1
|
Yang L, Liu Y, Ge Q, Wang J, Wang R, You W, Wang W, Wang T, Zhang L. Atmospheric Hydroxyl Radical Route Revealed: Interface-Mediated Effects of Mineral-Bearing Microdroplet Aerosol. J Am Chem Soc 2025; 147:3371-3382. [PMID: 39824145 DOI: 10.1021/jacs.4c14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Hydroxyl radical (·OH) plays a crucial role in atmospheric chemistry, regulating the oxidative potential and aerosol composition. This study reveals an unprecedented source of ·OH in the atmosphere: mineral dust-bearing microdroplet aerosols. We demonstrate that Kaolin clay particles in microdroplet aerosols trigger rapid ·OH production upon solar irradiation, with rates reaching an order of at least 10-3 M s-1. This production rate is several orders of magnitude higher than that of the bulk phase (2.4 × 10-11 M s-1) and previously known pathways. On this basis, the surface-based interfacial ·OH production rate is estimated to be 8.9 × 10-5 mol m-2 s-1 at the air-water-solid interface of 1 μm sized aerosol particles. The enhanced ·OH formation is attributed to the unique features of air-water-solid interfaces, where the lifespan of photoinduced holes was significantly increased due to the presence of strong electric fields at the air-water interface. We further investigated the impacts of various environmental factors and aerosol properties on ·OH production, including light intensity, relative humidity, particle size, and pH. Our findings provide new insights into atmospheric photochemical processes mediated by mineral dust-bearing microdroplet aerosols, which are important contributors to ·OH source in the atmosphere. This work advances our understanding of atmospheric interfacial chemistry and its profound and lasting implications for air quality and climate.
Collapse
Affiliation(s)
- Le Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Yangyang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Qiuyue Ge
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Jilun Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Runbo Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Wenbo You
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Wei Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Tao Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, Peoples' Republic of China
| |
Collapse
|
2
|
He Z, Xian H, Xu L, Zhu J, Lin M, Liang X, He H. Modified spectrophotometry for micromolar H 2O 2 determination in iron-containing solutions with leuco crystal violet under both aerobic and anaerobic conditions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7460-7467. [PMID: 39451024 DOI: 10.1039/d4ay01469c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Accurately quantifying hydrogen peroxide (H2O2) is essential for elucidating its role across diverse environments. Spectrophotometry is widely employed in laboratories for this purpose due to its convenience, cost-effectiveness, and low detection limits for micromolar H2O2 concentrations. However, accurate measurement of H2O2 in iron-containing solutions presents challenges due to the interference of iron ions. In this study, we propose a modified spectrophotometric method for H2O2 determination in iron-containing solutions by adding two types of iron ion chelators and selecting leuco crystal violet (LCV) as a chromogenic reagent due to its stability. By sequentially adding 1,10-phenanthroline and EDTA, and using a phosphate buffer at pH 4.2 to provide the optimal chromogenic pH condition, this modified method effectively mitigates the interference of iron ions in the LCV chromogenic reaction. The applicability of this method under aerobic and anaerobic conditions was confirmed by comparing the experimental results with theoretical simulations. Under optimal chromogenic conditions, this method achieves a detection limit of 300 nM. This improved method allows better detection of H2O2 in iron-containing systems and investigation of its significance in various environmental processes.
Collapse
Affiliation(s)
- Zhaolu He
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China.
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Haiyang Xian
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China.
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Liang Xu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China.
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Jianxi Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China.
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Mang Lin
- State Key Laboratory of Isotope Geochemistry and CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoliang Liang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China.
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Hongping He
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China.
- University of Chinese Academy of Science, Beijing, 100049, China
| |
Collapse
|
3
|
Romaní-Cubells E, Martínez-Erro S, Morales V, Chocarro-Calvo A, García-Martínez JM, Sanz R, García-Jiménez C, García-Muñoz RA. Magnetically modified-mitoxantrone mesoporous organosilica drugs: an emergent multimodal nanochemotherapy for breast cancer. J Nanobiotechnology 2024; 22:249. [PMID: 38745193 PMCID: PMC11092073 DOI: 10.1186/s12951-024-02522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Chemotherapy, the mainstay treatment for metastatic cancer, presents serious side effects due to off-target exposure. In addition to the negative impact on patients' quality of life, side effects limit the dose that can be administered and thus the efficacy of the drug. Encapsulation of chemotherapeutic drugs in nanocarriers is a promising strategy to mitigate these issues. However, avoiding premature drug release from the nanocarriers and selectively targeting the tumour remains a challenge. RESULTS In this study, we present a pioneering method for drug integration into nanoparticles known as mesoporous organosilica drugs (MODs), a distinctive variant of periodic mesoporous organosilica nanoparticles (PMOs) in which the drug is an inherent component of the silica nanoparticle structure. This groundbreaking approach involves the chemical modification of drugs to produce bis-organosilane prodrugs, which act as silica precursors for MOD synthesis. Mitoxantrone (MTO), a drug used to treat metastatic breast cancer, was selected for the development of MTO@MOD nanomedicines, which demonstrated a significant reduction in breast cancer cell viability. Several MODs with different amounts of MTO were synthesised and found to be efficient nanoplatforms for the sustained delivery of MTO after biodegradation. In addition, Fe3O4 NPs were incorporated into the MODs to generate magnetic MODs to actively target the tumour and further enhance drug efficacy. Importantly, magnetic MTO@MODs underwent a Fenton reaction, which increased cancer cell death twofold compared to non-magnetic MODs. CONCLUSIONS A new PMO-based material, MOD nanomedicines, was synthesised using the chemotherapeutic drug MTO as a silica precursor. MTO@MOD nanomedicines demonstrated their efficacy in significantly reducing the viability of breast cancer cells. In addition, we incorporated Fe3O4 into MODs to generate magnetic MODs for active tumour targeting and enhanced drug efficacy by ROS generation. These findings pave the way for the designing of silica-based multitherapeutic nanomedicines for cancer treatment with improved drug delivery, reduced side effects and enhanced efficacy.
Collapse
Affiliation(s)
- Eva Romaní-Cubells
- Department of Chemical and Environmental Technology, Rey Juan Carlos University (URJC), C/Tulipán s/n, Móstoles, Madrid, 28933, Spain
| | - Samuel Martínez-Erro
- Department of Chemical and Environmental Technology, Rey Juan Carlos University (URJC), C/Tulipán s/n, Móstoles, Madrid, 28933, Spain
| | - Victoria Morales
- Department of Chemical and Environmental Technology, Rey Juan Carlos University (URJC), C/Tulipán s/n, Móstoles, Madrid, 28933, Spain
| | - Ana Chocarro-Calvo
- Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Avda. Atenas s/n, Alcorcón, Madrid, 28922, Spain
| | - José M García-Martínez
- Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Avda. Atenas s/n, Alcorcón, Madrid, 28922, Spain
| | - Raúl Sanz
- Department of Chemical and Environmental Technology, Rey Juan Carlos University (URJC), C/Tulipán s/n, Móstoles, Madrid, 28933, Spain
| | - Custodia García-Jiménez
- Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Avda. Atenas s/n, Alcorcón, Madrid, 28922, Spain.
| | - Rafael A García-Muñoz
- Department of Chemical and Environmental Technology, Rey Juan Carlos University (URJC), C/Tulipán s/n, Móstoles, Madrid, 28933, Spain.
| |
Collapse
|
4
|
Yang Q, Su Y, Yan B, Lun L, Li D, Zheng L. Influence of natural cellulose on hydroxyl radical generation by abiotic oxidation of pyrite under acidic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168143. [PMID: 37898214 DOI: 10.1016/j.scitotenv.2023.168143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/08/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
Natural cellulose is one of the most important substances coexisting on the surface of pyrite. Oxidation of pyrite produces hydroxyl radicals (•OH). In this study, a pyrite-cellulose binary system was constructed with natural cellulose to investigate the effect of cellulose on the mechanism of •OH generation via oxidation of pyrite, and the mechanism for abiotic oxidative •OH production by pyrite under the influence of cellulose was investigated with oxidation and quenching experiments and characterization techniques. It was demonstrated that cellulose was chemisorbed onto the pyrite surface and some of the Fe(II) on the pyrite surface was masked, thus inhibiting the reaction between pyrite and O2 and decreasing the •OH production level from 33.54 to 22.48 μM under oxic conditions. In addition, the cellulose caused SS bond breakage, resulting in defects on the pyrite surface, which oxidized H2O to produce •OH in anoxic conditions. Therefore, under anoxic conditions, cellulose promoted the production of •OH and increased the •OH content from 11.85 to 14.78 μM. In addition to •OH, pyrite oxidation also produced SO42-. The amount of SO42- produced by a single pyrite crystal was less than that produced in the pyrite-cellulose system in all cases, and the amount produced under oxic conditions was approximately 10 times greater than that produced under anoxic conditions. More sulfate production indicated more sulfur intermediates during the reaction, such as S2O32-, which may decompose to produce S0 or Sn2- adsorbed on pyrite and decrease the amount of •OH produced. During the oxidation of pyrite by H2O2, cellulose competed with pyrite to react with H2O2, which inhibited the reaction between pyrite and H2O2 and decreased •OH production. Therefore, natural cellulose influenced the abiotic oxidation of pyrite to produce •OH.
Collapse
Affiliation(s)
- Qin Yang
- School of Environment, South China Normal University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Yaoming Su
- South China Institute of Environmental Sciences, Guangzhou 510655, PR China
| | - Bo Yan
- School of Environment, South China Normal University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China.
| | - Lehao Lun
- School of Environment, South China Normal University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Dianhui Li
- School of Environment, South China Normal University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Liuchun Zheng
- School of Environment, South China Normal University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
González-Hernández R, Martínez-Miranda V, Linares-Hernández I, Castillo-Suárez LA, Ceballos GS, Cortés-Martínez R. Acid mine drainage (AMD) treatment using galvanic electrochemical system Al-Cu. ENVIRONMENTAL TECHNOLOGY 2023; 44:4424-4440. [PMID: 35731670 DOI: 10.1080/09593330.2022.2093653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Acid mine drainage was evaluated using a galvanic (GV) electrochemical system, Al-Cu (anode/cathode), based on a 32 factorial design. The factors analyzed were anodic area/volume ratios (A/V) of 0.037, 0.072, and 0.112 cm2/cm3, and treatment time from 0.25-8 h, and analyses were performed in duplicate with 11 degrees of freedom. The response variables were the total dissolved solids and concentrations of As, Cu, Co, Cr, Pb, Fe, Ni, and S O 4 2 - . The pH, electrical conductivity, and temperature were monitored during the process. Significant differences between treatments were determined by analysis of variance with Tukey's test (p < 0.05) using Statgraphics Centurion XVI.I software. The results showed that a greater electrode surface, A/V ratio, and treatment time improved pollutant removal. The spontaneous reactions generated by the galvanic cell, through the current that flows owing to the potential difference between the Al and Cu electrodes, allows the removal of heavy metals, arsenic, and S O 4 2 - by coagulation and precipitation mechanisms. The removal efficiencies achieved were Cu (99.1%), As (76.6%), Ni (80.2%), Pb (83.6%), Cr (100%), Fe (93.71%), and 92.9% for sulfates. The X-ray diffraction and Raman analyses of the solid fraction indicated that cuprite was formed with a purity of 96%, and the recovery of Cu by the GV system may be a viable option for mining companies.
Collapse
Affiliation(s)
| | | | | | - Luis Antonio Castillo-Suárez
- Facultad de Química, Universidad Autónoma del Estado de México, Toluca, México
- Cátedras COMECYT, Consejo Mexiquense de Ciencia y Tecnología COMECYT, Toluca, Mexico
| | - Giovanni Sosa Ceballos
- Instituto de Geofísica, Unidad Michoacán, Universidad Nacional Autónoma de México (UNAM), Morelia, México
| | | |
Collapse
|
6
|
Zeng G, Shi M, Dai M, Zhou Q, Luo H, Lin L, Zang K, Meng Z, Pan X. Hydroxyl radicals in natural waters: Light/dark mechanisms, changes and scavenging effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161533. [PMID: 36640880 DOI: 10.1016/j.scitotenv.2023.161533] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Hydroxyl radicals (•OH) are the most active, aggressive and oxidative reactive oxygen species. In the natural aquatic environment, •OH plays an important role in the biogeochemistry cycle, biotransformation, and pollution removal. This paper reviewed the distribution and formation mechanism of •OH in aquatic environments, including natural waters, colloidal substances, sediments, and organisms. Furthermore, factors affecting the formation and consumption of •OH were thoroughly discussed, and the mechanisms of •OH generation and scavenging were summarized. In particular, the effects of climate change and artificial work on •OH in the largest natural aquatic environment, i.e., marine environment was analyzed with the help of bibliometrics. Moreover, Fenton reactions make the •OH variation more complicated and should not be neglected, especially in those areas with suspended particles and sediments. Regarding the •OH variation in the natural aquatic environment, more attention should be given to global change and human activities.
Collapse
Affiliation(s)
- Ganning Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Ocean Space Resource Management Technology, MNR, Hangzhou 310012, China
| | - Ming Shi
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengzheng Dai
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qian Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongwei Luo
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liangyu Lin
- Key Laboratory of Ocean Space Resource Management Technology, MNR, Hangzhou 310012, China; Zhejiang Academy of Marine Science, Hangzhou 310012, China
| | - Kunpeng Zang
- Zhejiang Carbon Neutral Innovation Institute, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhu Meng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
7
|
Adsorption-reduction of Fe(III) by different biochars and their co-activation of H2O2 for oxidation of refractory pollutants. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
8
|
Manikandan V, Anushkkaran P, Hwang IS, Chae WS, Lee HH, Choi SH, Mahadik MA, Jang JS. Synergistic role of in-situ Zr-doping and cobalt oxide cocatalysts on photocatalytic bacterial inactivation and organic pollutants removal over template-free Fe 2O 3 nanorods. CHEMOSPHERE 2023; 310:136825. [PMID: 36241102 DOI: 10.1016/j.chemosphere.2022.136825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Herein, we synthesized in-situ Zr-doped Fe2O3 NRs photocatalyst by successive simple hydrothermal and air quenching methods. The synergistic roles of CoOx (1 wt%) and Zr-doping on bacteria inactivation and model organic pollutants over Fe2O3 NRs photocatalyst were studied in detail. Initially, rod-like Zr ((0-8) %)-doped Fe2O3 NRs were produced via a hydrothermal method. CoOx was loaded onto the Zr ((0-8) %)-doped Fe2O3 NRs) surface by a wet impregnation approach. The Zr-doping conditions and CoOx loadings were judiciously optimized, and a highly photoactive CoOx(1 wt%)/Zr(6%)-doped Fe2O3 NRs photocatalyst was developed. The CoOx(1 wt%) loaded Zr(6%)-doped Fe2O3 NRs photocatalyst revealed 99.4% inactivation efficiency compared with (0, 4 and 8)% Zr-doped Fe2O3 NRs, respectively. After CoOx(1 wt%)/Zr(6%)-doped Fe2O3 NRs photocatalyst treatment, Bio-TEM images of bacterial cells showed extensive morphological deviations in cell membranes, compared with the non-treated ones. Additionally, the optimum CoOx(1 wt%)/Zr(6%)-doped Fe2O3 NRs photocatalyst exhibited 99.2% BPA and 98.3% orange II dye degradation after light radiation for 3 h. This work will provide a rapid method for the development of photostable catalyst materials for bacterial disinfection and organic degradation.
Collapse
Affiliation(s)
- Velu Manikandan
- Division of Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, South Korea
| | - Periyasamy Anushkkaran
- Division of Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, South Korea
| | - In-Seon Hwang
- Division of Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, South Korea
| | - Weon-Sik Chae
- Analysis Research Division, Daegu Center, Korea Basic Science Institute, Daegu, 702-701, South Korea
| | - Hyun-Hwi Lee
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Sun Hee Choi
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Mahadeo A Mahadik
- Division of Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, South Korea.
| | - Jum Suk Jang
- Division of Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, South Korea.
| |
Collapse
|
9
|
Wu X, Yang J, Liu S, He Z, Wang Y, Qin W, Si Y. Enhanced generation of reactive oxygen species by pyrite for As(III) oxidation and immobilization: The vital role of Fe(II). CHEMOSPHERE 2022; 309:136793. [PMID: 36220433 DOI: 10.1016/j.chemosphere.2022.136793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The migration and conversion of arsenic in the environment usually accompany by the redox of iron-bearing minerals. For instance, the oxidation of pyrite can generate reactive oxygen species (ROS) affecting the species of arsenic, but the types and roles of ROS have been unclear. This paper demonstrated the vital role of Fe(II) in the pyrite for the formation of ROS. Results showed that exogenous addition of Fe(II) significantly enhanced the removal rate of As(III) by pyrite. 2,2'-bipyridine (BPY) decreased the oxidation of As(III) by complexing with Fe2+ in solution, whilst EDTA enhanced the oxidation of As(III) by boosting the autoxidation of Fe2+. In addition, neutral pH is superior for the oxidation of As(III) and removal of total arsenic. Importantly, Methanol, SOD enzyme and PMOS inhibited 54%, 28% and 17.5% of As(III) oxidation, respectively, which indicated O2•- and •OH were the main contributors to As(III) oxidation, and Fe(IV) contributed a small part of As(III) oxidation. The content of As(V) in the FeS2-Fe2+-As(III) system was higher than that in the FeS2-As(III) system, further confirming the vital role of Fe(II) for As(III) oxidation. Lepidocrocite was produced in a single Fe2+ system, which was not detected in the FeS2-As(III) system. Thus, the presence of mineral surfaces changed the oxidation products of Fe2+ and accelerated the oxidation and immobilization of As(III). FA (Fulvic Acid) and HA (Humic Acid) accelerated the oxidation of As(III), but the oxidation of As(III) by pyrite was inhibited to a certain extent, with increasing phenolic hydroxyl groups in phenolic acid. Our findings provide new insight into the oxidative species in the pyrite-Fe(II) system and will help guide the remediation of arsenic pollution in complex environmental systems.
Collapse
Affiliation(s)
- Xiaoju Wu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Jiamin Yang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Shangyan Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Zhiwei He
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Yaoyao Wang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Wenxiu Qin
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
10
|
Wang Z, Jia H, Zhao H, Zhang R, Zhang C, Zhu K, Guo X, Wang T, Zhu L. Oxygen Limitation Accelerates Regeneration of Active Sites on a MnO 2 Surface: Promoting Transformation of Organic Matter and Carbon Preservation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9806-9815. [PMID: 35723552 DOI: 10.1021/acs.est.2c01868] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Birnessite (δ-MnO2) is a layered manganese oxide widely present in the environment and actively participates in the transformation of natural organic matter (NOM) in biogeochemical processes. However, the effect of oxygen on the dynamic interface processes of NOM and δ-MnO2 remains unclear. This study systematically investigated the interactions between δ-MnO2 and fulvic acid (FA) under both aerobic and anaerobic conditions. FA was transformed by δ-MnO2 via direct electron transfer and the generated reactive oxygen species (ROS). During the 32-day reaction, 79.8% of total organic carbon (TOC) in solution was removed under anaerobic conditions, unexpectedly higher than that under aerobic conditions (69.8%), suggesting that oxygen limitation was more conducive to the oxidative transformation of FA by δ-MnO2. The oxygen vacancies (OV) on the surface of δ-MnO2 were more exposed under anaerobic conditions, thus promoting the adsorption and transformation of FA as well as regeneration of the active sites. Additionally, the reaction of FA with δ-MnO2 weakened the strongly bonded lattice oxygen (Olatt), and the released Olatt was an important source of ROS. Interestingly, a part of organic carbon (OC) was preserved by forming MnCO3, which might be a novel mechanism for carbon preservation. These findings contribute to an improved understanding of the dynamic interface processes between MnO2 and NOM and provide new insights into the effects of oxygen limitation on the cycling and preservation of OC.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| | - Hanzhong Jia
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| | - Haoran Zhao
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| | - Ru Zhang
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| | - Chi Zhang
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| | - Kecheng Zhu
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| | - Xuetao Guo
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| | - Tiecheng Wang
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
11
|
Shi X, Ma K, Gu Y, Zhang W, Sun J. Accelerated degradation of sulfadiazine by wet mechanochemical synthesized nano-pyrite FeS2 based Fenton system: Performance, mechanism and applicability. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Huang M, Fang G, Chen N, Zhou D. Hydroxylamine promoted hydroxyl radical production and organic contaminants degradation in oxygenation of pyrite. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128380. [PMID: 35121297 DOI: 10.1016/j.jhazmat.2022.128380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The heterogeneous Fenton-like process using pyrite (FeS2) is increasingly recognized as a promising advanced oxidation process for removal of organic contaminants. However, the slow regeneration of Fe(II) limits the generation of reactive oxygen species for environment implication. To overcome this drawback, hydroxylamine was applied to enhance the reactivity of FeS2 to degrade organic contaminants under oxic conditions. Results showed that hydroxylamine facilitated the regeneration of Fe(II) on FeS2 surface to promote reactive oxygen species generation, thereby efficiently degrading different organic contaminants. The underlying mechanism was further elucidated that the presence of hydroxylamine enhanced electron transfer from FeS2 to O2 to produce superoxide radicals (O2•-), hydrogen peroxide (H2O2) and hydroxyl radical (HO•) via Fenton-like pathways, which induced the rapid degradation of organic contaminants (e.g., sulfamethoxazole (SMX)). The reactivity of FeS2 for organic contaminant degradation changed negligibly after seven cycles in the presence of hydroxylamine. The effects of pH and inorganic anions on SMX degradation were also clarified in details. The finding of this study would provide a novel strategy to enhance the contaminants degradation by FeS2-based advanced oxidation technologies for environmental remediation.
Collapse
Affiliation(s)
- Min Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Ning Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
13
|
The interference of copper, iron and aluminum with hydrogen peroxide and its effects on reductive leaching of LiNi1/3Mn1/3Co1/3O2. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Electrochemical deposition of nickel from aqueous electrolytic baths prepared by dissolution of metallic powder. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-05084-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractA new method of preparation of aqueous electrolyte baths for electrochemical deposition of nickel targets for medical accelerators is presented. It starts with fast dissolution of metallic Ni powder in a HNO3-free solvent. Such obtained raw solution does not require additional treatment aimed to removal nitrates, such as the acid evaporation and Ni salt precipitation-dissolution. It is used directly for preparation of the nickel plating baths after dilution with water, setting up pH value and after possible addition of H3BO3. The pH of the baths ranges from alkaline to acidic. Deposition of 95% of ca. 50 mg of Ni dissolved in the bath takes ca. 3.5 h for the alkaline electrolyte while for the acidic solution it requires ca. 7 h. The Ni deposits obtained from the acidic bath are physically and chemically more stable and possess smoother and crack-free surfaces as compared to the coatings deposited from the alkaline bath. A method of estimation of concentration of H2O2 in the electrolytic bath is also proposed.
Collapse
|
15
|
Kim JG, Kim HB, Jeong WG, Baek K. Enhanced-oxidation of sulfanilamide in groundwater using combination of calcium peroxide and pyrite. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126514. [PMID: 34323727 DOI: 10.1016/j.jhazmat.2021.126514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Fenton reaction using hydrogen peroxide (H2O2) has been widely applied to achieve the in-situ chemical oxidation of contaminated soil and groundwater. However, injecting and transporting H2O2 to a contaminated zone consumes the chemical through reactions with other substances and self-decomposition. Additionally, Fe(II), an activator for the Fenton reaction, scavenges hydroxyl radicals, greatly reducing its activity. Therefore, this study proposes a novel oxidation system combining calcium peroxide (CaO2) and pyrite for the degradation of oxidizable contaminants in groundwater. CaO2 is an oxygen releasing compound, and pyrite is a natural mineral that provides Fe(II). The individual applications of CaO2 and pyrite cannot generate OH radicals and oxidize the target pollutant, sulfanilamide. However, the combination of pyrite and CaO2 oxidized well sulfanilamide even in mild pH and 1.0 wt% of pyrite. Moreover, H2O2 and OH radicals are the dominant oxidants in the reaction. A speciation analysis shows the oxidation of pyrite in this combined system. Furthermore, this system oxidized 80% of 0.1 mM sulfanilamide, whereas only 30% was oxidized by conventional Fenton reaction, indicating that this combined system is effective and applicable to remediate groundwater. This study provides an alternative oxidation process to achieve in-situ chemical oxidation.
Collapse
Affiliation(s)
- Jong-Gook Kim
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Hye-Bin Kim
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Won-Gune Jeong
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Kitae Baek
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; School of Civil, Environmental, and Mineral Resources & Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea.
| |
Collapse
|
16
|
Yan J, Hu X, He Q, Qin H, Yi D, Lv D, Cheng C, Zhao Y, Chen Y. Simultaneous enhancement of treatment performance and energy recovery using pyrite as anodic filling material in constructed wetland coupled with microbial fuel cells. WATER RESEARCH 2021; 201:117333. [PMID: 34146762 DOI: 10.1016/j.watres.2021.117333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Constructed wetland coupled with microbial fuel cells (CW-MFCs) are a promising technology for sustainable wastewater treatment. However, the performance of CW-MFCs has long been constrained by the limited size of its anode. In this study, we developed an alternative CW-MFC configuration that uses inexpensive natural conductive pyrite as an anodic filling material (PyAno) to extend the electroactive scope of the anode. As a result, the PyAno configuration significantly facilitated the removal of chemical oxygen demand, ammonium nitrogen, total nitrogen, and total phosphorus. Meanwhile, the PyAno increased the maximum power density by 52.7% as compared to that of the quartz sand control. Further, a typical exoelectrogen Geobacter was found enriched in the anodic zone of PyAno, indicating that the electroactive scope was extended by conductive pyrite. In addition, a substantial electron donating potential was observed for the anodic filling material of PyAno, which explained the higher electricity output. Meanwhile, a higher dissimilatory iron reducing potential was observed for the anodic sediment of PyAno, demonstrating the integrity of an iron redox cycling in the system and its promotive effect for the wastewater treatment. Together, these results implied that the PyAno CW-MFCs can be a competitive technology to enhance wastewater treatment and energy recovery simultaneously.
Collapse
Affiliation(s)
- Jun Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Xuebin Hu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Hao Qin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Duo Yi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Duozhou Lv
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Cheng Cheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
17
|
Liu Y, Zhao Y, Wang J. Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: Advances and prospects. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124191. [PMID: 33069993 DOI: 10.1016/j.jhazmat.2020.124191] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 05/17/2023]
Abstract
Fenton processes based on the reaction between Fe2+ and H2O2 to produce hydroxyl radicals, have been widely studied and applied for the degradation of toxic organic contaminants in wastewater due to its high efficiency, mild condition and simple operation. However, H2O2 is usually added by bulk feeding, which suffers from the potential risks during the storage and transportation of H2O2 as well as its low utilization efficiency. Therefore, Fenton/Fenton-like processes with in-situ production of H2O2 have received increasing attention, in which H2O2 was in-situ produced through O2 activation, then decomposed into hydroxyl radicals by Fenton catalysts. In this review, the in situ production of H2O2 for Fenton oxidation was introduced, the strategies for activation of O2 to generate H2O2 were summarized, including chemical reduction, electro-catalysis and photo-catalysis, the influencing factors and the mechanisms of the in situ production and utilization of H2O2 in various Fenton/Fenton-like processes were analyzed and discussed, and the applications of these processes for the degradation of toxic organic contaminants were summarized. This review will deepen the understanding of the tacit cooperation between the in situ production and utilization of H2O2 in Fenton process, and provide the further insight into this promising process for degradation of emerging contaminants in industrial wastewater.
Collapse
Affiliation(s)
- Yong Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Yang Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
18
|
Xiao Y, Carena L, Näsi MT, Vähätalo AV. Superoxide-driven autocatalytic dark production of hydroxyl radicals in the presence of complexes of natural dissolved organic matter and iron. WATER RESEARCH 2020; 177:115782. [PMID: 32294593 DOI: 10.1016/j.watres.2020.115782] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
We introduced superoxide as potassium superoxide (KO2) to artificial lake water containing dissolved organic matter (DOM) without or with introduced ferric iron complexes (DOM-Fe(III)), and monitored the production rate of hydroxyl radicals as well as changes in the absorption and fluorescence properties of DOM. The introduction of KO2 decreased the absorption by DOM but increased the spectral slope coefficient of DOM more with complexed ferric Fe than without it. The introduction of KO2 increased the fluorescence of humic-like components in DOM without introduced ferric Fe but resulted in the loss of fluorescence in DOM with introduced ferric Fe. A single introduction of 13 μmol L-1 KO2 produced 10 μmol L-1 and 104 μmol L-1 hydroxyl radicals during a week-long experiment without and with the introduced DOM-Fe(III) complexes, respectively. The production rate of hydroxyl radicals decreased exponentially with time but levelled off and continued several days in DOM with introduced ferric Fe. These findings suggest that in the presence of DOM-Fe complexes, superoxide can trigger an autocatalytic Fenton reaction that produces hydroxyl radicals and breaks down DOM.
Collapse
Affiliation(s)
- Yihua Xiao
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland; School of Environmental & Municipal Engineering, Qingdao University of Technology, 266033, Qingdao, China.
| | - Luca Carena
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Marja-Terttu Näsi
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Anssi V Vähätalo
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| |
Collapse
|
19
|
Carrizo D, Muñoz-Iglesias V, Fernández-Sampedro MT, Gil-Lozano C, Sánchez-García L, Prieto-Ballesteros O, Medina J, Rull F. Detection of Potential Lipid Biomarkers in Oxidative Environments by Raman Spectroscopy and Implications for the ExoMars 2020-Raman Laser Spectrometer Instrument Performance. ASTROBIOLOGY 2020; 20:405-414. [PMID: 31985262 DOI: 10.1089/ast.2019.2100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The aim of the European Space Agency's ExoMars rover mission is to search for potential traces of present or past life in the swallow subsurface (2 m depth) of Mars. The ExoMars rover mission relies on a suite of analytical instruments envisioned to identify organic compounds with biological value (biomarkers) associated with a mineralogical matrix in a highly oxidative environment. We investigated the feasibility of detecting basic organics (linear and branched lipid molecules) with Raman laser spectroscopy, an instrument onboard the ExoMars rover, when exposed to oxidant conditions. We compared the detectability of six lipid molecules (alkanes, alkanols, fatty acid, and isoprenoid) before and after an oxidation treatment (15 days with hydrogen peroxide), with and without mineral matrix support (amorphous silica rich vs. iron rich). Raman and infrared spectrometry was combined with gas chromatography-mass spectrometry to determine detection limits and technical constraints. We observed different spectral responses to degradation depending on the lipid molecule and mineral substrate, with the silica-rich material showing better preservation of organic signals. These findings will contribute to the interpretation of Raman laser spectroscopy results on cores from the ExoMars rover landing site, the hydrated silica-enriched delta fan on Cogoon Vallis (Oxia Planum).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jesús Medina
- Unidad Asociada UVa-CSIC al Centro de Astrobiología (CSIC-INTA), University of Valladolid, Valladolid, Spain
| | - Fernando Rull
- Unidad Asociada UVa-CSIC al Centro de Astrobiología (CSIC-INTA), University of Valladolid, Valladolid, Spain
| |
Collapse
|
20
|
Galvez-Martinez S, Escamilla-Roa E, Zorzano MP, Mateo-Marti E. Defects on a pyrite(100) surface produce chemical evolution of glycine under inert conditions: experimental and theoretical approaches. Phys Chem Chem Phys 2019; 21:24535-24542. [PMID: 31663552 DOI: 10.1039/c9cp03577j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The presence of non-stoichiometric sites on the pyrite(100) surface makes it a suitable substrate for driving the chemical evolution of the amino acid glycine over time, even under inert conditions. Spectroscopic molecular fingerprints prove a transition process from a zwitterionic species to an anionic species over time on the monosulfide enriched surface. By combining experimental and theoretical approaches, we propose a surface mechanism where the interaction between the amino acid species and the surface will be driven by the quenching of the surface states at Fe sites and favoured by sulfur vacancies. This study demonstrates the potential capability of pyrite to act as a surface catalyst.
Collapse
Affiliation(s)
- Santos Galvez-Martinez
- Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850 Torrejón de Ardoz, Madrid, Spain.
| | | | | | | |
Collapse
|
21
|
Mateo-Marti E, Galvez-Martinez S, Gil-Lozano C, Zorzano MP. Pyrite-induced uv-photocatalytic abiotic nitrogen fixation: implications for early atmospheres and Life. Sci Rep 2019; 9:15311. [PMID: 31653928 PMCID: PMC6814809 DOI: 10.1038/s41598-019-51784-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/08/2019] [Indexed: 11/09/2022] Open
Abstract
The molecular form of nitrogen, N2, is universally available but is biochemically inaccessible for life due to the strength of its triple bond. Prior to the emergence of life, there must have been an abiotic process that could fix nitrogen in a biochemically usable form. The UV photo-catalytic effects of minerals such as pyrite on nitrogen fixation have to date been overlooked. Here we show experimentally, using X-ray photoemission and infrared spectroscopies that, under a standard earth atmosphere containing nitrogen and water vapour at Earth or Martian pressures, nitrogen is fixed to pyrite as ammonium iron sulfate after merely two hours of exposure to 2,3 W/m 2 of ultraviolet irradiance in the 200-400 nm range. Our experiments show that this process exists also in the absence of UV, although about 50 times slower. The experiments also show that carbonates species are fixed on pyrite surface.
Collapse
Affiliation(s)
- E Mateo-Marti
- Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejón de Ardoz, Madrid, Spain.
| | - S Galvez-Martinez
- Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejón de Ardoz, Madrid, Spain
| | - C Gil-Lozano
- Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejón de Ardoz, Madrid, Spain
| | - María-Paz Zorzano
- Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejón de Ardoz, Madrid, Spain.,Department of Computer Science, Electrical and Space Engineering, Luleå Universit of Technology, 97187, Luleå, Sweden
| |
Collapse
|
22
|
Lee YH, Park SY, Park JE, Jung BO, Park JE, Park JK, Hwang YJ. Anti-Oxidant Activity and Dust-Proof Effect of Chitosan with Different Molecular Weights. Int J Mol Sci 2019; 20:ijms20123085. [PMID: 31238572 PMCID: PMC6627310 DOI: 10.3390/ijms20123085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 12/19/2022] Open
Abstract
High molecular weight chitosan (HMWC) was degraded to prepare chitosan with different molecular weight based on the fenton reaction, which can produce aggressive OH-radicals produced from hydrogen peroxide in the presence of catalytic metal ions. The relative molecular weight, anti-oxidant activity, and fine dust removal effect of chitosan hydrolysates were elucidated to define their molecular weight and their potent biological activity. Our results demonstrate that chitosan hydrolysates derived from the hydrolysis of HMWC may possess significant free-radical scavenging activity as good anti-oxidants against the radical scavenging activity of DPPH and ABTS, respectively. Furthermore, chitosan hydrolysates can effectively eliminate fine dust, which may contain some particulate matter (PM) and unknown species of microorganisms from the air, suggesting that our data provide important information for producing air filters, dust-proof masks and skin cleaner for the purpose of human healthcare and well-being.
Collapse
Affiliation(s)
- Yong Hyun Lee
- Department Biomedical Engineering, College of Health Science, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - So Yeon Park
- Department of Life Sciences, Gachon University, Seongnamdaero 1342, Seongnam-si, Gyeonggi-do 461-701, Korea.
| | - Jae Eun Park
- Department of Chemical and Biochemical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea.
| | - Byung Ok Jung
- Institute of Red Snow Crab, Nonggongdanji-gil 76, Sokcho-si, Gangwon-do 24899, Korea.
| | - Jung Eun Park
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea.
| | - Jae Kweon Park
- Department of Life Sciences, Gachon University, Seongnamdaero 1342, Seongnam-si, Gyeonggi-do 461-701, Korea.
| | - You Jin Hwang
- Department Biomedical Engineering, College of Health Science, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| |
Collapse
|
23
|
|
24
|
Ball R, Brindley J. The Power Without the Glory: Multiple Roles of Hydrogen Peroxide in Mediating the Origin of Life. ASTROBIOLOGY 2019; 19:675-684. [PMID: 30707597 DOI: 10.1089/ast.2018.1886] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The hydrogen peroxide (HP) crucible hypothesis proposed here holds that life began in a localized environment on Earth that was perfused with a flow of hydrogen peroxide from a sustained external source, which powered and mediated molecular evolution and the protocellular RNA world. In this article, we consolidate and review recent evidence, both circumstantial and tested in simulation in our work and in the laboratory in others' work, for its multiple roles in the evolution of the first living systems: (1) it provides a periodic power source as the thiosulfate-hydrogen peroxide (THP) redox oscillator, (2) it may act as an agent of molecular change and evolution and mediator of homochirality, and (3) the THP oscillator, subject to Brownian input perturbations, produces a weighted distribution of output thermal fluctuations that favor polymerization and chemical diversification over chemical degradation and simplification. The hypothesis can help to clarify the hero and villain roles of hydrogen peroxide in cell function, and on the singularity of life: of necessity, life evolved early an armory of catalases, the continuing, and all-pervasive presence of which prevents hydrogen peroxide from accumulating anywhere in sufficient quantities to host a second origin. The HP crucible hypothesis is radical, but based on well-known chemistry and physics, it is eminently testable in the laboratory, and many of our simulations provide recipes for such experiments.
Collapse
Affiliation(s)
- Rowena Ball
- 1 Mathematical Sciences Institute and Research School of Chemistry, Australian National University, Canberra, Australia
| | - John Brindley
- 2 School of Mathematics, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
25
|
Dajani S, Saripalli A, Sharma-Walia N. Water transport proteins-aquaporins (AQPs) in cancer biology. Oncotarget 2018; 9:36392-36405. [PMID: 30555637 PMCID: PMC6284741 DOI: 10.18632/oncotarget.26351] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023] Open
Abstract
As highly conserved ubiquitous proteins, aquaporins (AQPs) play an imperative role in the development and progression of cancer. By trafficking water and other small molecules, AQPs play a vital role in preserving the cellular environment. Due to their critical role in cell stability and integrity, it would make sense that AQPs are involved in cancer progression. When AQPs alter the cellular environment, there may be several downstream effects such as alterations in cellular osmolality, volume, ionic composition, and signaling pathways. Changes in the intracellular levels of certain molecules serving as second messengers are synchronized by AQPs. Thus AQPs regulate numerous downstream effector signaling molecules that promote cancer development and progression. In numerous cancer types, AQP expression has shown a correlation with tumor stage and prognosis. Furthermore, AQPs assist in angiogenic and oxidative stress related damaging processes critical for cancer progression. This indicates that AQP proteins may be a viable therapeutic target or biomarker of cancer prognosis.
Collapse
Affiliation(s)
- Salah Dajani
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Anand Saripalli
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Neelam Sharma-Walia
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| |
Collapse
|
26
|
Treatment of Cutting Fluid Waste using Activated Carbon Fiber Supported Nanometer Iron as a Heterogeneous Fenton Catalyst. Sci Rep 2018; 8:10650. [PMID: 30006546 PMCID: PMC6045638 DOI: 10.1038/s41598-018-29014-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/04/2018] [Indexed: 01/12/2023] Open
Abstract
Addressing the problem of high chemical oxygen demands (COD) of cutting fluid waste generated in the machining process, its complex composition, and the specific conditions required for the treatment process, a heterogeneous Fenton fibre catalyst (NZVI@ACF) made of nanometer-iron supported on activated carbon fiber using dip-molding was developed. NZVI was homogeneously loaded onto ACF surfaces to form NZVI@ACF, with a specific surface area (SBET) of 726.3642 m2/g. Using a multistage chemical pretreatment, the NZVI@ACF/H2O2 system was used to effectively treat cutting fluid waste. The results indicated that the rate of COD removal in the cutting fluid waste liquid pretreated with NZVI@ACF/H2O2 system was 99.8% when the reactions conditions were optimized to 20 nmol/L H2O2, 6 g/L NZVI@ACF, total reaction time of 120 min and pH 5. The treated waste solution passed China’s tertiary wastewater discharge standards. NZVI@ACF/H2O2 demonstrated an excellent catalytic performance compared to the traditional Fenton catalyst, increased the effective pH reaction range and had an adsorption effect on the waste liquid after the reaction.
Collapse
|
27
|
Khalid S, Ahmed E, Khan Y, Riaz KN, Malik MA. Nanocrystalline Pyrite for Photovoltaic Applications. ChemistrySelect 2018. [DOI: 10.1002/slct.201800405] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sadia Khalid
- Department of PhysicsBahauddin Zakariya University Multan 60800 Pakistan
- Nanoscience & Technology DepartmentNational Centre for Physics Shahdra Valley Road Quaid-i-Azam University Campus Islamabad 45320 Pakistan
| | - Ejaz Ahmed
- Department of PhysicsBahauddin Zakariya University Multan 60800 Pakistan
| | - Yaqoob Khan
- Nanoscience & Technology DepartmentNational Centre for Physics Shahdra Valley Road Quaid-i-Azam University Campus Islamabad 45320 Pakistan
| | - Khalid Nadeem Riaz
- Department of PhysicsFaculty of SciencesUniversity of Gujrat Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Mohammad Azad Malik
- School of MaterialsThe University of Manchester Oxford Road Manchester M13 9PL U.K
| |
Collapse
|
28
|
Hsu LC, Cho YL, Liu YT, Tzou YM, Teah HY. Capacity and recycling of polyoxometalate applied in As(III) oxidation by Fe(II)-Amended zero-valent aluminum. CHEMOSPHERE 2018; 200:1-7. [PMID: 29471163 DOI: 10.1016/j.chemosphere.2018.02.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/24/2018] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
Arsenic remediation is often initiated by oxidizing As(III) to As(V) to alleviate its toxicity and mobility. Due to the easy availability, zero-valent Al (ZVAl) like Al can was considered as potential alternatives to facilitate As(III) oxidation. This study determined the capability and recycling of polyoxometalate (POM) to catalyze As(III) oxidation in Fe(II)-amended ZVAl systems. POM acquired electrons from ZVAl more effectively at pH 1 than at pH 2. While 76% of the reduced POM [POM(e-)] reacted with O2(g) to generate H2O2 at pH 1, only 60% of POM(e-) was used to produce H2O2 at pH 2. The remaining POM(e-) was oxidized by the generated H2O2. Such additional consumption of POM(e-) and H2O2 led to the incomplete As(III) oxidation in the system without residual ZVAl and emphasized the need for a continuous electron supply from ZVAl to compensate the depletion of POM(e-). After the hydrolyzation at pH 6.0, the XANES data evidenced that not only As(V) but WO4 released from the POM retained on surfaces of Al/Fe hydroxides. The competition for sorption sites on Al/Fe hydroxides between As(V) and WO4 led to the incomplete As removal. Despite the loss of WO4, the POM re-polymerized at pH 1 still showed the comparable capability to catalyze As(III) oxidation with original POM. This study revealed electron transfer pathways from ZVAl to As(III) as catalyzed by POM and evidenced the effective POM recycling after As removal, which lowers the cost of POM application and turns the ZVAl/Fe(II)/POM/O2 system into a practical strategy for As remediation.
Collapse
Affiliation(s)
- Liang-Ching Hsu
- Scientific Research Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 300, Taiwan
| | - Yen-Lin Cho
- Department of Soil and Environmental Sciences, National Chung-Hsing University, 145 Xingda Rd., Taichung 402, Taiwan
| | - Yu-Ting Liu
- Department of Soil and Environmental Sciences, National Chung-Hsing University, 145 Xingda Rd., Taichung 402, Taiwan.
| | - Yu-Min Tzou
- Department of Soil and Environmental Sciences, National Chung-Hsing University, 145 Xingda Rd., Taichung 402, Taiwan
| | - Heng Yi Teah
- Division of Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 332 Building of Environmental Studies, 5-1-5 Kashiwanoha, Kashiwa City, Chiba 277-8563, Japan
| |
Collapse
|
29
|
Moradi M, Kalantary RR, Esrafili A, Jafari AJ, Gholami M. Visible light photocatalytic inactivation of Escherichia coli by natural pyrite assisted by oxalate at neutral pH. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
The Construction and Characterization of Mitochondrial Ferritin Overexpressing Mice. Int J Mol Sci 2017; 18:ijms18071518. [PMID: 28703745 PMCID: PMC5536008 DOI: 10.3390/ijms18071518] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial ferritin (FtMt) is a H-ferritin-like protein which localizes to mitochondria. Previous studies have shown that this protein can protect mitochondria from iron-induced oxidative damage, while FtMt overexpression in cultured cells decreases cytosolic iron availability and protects against oxidative damage. To investigate the in vivo role of FtMt, we established FtMt overexpressing mice by pro-nucleus microinjection and examined the characteristics of the animals. We first confirmed that the protein levels of FtMt in the transgenic mice were increased compared to wild-type mice. Interestingly, we found no significant differences in the body weights or organ to body weight ratios between wild type and transgenic mice. To determine the effects of FtMt overexpression on baseline murine iron metabolism and hematological indices, we measured serum, heart, liver, spleen, kidney, testis, and brain iron concentrations, liver hepcidin expression and red blood cell parameters. There were no significant differences between wild type and transgenic mice. In conclusion, our results suggest that FtMt overexpressing mice have no significant defects and the overexpression of FtMt does not affect the regulation of iron metabolism significantly in transgenic mice.
Collapse
|