. Additionally, the vectors also offer the choice of positioning of the reporter tag either at the N-terminus or at the C-terminus of the expressed protein, which is achieved by cloning of the gene at any of the two blunt-end restriction enzyme sites available in the vector. We believe that these plasmids will be extremely useful in the gene expression studies in mycobacteria by offering the choices of promoters and reporters. Our work also paves the way to developing more such plasmids with other tags and promoters that may find use in mycobacterial biology.
Collapse
Affiliation(s)
- Surya Pratap Seniya
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Priya Yadav
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
- * E-mail:
| |
Collapse
|
18
|
Tucci P, Portela M, Chetto CR, González-Sapienza G, Marín M. Integrative proteomic and glycoproteomic profiling of Mycobacterium tuberculosis culture filtrate. PLoS One 2020; 15:e0221837. [PMID: 32126063 PMCID: PMC7053730 DOI: 10.1371/journal.pone.0221837] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/10/2020] [Indexed: 12/20/2022] Open
Abstract
Despite being the subject of intensive research, tuberculosis, caused by Mycobacterium tuberculosis, remains at present the leading cause of death from an infectious agent. Secreted and cell wall proteins interact with the host and play important roles in pathogenicity. These proteins are explored as candidate diagnostic markers, potential drug targets or vaccine antigens, and more recently special attention is being given to the role of their post-translational modifications. With the purpose of contributing to the proteomic and glycoproteomic characterization of this important pathogen, we performed a shotgun analysis of culture filtrate proteins of M. tuberculosis based on a liquid nano-HPLC tandem mass spectrometry and a label-free spectral counting normalization approach for protein quantification. We identified 1314 M. tuberculosis proteins in culture filtrate and found that the most abundant proteins belong to the extracellular region or cell wall compartment, and that the functional categories with higher protein abundance factor were virulence, detoxification and adaptation, and cell wall and cell processes. We could identify a group of proteins consistently detected in previous studies, most of which were highly abundant proteins. In culture filtrate, 140 proteins were predicted to contain one of the three types of bacterial N-terminal signal peptides. Besides, various proteins belonging to the ESX secretion systems, and to the PE and PPE families, secreted by the type VII secretion system using nonclassical secretion signals, were also identified. O-glycosylation was identified in 46 proteins, many of them lipoproteins and cell wall associated proteins. Finally, we provide proteomic evidence for 33 novel O-glycosylated proteins, aiding to the glycoproteomic characterization of relevant antigenic membrane and exported proteins. These findings are expected to collaborate with the research on pathogen derived biomarkers, virulence factors and vaccine candidates, and to provide clues to the understanding of the pathogenesis and survival strategies adopted by M. tuberculosis.
Collapse
Affiliation(s)
- Paula Tucci
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madelón Portela
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Carlos Rivas Chetto
- Departamento de Laboratorio, Comisión Honoraria para la Lucha Antituberculosa y Enfermedades Prevalentes, Centro de Referencia Nacional para Micobacterias, Ministerio de Salud Pública, Montevideo, Uruguay
| | - Gualberto González-Sapienza
- Cátedra de Inmunología, DEPBIO, Facultad de Química, Universidad de la Republica Uruguay, Montevideo, Uruguay
| | - Mónica Marín
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
19
|
Locard-Paulet M, Parra J, Albigot R, Mouton-Barbosa E, Bardi L, Burlet-Schiltz O, Marcoux J. VisioProt-MS: interactive 2D maps from intact protein mass spectrometry. Bioinformatics 2019; 35:679-681. [PMID: 30084957 PMCID: PMC6378940 DOI: 10.1093/bioinformatics/bty680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 07/13/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022] Open
Abstract
SUMMARY VisioProt-MS is designed to summarize and analyze intact protein and top-down proteomics data. It plots the molecular weights of eluting proteins as a function of their retention time, thereby allowing inspection of runs from liquid chromatography coupled to mass spectrometry (LC-MS). It also overlays MS/MS identification results. VisioProt-MS is compatible with outputs from many different top-down dedicated software. To our knowledge, this is the only open source standalone application that allows the dynamic comparison of several MS files, a prerequisite for comparative analysis of different biological conditions. With its dynamic rendering, this user-friendly web application facilitates inspection, comparison and export of publication quality 2 D maps from deconvoluted LC-MS run(s) and top-down proteomics data. AVAILABILITY AND IMPLEMENTATION The Shiny-based web application VisioProt-MS is suitable for non-R users. It can be found at https://masstools.ipbs.fr/mstools/visioprot-ms/ and the corresponding scripts are downloadable at https://github.com/mlocardpaulet/VisioProt-MS. It is governed by the CeCILL license (http://www.cecill.info).
Collapse
Affiliation(s)
- Marie Locard-Paulet
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Parra
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Renaud Albigot
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laurent Bardi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
20
|
Dubois V, Pawlik A, Bories A, Le Moigne V, Sismeiro O, Legendre R, Varet H, Rodríguez-Ordóñez MDP, Gaillard JL, Coppée JY, Brosch R, Herrmann JL, Girard-Misguich F. Mycobacterium abscessus virulence traits unraveled by transcriptomic profiling in amoeba and macrophages. PLoS Pathog 2019; 15:e1008069. [PMID: 31703112 PMCID: PMC6839843 DOI: 10.1371/journal.ppat.1008069] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/04/2019] [Indexed: 01/04/2023] Open
Abstract
Free-living amoebae are thought to represent an environmental niche in which amoeba-resistant bacteria may evolve towards pathogenicity. To get more insights into factors playing a role for adaptation to intracellular life, we characterized the transcriptomic activities of the emerging pathogen Mycobacterium abscessus in amoeba and murine macrophages (Mϕ) and compared them with the intra-amoebal transcriptome of the closely related, but less pathogenic Mycobacterium chelonae. Data on up-regulated genes in amoeba point to proteins that allow M. abscessus to resist environmental stress and induce defense mechanisms, as well as showing a switch from carbohydrate carbon sources to fatty acid metabolism. For eleven of the most upregulated genes in amoeba and/or Mϕ, we generated individual gene knock-out M. abscessus mutant strains, from which ten were found to be attenuated in amoeba and/or Mϕ in subsequence virulence analyses. Moreover, transfer of two of these genes into the genome of M. chelonae increased the intra-Mϕ survival of the recombinant strain. One knock-out mutant that had the gene encoding Eis N-acetyl transferase protein (MAB_4532c) deleted, was particularly strongly attenuated in Mϕ. Taken together, M. abscessus intra-amoeba and intra-Mϕ transcriptomes revealed the capacity of M. abscessus to adapt to an intracellular lifestyle, with amoeba largely contributing to the enhancement of M. abscessus intra-Mϕ survival.
Collapse
Affiliation(s)
- Violaine Dubois
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Alexandre Pawlik
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne intégrée, UMR3525 CNRS, Paris, France
| | - Anouchka Bories
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Vincent Le Moigne
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Odile Sismeiro
- Institut Pasteur—Bioinformatics and Biostatistics Hub—C3BI, USR 3756 IP CNRS, Paris, France
| | - Rachel Legendre
- Institut Pasteur—Bioinformatics and Biostatistics Hub—C3BI, USR 3756 IP CNRS, Paris, France
- Institut Pasteur—Transcriptome and Epigenome Platform—Biomics Pole—CITECH, Paris, France
| | - Hugo Varet
- Institut Pasteur—Bioinformatics and Biostatistics Hub—C3BI, USR 3756 IP CNRS, Paris, France
- Institut Pasteur—Transcriptome and Epigenome Platform—Biomics Pole—CITECH, Paris, France
| | | | - Jean-Louis Gaillard
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
- AP-HP. GHU Paris Saclay, Hôpital Ambroise Paré, Boulogne Billancourt, France
| | - Jean-Yves Coppée
- Institut Pasteur—Bioinformatics and Biostatistics Hub—C3BI, USR 3756 IP CNRS, Paris, France
| | - Roland Brosch
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne intégrée, UMR3525 CNRS, Paris, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
- AP-HP. GHU Paris Saclay, Hôpital Raymond Poincaré, Garches, France
| | - Fabienne Girard-Misguich
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| |
Collapse
|
21
|
Lesne J, Bousquet MP, Marcoux J, Locard-Paulet M. Top-Down and Intact Protein Mass Spectrometry Data Visualization for Proteoform Analysis Using VisioProt-MS. Bioinform Biol Insights 2019; 13:1177932219868223. [PMID: 31452600 PMCID: PMC6698994 DOI: 10.1177/1177932219868223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/04/2022] Open
Abstract
The rise of intact protein analysis by mass spectrometry (MS) was accompanied by
an increasing need for flexible tools allowing data visualization and analysis.
These include inspection of the deconvoluted molecular weights of the
proteoforms eluted alongside liquid chromatography (LC) through their
representation in three-dimensional (3D) liquid chromatography coupled to mass
spectrometry (LC-MS) maps (plots of deconvoluted molecular weights, retention
times, and intensity of the MS signal). With this aim, we developed a free and
open-source web application named VisioProt-MS (https://masstools.ipbs.fr/mstools/visioprot-ms/). VisioProt-MS
is highly compatible with many algorithms and software developed by the
community to integrate and deconvolute top-down and intact protein MS data. Its
dynamic and user-friendly features greatly facilitate analysis through several
graphical representations dedicated to MS and tandem mass spectrometry (MS/MS)
analysis of proteoforms in complex samples. Here, we will illustrate the
importance of LC-MS map visualization to optimize top-down acquisition/search
parameters and analyze intact protein MS data. We will go through the main
features of VisioProt-MS using the human proteasomal 20S core particle as a
user-case.
Collapse
Affiliation(s)
- Jean Lesne
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie Locard-Paulet
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Hanafiah KM, Arifin N, Sanders PR, Othman N, Garcia ML, Anderson DA. Proteomic Analysis of Antigen 60 Complex of M. bovis Bacillus Calmette-Guérin Reveals Presence of Extracellular Vesicle Proteins and Predicted Functional Interactions. Vaccines (Basel) 2019; 7:E80. [PMID: 31382538 PMCID: PMC6789874 DOI: 10.3390/vaccines7030080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/14/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB) is ranked among the top 10 causes of death worldwide. New biomarker-based serodiagnostics and vaccines are unmet needs stalling disease control. Antigen 60 (A60) is a thermostable mycobacterial complex typically purified from Bacillus Calmette-Guérin (BCG) vaccine. A60 was historically evaluated for TB serodiagnostic and vaccine potential with variable findings. Despite containing immunogenic proteins, A60 has yet to be proteomically characterized. Here, commercial A60 was (1) trypsin-digested in-solution, analyzed by LC-MS/MS, searched against M. tuberculosis H37Rv and M. bovis BCG Uniprot databases; (2) analyzed using STRING to predict protein-protein interactions; and (3) probed with anti-TB monoclonal antibodies and patient immunoglobulin G (IgG) on Western blot to evaluate antigenicity. We detected 778 proteins in two A60 samples (440 proteins shared), including DnaK, LprG, LpqH, and GroEL1/2, reportedly present in mycobacterial extracellular vesicles (EV). Of these, 107 were also reported in EVs of M. tuberculosis, and 27 key proteins had significant protein-protein interaction, with clustering for chaperonins, ribosomal proteins, and proteins for ligand transport (LpqH and LprG). On Western blot, 7/8 TB and 1/8 non-TB sera samples had reactivity against 37-50 kDa proteins, while LpqH, GroEL2, and PstS1 were strongly detected. In conclusion, A60 comprises numerous proteins, including EV proteins, with predicted biological interactions, which may have implications on biomarker and vaccine development.
Collapse
Affiliation(s)
- Khayriyyah Mohd Hanafiah
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
- Life Sciences, Macfarlane Burnet Institute, Melbourne, VIC 3004, Australia.
| | - Norsyahida Arifin
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Paul R Sanders
- Life Sciences, Macfarlane Burnet Institute, Melbourne, VIC 3004, Australia
| | - Nurulhasanah Othman
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Mary L Garcia
- Life Sciences, Macfarlane Burnet Institute, Melbourne, VIC 3004, Australia
| | - David A Anderson
- Life Sciences, Macfarlane Burnet Institute, Melbourne, VIC 3004, Australia
| |
Collapse
|
23
|
Ample glycosylation in membrane and cell envelope proteins may explain the phenotypic diversity and virulence in the Mycobacterium tuberculosis complex. Sci Rep 2019; 9:2927. [PMID: 30814666 PMCID: PMC6393673 DOI: 10.1038/s41598-019-39654-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 01/24/2019] [Indexed: 12/31/2022] Open
Abstract
Multiple regulatory mechanisms including post-translational modifications (PTMs) confer complexity to the simpler genomes and proteomes of Mycobacterium tuberculosis (Mtb). PTMs such as glycosylation play a significant role in Mtb adaptive processes. The glycoproteomic patterns of clinical isolates of the Mycobacterium tuberculosis complex (MTBC) representing the lineages 3, 4, 5 and 7 were characterized by mass spectrometry. A total of 2944 glycosylation events were discovered in 1325 proteins. This data set represents the highest number of glycosylated proteins identified in Mtb to date. O-glycosylation constituted 83% of the events identified, while 17% of the sites were N-glycosylated. This is the first report on N-linked protein glycosylation in Mtb and in Gram-positive bacteria. Collectively, the bulk of Mtb glycoproteins are involved in cell envelope biosynthesis, fatty acid and lipid metabolism, two-component systems, and pathogen-host interaction that are either surface exposed or located in the cell wall. Quantitative glycoproteomic analysis revealed that 101 sites on 67 proteins involved in Mtb fitness and survival were differentially glycosylated between the four lineages, among which 64% were cell envelope and membrane proteins. The differential glycosylation pattern may contribute to phenotypic variabilities across Mtb lineages. The study identified several clinically important membrane-associated glycolipoproteins that are relevant for diagnostics as well as for drug and vaccine discovery.
Collapse
|
24
|
Mycobacteria and their sweet proteins: An overview of protein glycosylation and lipoglycosylation in M. tuberculosis. Tuberculosis (Edinb) 2019; 115:1-13. [PMID: 30948163 DOI: 10.1016/j.tube.2019.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 12/16/2022]
Abstract
Post-translational modifications represent a key aspect of enzyme and protein regulation and function. Post-translational modifications are involved in signaling and response to stress, adaptation to changing environments, regulation of toxic and damaged proteins, proteins localization and host-pathogen interactions. Glycosylation in Mycobacterium tuberculosis (Mtb), is a post-translational modification often found in conjunction with acylation in mycobacterial proteins. Since the discovery of glycosylated proteins in the early 1980's, important advances in our understanding of the mechanisms of protein glycosylation have been made. The number of known glycosylated substrates in Mtb has grown through the years, yet many questions remain. This review will explore the current knowledge on protein glycosylation in Mtb, causative agent of Tuberculosis and number one infectious killer in the world. The mechanism and significance of this post-translational modification, as well as maturation, export and acylation of glycosylated proteins will be reviewed. We expect to provide the reader with an overall view of protein glycosylation in Mtb, as well as the significance of this post-translational modification to the physiology and host-pathogen interactions of this important pathogen. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD011081 and 10.6019/PXD011081.
Collapse
|
25
|
Abstract
The Lpp lipoprotein of Escherichia coli is the first identified protein with a covalently linked lipid. It is chemically bound by its C-terminus to murein (peptidoglycan) and inserts by the lipid at the N-terminus into the outer membrane. As the most abundant protein in E. coli (106 molecules per cell) it plays an important role for the integrity of the cell envelope. Lpp represents the type protein of a large variety of lipoproteins found in Gram-negative and Gram-positive bacteria and in archaea that have in common the lipid structure for anchoring the proteins to membranes but otherwise strongly vary in sequence, structure, and function. Predicted lipoproteins in known prokaryotic genomes comprise 2.7% of all proteins. Lipoproteins are modified by a unique phospholipid pathway and transferred from the cytoplasmic membrane into the outer membrane by a special system. They are involved in protein incorporation into the outer membrane, protein secretion across the cytoplasmic membrane, periplasm and outer membrane, signal transduction, conjugation, cell wall metabolism, antibiotic resistance, biofilm formation, and adhesion to host tissues. They are only found in bacteria and function as signal molecules for the innate immune system of vertebrates, where they cause inflammation and elicit innate and adaptive immune response through Toll-like receptors. This review discusses various aspects of Lpp and other lipoproteins of Gram-negative and Gram-positive bacteria and archaea.
Collapse
Affiliation(s)
- Volkmar Braun
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Ring 5, 72076, Tübingen, Germany.
| | - Klaus Hantke
- IMIT, University of Tuebingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| |
Collapse
|
26
|
Schultz TE, Wiesmüller KH, Lucas M, Dobos KM, Baxter AG, Blumenthal A. The N-terminal peptide moiety of theMycobacterium tuberculosis19 kDa lipoprotein harbors RP105-agonistic properties. J Leukoc Biol 2018; 103:311-319. [DOI: 10.1002/jlb.2ma0517-190rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/13/2017] [Accepted: 10/22/2017] [Indexed: 12/26/2022] Open
Affiliation(s)
- Thomas E. Schultz
- The University of Queensland Diamantina Institute, The University of Queensland; Translational Research Institute; Brisbane QLD Australia
| | | | - Megan Lucas
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine; Colorado State University; Fort Collins CO USA
| | - Karen M. Dobos
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine; Colorado State University; Fort Collins CO USA
| | - Alan G. Baxter
- Comparative Genomics Centre; James Cook University; Townsville QLD Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, The University of Queensland; Translational Research Institute; Brisbane QLD Australia
| |
Collapse
|
27
|
Affiliation(s)
- Bifan Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
28
|
Becker K, Haldimann K, Selchow P, Reinau LM, Dal Molin M, Sander P. Lipoprotein Glycosylation by Protein- O-Mannosyltransferase (MAB_1122c) Contributes to Low Cell Envelope Permeability and Antibiotic Resistance of Mycobacterium abscessus. Front Microbiol 2017; 8:2123. [PMID: 29163413 PMCID: PMC5673659 DOI: 10.3389/fmicb.2017.02123] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022] Open
Abstract
Lipoproteins are important components of the mycobacterial cell envelope due to their function in cell wall homeostasis and bacterial virulence. They are post-translationally modified with lipid- and glycosyl-residues in various species and interference with acylation or glycosylation leads to reduced growth and attenuated virulence in Mycobacterium tuberculosis. Lipoproteins are also expressed in the emerging and highly drug resistant pathogen Mycobacterium abscessus which frequently affects the lungs of patients with chronic pulmonary disease or cystic fibrosis. We investigated post-translational modification, acylation and glycosylation, of heterologously expressed (M. tuberculosis LppX and Mpt83) and endogenous (SodC) lipoproteins at the molecular level in M. abscessus and identified MAB_1122c as protein O-mannosyltransferase (Pmt). Both, heterologous and endogenous lipoproteins carried a characteristic lipid anchor with palmitic acid (C16), palmitoleic acid (C16:1), oleic acid (C18), or tuberculostearic acid (C19) modifications. Multiple hexose-moieties were detected in the N-terminal region of the model lipoproteins expressed in M. abscessus. Conservation of lipoprotein glycosylation in M. tuberculosis and M. abscessus was revealed and points toward the existence of an O-glycosylation motif or other regulatory mechanisms regarding this post-translational modification. Deletion of MAB_1122c prevented glycosylation and affected susceptibility to specific antibiotics which are large or target peptidoglycan synthesis and to lysozyme. Cell envelope permeability of M. abscessus Δpmt was increased and mutant bacteria showed reduced survival inside macrophages. The results provide a link between post-translational modification of lipoproteins and the permeability of the mycobacterial cell envelope which stresses the importance of lipoproteins as components of this complex structure.
Collapse
Affiliation(s)
- Katja Becker
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Klara Haldimann
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Petra Selchow
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Lukas M Reinau
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Michael Dal Molin
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland.,National Center for Mycobacteria, Zürich, Switzerland
| |
Collapse
|