1
|
Suvac A, Ashton J, Bristow RG. Tumour hypoxia in driving genomic instability and tumour evolution. Nat Rev Cancer 2025; 25:167-188. [PMID: 39875616 DOI: 10.1038/s41568-024-00781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/30/2025]
Abstract
Intratumour hypoxia is a feature of all heterogenous solid tumours. Increased levels or subregions of tumour hypoxia are associated with an adverse clinical prognosis, particularly when this co-occurs with genomic instability. Experimental evidence points to the acquisition of DNA and chromosomal alterations in proliferating hypoxic cells secondary to inhibition of DNA repair pathways such as homologous recombination, base excision repair and mismatch repair. Cell adaptation and selection in repair-deficient cells give rise to a model whereby novel single-nucleotide mutations, structural variants and copy number alterations coexist with altered mitotic control to drive chromosomal instability and aneuploidy. Whole-genome sequencing studies support the concept that hypoxia is a critical microenvironmental cofactor alongside the driver mutations in MYC, BCL2, TP53 and PTEN in determining clonal and subclonal evolution in multiple tumour types. We propose that the hypoxic tumour microenvironment selects for unstable tumour clones which survive, propagate and metastasize under reduced immune surveillance. These aggressive features of hypoxic tumour cells underpin resistance to local and systemic therapies and unfavourable outcomes for patients with cancer. Possible ways to counter the effects of hypoxia to block tumour evolution and improve treatment outcomes are described.
Collapse
Affiliation(s)
- Alexandru Suvac
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jack Ashton
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert G Bristow
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK.
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Zhang C, Wu BZ, Di Ciano-Oliveira C, Wu YF, Khavkine Binstock SS, Soria-Bretones I, Pham NA, Elia AJ, Chari R, Lam WL, Bray MR, Mak TW, Tsao MS, Cescon DW, Thu KL. Identification of KIFC1 as a putative vulnerability in lung cancers with centrosome amplification. Cancer Gene Ther 2024; 31:1559-1570. [PMID: 39179685 PMCID: PMC11489082 DOI: 10.1038/s41417-024-00824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
Centrosome amplification (CA), an abnormal increase in the number of centrosomes in the cell, is a recurrent phenomenon in lung and other malignancies. Although CA promotes tumor development and progression by inducing genomic instability (GIN), it also induces mitotic stress that jeopardizes cellular integrity. CA leads to the formation of multipolar mitotic spindles that can cause lethal chromosome segregation errors. To sustain the benefits of CA by mitigating its consequences, malignant cells are dependent on adaptive mechanisms that represent therapeutic vulnerabilities. We aimed to discover genetic dependencies associated with CA in lung cancer. Combining a CRISPR/Cas9 functional genomics screen with tumor genomic analyses, we identified the motor protein KIFC1, also known as HSET, as a putative vulnerability specifically in lung adenocarcinoma (LUAD) with CA. KIFC1 expression was positively correlated with CA in LUAD and associated with worse patient outcomes, smoking history, and indicators of GIN. KIFC1 loss-of-function sensitized LUAD cells with high basal KIFC1 expression to potentiation of CA, which was associated with a diminished ability to cluster extra centrosomes into pseudo-bipolar mitotic spindles. Our work suggests that KIFC1 inhibition represents a novel approach for potentiating GIN to lethal levels in LUAD with CA by forcing cells to divide with multipolar spindles, rationalizing further studies to investigate its therapeutic potential.
Collapse
Affiliation(s)
- Christopher Zhang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | - Benson Z Wu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | - Caterina Di Ciano-Oliveira
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | - Yin Fang Wu
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | - Sharon S Khavkine Binstock
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | | | - Nhu-An Pham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Andrew J Elia
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Raj Chari
- Laboratory Animal Sciences Program, Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, USA
| | - Wan L Lam
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Mark R Bray
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Tak W Mak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Ming-Sound Tsao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - David W Cescon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Kelsie L Thu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.
| |
Collapse
|
3
|
Prakash A, Paunikar S, Webber M, McDermott E, Vellanki SH, Thompson K, Dockery P, Jahns H, Brown JAL, Hopkins AM, Bourke E. Centrosome amplification promotes cell invasion via cell-cell contact disruption and Rap-1 activation. J Cell Sci 2023; 136:jcs261150. [PMID: 37772773 PMCID: PMC10629695 DOI: 10.1242/jcs.261150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Centrosome amplification (CA) is a prominent feature of human cancers linked to tumorigenesis in vivo. Here, we report mechanistic contributions of CA induction alone to tumour architecture and extracellular matrix (ECM) remodelling. CA induction in non-tumorigenic breast cells MCF10A causes cell migration and invasion, with underlying disruption of epithelial cell-cell junction integrity and dysregulation of expression and subcellular localisation of cell junction proteins. CA also elevates expression of integrin β-3, its binding partner fibronectin-1 and matrix metalloproteinase enzymes, promoting cell-ECM attachment, ECM degradation, and a migratory and invasive cell phenotype. Using a chicken embryo xenograft model for in vivo validation, we show that CA-induced (+CA) MCF10A cells invade into the chick mesodermal layer, with inflammatory cell infiltration and marked focal reactions between chorioallantoic membrane and cell graft. We also demonstrate a key role of small GTPase Rap-1 signalling through inhibition using GGTI-298, which blocked various CA-induced effects. These insights reveal that in normal cells, CA induction alone (without additional oncogenic alterations) is sufficient to confer early pro-tumorigenic changes within days, acting through Rap-1-dependent signalling to alter cell-cell contacts and ECM disruption.
Collapse
Affiliation(s)
- Anu Prakash
- Lambe Institute for Translational Research, Discipline of Pathology, Centre for Chromosome Biology, University of Galway, Galway H91 V4AY, Ireland
| | - Shishir Paunikar
- Lambe Institute for Translational Research, Discipline of Pathology, Centre for Chromosome Biology, University of Galway, Galway H91 V4AY, Ireland
| | - Mark Webber
- Lambe Institute for Translational Research, Discipline of Pathology, Centre for Chromosome Biology, University of Galway, Galway H91 V4AY, Ireland
| | - Emma McDermott
- Centre for Microscopy and Imaging, Discipline of Anatomy, School of Medicine, University of Galway, Galway H91 W5P7, Ireland
| | - Sri H. Vellanki
- Department of Surgery, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin D09 DK19, Ireland
| | - Kerry Thompson
- Centre for Microscopy and Imaging, Discipline of Anatomy, School of Medicine, University of Galway, Galway H91 W5P7, Ireland
| | - Peter Dockery
- Centre for Microscopy and Imaging, Discipline of Anatomy, School of Medicine, University of Galway, Galway H91 W5P7, Ireland
| | - Hanne Jahns
- Pathobiology Section, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - James A. L. Brown
- Department of Biological Sciences, University of Limerick, Limerick V94T9PX, Ireland
- Limerick Digital Cancer Research Centre (LDCRC) and Health Research Institute, University of Limerick, Limerick V94T9PX, Ireland
| | - Ann M. Hopkins
- Department of Surgery, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin D09 DK19, Ireland
| | - Emer Bourke
- Lambe Institute for Translational Research, Discipline of Pathology, Centre for Chromosome Biology, University of Galway, Galway H91 V4AY, Ireland
| |
Collapse
|
4
|
Fdez E, Fasiczka R, Lara Ordóñez AJ, Fernández B, Naaldijk Y, Hilfiker S. Protocol to measure centrosome cohesion deficits mediated by pathogenic LRRK2 in cultured cells using confocal microscopy. STAR Protoc 2023; 4:102024. [PMID: 36856766 PMCID: PMC9860150 DOI: 10.1016/j.xpro.2022.102024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/17/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
The present protocol allows for quantification of inter-centrosome distances in G2 phase cells by confocal fluorescence microscopy to determine centrosome cohesion deficits. We describe transfection and immunofluorescence approaches followed by image acquisition and analysis of inter-centrosome distances. This protocol is for adherent A549 cells transiently overexpressing pathogenic LRRK2 and for immortalized murine embryonic fibroblasts endogenously expressing LRRK2 but is amenable to any other cultured cell type as well. For complete details on the use and execution of this protocol, please refer to Fdez et al.1 and Lara Ordóñez et al.2.
Collapse
Affiliation(s)
- Elena Fdez
- Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain.
| | - Rachel Fasiczka
- Department of Anesthesiology and Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Antonio Jesús Lara Ordóñez
- Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain
| | - Belén Fernández
- Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain
| | - Yahaira Naaldijk
- Department of Anesthesiology and Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Sabine Hilfiker
- Department of Anesthesiology and Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
5
|
Fleisher B, Werkman C, Jacobs B, Varkey J, Taha K, Ait-Oudhia S. KIFC1: A Reliable Prognostic Biomarker in Rb-positive Triple-negative Breast Cancer Patients Treated With Doxorubicin in Combination With Abemaciclib. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:525-532. [PMID: 36060015 PMCID: PMC9425577 DOI: 10.21873/cdp.10137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND/AIM Triple-negative breast cancer (TNBC) prevalence and risk of relapse are greatest in African American (AA) patients. Doxorubicin (DOX) and abemaciclib (ABE) synergism in Rb-positive TNBC cells (MDA-MB-231), and antagonism in Rb-negative TNBC cells (MDA-MB-468) have been previously shown. Here, we assessed Kinesin-like protein 1 (KIFC1) as an ethnic-specific prognostic biomarker of the DOX+ABE combination for the Rb-status in TNBC. MATERIALS AND METHODS Literature search for TNBC prognostic biomarkers in the AA population was conducted. MDA-MB-231 and MDA-MB-468 cells were exposed over 72 h to four treatment arms: 1) control (medium without drug), 2) DOX at 50% inhibitory concentration in MDA-MB-231 (0.565 μM) and MDA-MB-468 (0.121 μM), 3) ABE alone (2 μM), and 4) DOX+ABE combination at their corresponding concentrations in each cell-line. KIFC1 protein expression and temporal changes were quantified in MDA-MB-231 cells using western blot. RESULTS KIFC1, Kaiso, and Annexin A2 are literature-identified AA-specific TNBC prognostic biomarkers. KIFC1 was found to be uncorrelated to other proposed biomarkers, suggesting it may predict risk independently of other TNBC biomarkers. In both cell lines, DOX alone did not significantly change KIFC1 expression relative to control. Conversely, ABE reduced KIFC1 expression in MDA-MB-231 but not in MDA-MB-468 cells. The combination DOX+ABE resulted in a greatest reduction in KIFC1 in MDA-MB-231 cells with a more rapid time-to-full inhibition of KIFC1 compared to ABE alone. CONCLUSION Change in KIFC1 expression is primarily driven by ABE in Rb-positive TNBC cells. DOX increases ABE speed to achieve a full inhibition of KIFC1 in Rb-positive, yet, without influencing its expression in Rb-negative TNBC cells.
Collapse
Affiliation(s)
- Brett Fleisher
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, College of Pharmacy, Orlando, FL, U.S.A
| | - Carolin Werkman
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, College of Pharmacy, Orlando, FL, U.S.A
| | - Brehanna Jacobs
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, College of Pharmacy, Orlando, FL, U.S.A
| | - Justin Varkey
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, College of Pharmacy, Orlando, FL, U.S.A
| | - Kareem Taha
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, College of Pharmacy, Orlando, FL, U.S.A
| | - Sihem Ait-Oudhia
- Quantitative Pharmacology and Pharmacometrics (QP2), Merck & Co., Inc, Kenilworth, NJ, U.S.A
| |
Collapse
|
6
|
Mittal K, Kaur J, Sharma S, Sharma N, Wei G, Choudhary I, Imhansi-Jacob P, Maganti N, Pawar S, Rida P, Toss MS, Aleskandarany M, Janssen EA, Søiland H, Gupta MV, Reid MD, Rakha EA, Aneja R. Hypoxia Drives Centrosome Amplification in Cancer Cells via HIF1α-dependent Induction of Polo-Like Kinase 4. Mol Cancer Res 2022; 20:596-606. [PMID: 34933912 PMCID: PMC8983505 DOI: 10.1158/1541-7786.mcr-20-0798] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/20/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
Centrosome amplification (CA) has been implicated in the progression of various cancer types. Although studies have shown that overexpression of PLK4 promotes CA, the effect of tumor microenvironment on polo-like kinase 4 (PLK4) regulation is understudied. The aim of this study was to examine the role of hypoxia in promoting CA via PLK4. We found that hypoxia induced CA via hypoxia-inducible factor-1α (HIF1α). We quantified the prevalence of CA in tumor cell lines and tissue sections from breast cancer, pancreatic ductal adenocarcinoma (PDAC), colorectal cancer, and prostate cancer and found that CA was prevalent in cells with increased HIF1α levels under normoxic conditions. HIF1α levels were correlated with the extent of CA and PLK4 expression in clinical samples. We analyzed the correlation between PLK4 and HIF1A mRNA levels in The Cancer Genome Atlas (TCGA) datasets to evaluate the role of PLK4 and HIF1α in breast cancer and PDAC prognosis. High HIF1A and PLK4 levels in patients with breast cancer and PDAC were associated with poor overall survival. We confirmed PLK4 as a transcriptional target of HIF1α and demonstrated that in PLK4 knockdown cells, hypoxia-mimicking agents did not affect CA and expression of CA-associated proteins, underscoring the necessity of PLK4 in HIF1α-related CA. To further dissect the HIF1α-PLK4 interplay, we used HIF1α-deficient cells overexpressing PLK4 and showed a significant increase in CA compared with HIF1α-deficient cells harboring wild-type PLK4. These findings suggest that HIF1α induces CA by directly upregulating PLK4 and could help us risk-stratify patients and design new therapies for CA-rich cancers. IMPLICATIONS Hypoxia drives CA in cancer cells by regulating expression of PLK4, uncovering a novel HIF1α/PLK4 axis.
Collapse
Affiliation(s)
- Karuna Mittal
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Jaspreet Kaur
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Shaligram Sharma
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Nivya Sharma
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Guanhao Wei
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Ishita Choudhary
- Department of Biology, Georgia State University, Atlanta, Georgia
| | | | - Nagini Maganti
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Shrikant Pawar
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Padmashree Rida
- Novazoi Theranostics, Inc., Rolling Hills Estates, California
| | - Michael S. Toss
- University of Nottingham and Nottingham University Hospitals, Nottingham, United Kingdom
| | - Mohammed Aleskandarany
- University of Nottingham and Nottingham University Hospitals, Nottingham, United Kingdom
| | | | - Håvard Søiland
- Department of Breast and Endocrine Surgery, Stavanger University Hospital, Stavanger, Norway
| | | | | | - Emad A. Rakha
- University of Nottingham and Nottingham University Hospitals, Nottingham, United Kingdom
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, Georgia
| |
Collapse
|
7
|
Guo H, Chen B, Li W, Wang H, Zhao S, Chen P, Jiang M, Zhao L, Xu K, Sun H, He Y, Zhou C. Percutaneous Microwave Coagulation Therapy: A Promising Therapeutic Method for Breaking the Barrier of the Intertumor Heterogeneity. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:7773163. [PMID: 34840703 PMCID: PMC8626173 DOI: 10.1155/2021/7773163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/02/2022]
Abstract
Intertumor heterogeneity is common in various cancers and has been widely accepted as the primary cause of the diversity and variation of the effect of the same treatment on patients with the same type of tumor. Percutaneous microwave coagulation therapy (PMCT) is a minimally invasive and effective approach for destroying tumors by microwave beam under image guidance, which has been applied in lung cancer. However, no previous study has investigated the capability of PMCT solving intertumor heterogeneity. Here, we performed a component analysis of four lung cancer patients' tumor microenvironment (TME) via single-cell RNA sequencing (scRNA-seq) and treated all four cases with PMCT. One patient's TME could be classified into a hot tumor, mainly proinflammatory cytokines, and T cell infiltration. The other three patients' TMEs were cold tumors, where immunosuppressive cells occupied a large proportion, including tumor-associated macrophages and cancer cells. Despite a high level of heterogeneity among their tumor microenvironment compositions, disease type and stage, and basic physical conditions, all four patients presented a stable disease (SD) without any cancer cell detected in the TME of cancer tissues after PMCT. In conclusion, this report uniquely contributed to the knowledge of the PMCT adaptation to tumor heterogeneity. Therefore, PMCT is promising to demonstrate a stable and robust antitumor efficacy in unresectable lung cancers with various TMEs.
Collapse
Affiliation(s)
- Haoyue Guo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai 200433, China
- Tongji University, No. 1239 Siping Road, Shanghai 200433, China
| | - Bin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai 200433, China
| | - Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai 200433, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai 200433, China
- Tongji University, No. 1239 Siping Road, Shanghai 200433, China
| | - Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai 200433, China
| | - Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai 200433, China
- Tongji University, No. 1239 Siping Road, Shanghai 200433, China
| | - Minlin Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai 200433, China
- Tongji University, No. 1239 Siping Road, Shanghai 200433, China
| | - Lishu Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai 200433, China
- Tongji University, No. 1239 Siping Road, Shanghai 200433, China
| | - Kandi Xu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai 200433, China
- Tongji University, No. 1239 Siping Road, Shanghai 200433, China
| | - Hui Sun
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai 200433, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai 200433, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai 200433, China
| |
Collapse
|
8
|
βIII-tubulin overexpression in cancer: Causes, consequences, and potential therapies. Biochim Biophys Acta Rev Cancer 2021; 1876:188607. [PMID: 34364992 DOI: 10.1016/j.bbcan.2021.188607] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 12/30/2022]
Abstract
Class III β-tubulin (βIII-tubulin) is frequently overexpressed in human tumors and is associated with resistance to microtubule-targeting agents, tumor aggressiveness, and poor patient outcome. Understanding the mechanisms regulating βIII-tubulin expression and the varied functions βIII-tubulin may have in different cancers is vital to assess the prognostic value of this protein and to develop strategies to enhance therapeutic benefits in βIII-tubulin overexpressing tumors. Here we gather all the available evidence regarding the clinical implications of βIII-tubulin overexpression in cancer, describe factors that regulate βIII-tubulin expression, and discuss current understanding of the mechanisms underlying βIII-tubulin-mediated resistance to microtubule-targeting agents and tumor aggressiveness. Finally, we provide an overview of emerging therapeutic strategies to target tumors that overexpress βIII-tubulin.
Collapse
|
9
|
Tang M, Bolderson E, O’Byrne KJ, Richard DJ. Tumor Hypoxia Drives Genomic Instability. Front Cell Dev Biol 2021; 9:626229. [PMID: 33796526 PMCID: PMC8007910 DOI: 10.3389/fcell.2021.626229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/11/2021] [Indexed: 12/26/2022] Open
Abstract
Cancer is a leading cause of death worldwide. As a common characteristic of cancer, hypoxia is associated with poor prognosis due to enhanced tumor malignancy and therapeutic resistance. The enhanced tumor aggressiveness stems at least partially from hypoxia-induced genomic instability. Therefore, a clear understanding of how tumor hypoxia induces genomic instability is crucial for the improvement of cancer therapeutics. This review summarizes recent developments highlighting the association of tumor hypoxia with genomic instability and the mechanisms by which tumor hypoxia drives genomic instability, followed by how hypoxic tumors can be specifically targeted to maximize efficacy.
Collapse
Affiliation(s)
- Ming Tang
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
| | - Emma Bolderson
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
| | - Kenneth J. O’Byrne
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Derek J. Richard
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Mittal K, Kaur J, Jaczko M, Wei G, Toss MS, Rakha EA, Janssen EAM, Søiland H, Kucuk O, Reid MD, Gupta MV, Aneja R. Centrosome amplification: a quantifiable cancer cell trait with prognostic value in solid malignancies. Cancer Metastasis Rev 2021; 40:319-339. [PMID: 33106971 PMCID: PMC7897259 DOI: 10.1007/s10555-020-09937-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Numerical and/or structural centrosome amplification (CA) is a hallmark of cancers that is often associated with the aberrant tumor karyotypes and poor clinical outcomes. Mechanistically, CA compromises mitotic fidelity and leads to chromosome instability (CIN), which underlies tumor initiation and progression. Recent technological advances in microscopy and image analysis platforms have enabled better-than-ever detection and quantification of centrosomal aberrancies in cancer. Numerous studies have thenceforth correlated the presence and the degree of CA with indicators of poor prognosis such as higher tumor grade and ability to recur and metastasize. We have pioneered a novel semi-automated pipeline that integrates immunofluorescence confocal microscopy with digital image analysis to yield a quantitative centrosome amplification score (CAS), which is a summation of the severity and frequency of structural and numerical centrosome aberrations in tumor samples. Recent studies in breast cancer show that CA increases across the disease progression continuum, while normal breast tissue exhibited the lowest CA, followed by cancer-adjacent apparently normal, ductal carcinoma in situ and invasive tumors, which showed the highest CA. This finding strengthens the notion that CA could be evolutionarily favored and can promote tumor progression and metastasis. In this review, we discuss the prevalence, extent, and severity of CA in various solid cancer types, the utility of quantifying amplified centrosomes as an independent prognostic marker. We also highlight the clinical feasibility of a CA-based risk score for predicting recurrence, metastasis, and overall prognosis in patients with solid cancers.
Collapse
Affiliation(s)
- Karuna Mittal
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Jaspreet Kaur
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Meghan Jaczko
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Guanhao Wei
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Michael S Toss
- Department of Pathology, University of Nottingham and Nottingham University Hospitals, Nottingham, UK
| | - Emad A Rakha
- Department of Pathology, University of Nottingham and Nottingham University Hospitals, Nottingham, UK
| | | | - Håvard Søiland
- Department of Breast and Endocrine Surgery, Stavanger University Hospital, Stavanger, Norway
| | - Omer Kucuk
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University Hospital, Atlanta, GA, USA
| | | | | | - Ritu Aneja
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA.
| |
Collapse
|
11
|
Mittal K, Toss MS, Wei G, Kaur J, Choi DH, Melton BD, Osan RM, Miligy IM, Green AR, Janssen EAM, Søiland H, Gogineni K, Manne U, Rida P, Rakha EA, Aneja R. A Quantitative Centrosomal Amplification Score Predicts Local Recurrence of Ductal Carcinoma In Situ. Clin Cancer Res 2020; 26:2898-2907. [PMID: 31937618 PMCID: PMC7299818 DOI: 10.1158/1078-0432.ccr-19-1272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 10/07/2019] [Accepted: 01/09/2020] [Indexed: 01/02/2023]
Abstract
PURPOSE The purpose of this study is to predict risk of local recurrence (LR) in ductal carcinoma in situ (DCIS) with a new visualization and quantification approach using centrosome amplification (CA), a cancer cell-specific trait widely associated with aggressiveness. EXPERIMENTAL DESIGN This first-of-its-kind methodology evaluates the severity and frequency of numerical and structural CA present within DCIS and assigns a quantitative centrosomal amplification score (CAS) to each sample. Analyses were performed in a discovery cohort (DC, n = 133) and a validation cohort (VC, n = 119). RESULTS DCIS cases with LR exhibited significantly higher CAS than recurrence-free cases. Higher CAS was associated with a greater risk of developing LR (HR, 6.3 and 4.8 for DC and VC, respectively; P < 0.001). CAS remained an independent predictor of relapse-free survival (HR, 7.4 and 4.5 for DC and VC, respectively; P < 0.001) even after accounting for potentially confounding factors [grade, age, comedo necrosis, and radiotherapy (RT)]. Patient stratification using CAS (P < 0.0001) was superior to that by Van Nuys Prognostic Index (VNPI; HR for CAS = 6.2 vs. HR for VNPI = 1.1). Among patients treated with breast-conserving surgery alone, CAS identified patients likely to benefit from adjuvant RT. CONCLUSIONS CAS predicted 10-year LR risk for patients who underwent surgical management alone and identified patients who may be at low risk of recurrence, and for whom adjuvant RT may not be required. CAS demonstrated the highest concordance among the known prognostic models such as VNPI and clinicopathologic variables such as grade, age, and comedo necrosis.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/therapy
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/therapy
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Intraductal, Noninfiltrating/therapy
- Centrosome
- Combined Modality Therapy
- Female
- Follow-Up Studies
- Gene Amplification
- Humans
- Mastectomy, Segmental/methods
- Middle Aged
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/therapy
- Prognosis
- Radiotherapy, Adjuvant/methods
- Retrospective Studies
- Survival Rate
Collapse
Affiliation(s)
- Karuna Mittal
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Michael S Toss
- University of Nottingham and Nottingham University Hospitals, Nottingham, United Kingdom
| | - Guanhao Wei
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Jaspreet Kaur
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Da Hoon Choi
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Brian D Melton
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Remus M Osan
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Islam M Miligy
- University of Nottingham and Nottingham University Hospitals, Nottingham, United Kingdom
| | - Andrew R Green
- University of Nottingham and Nottingham University Hospitals, Nottingham, United Kingdom
| | - Emiel A M Janssen
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
| | - Håvard Søiland
- Department of Breast and Endocrine Surgery, Stavanger University Hospital, Stavanger, Norway
| | | | - Upender Manne
- Department of Pathology, University of Alabama School of Medicine, Birmingham, Alabama
| | - Padmashree Rida
- Department of Biology, Georgia State University, Atlanta, Georgia.
- Novazoi Theranostics, Inc., Rolling Hills Estates, California
| | - Emad A Rakha
- University of Nottingham and Nottingham University Hospitals, Nottingham, United Kingdom.
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
12
|
Egeland NG, Jonsdottir K, Aure MR, Sahlberg K, Kristensen VN, Cronin-Fenton D, Skaland I, Gudlaugsson E, Baak JPA, Janssen EAM. MiR-18a and miR-18b are expressed in the stroma of oestrogen receptor alpha negative breast cancers. BMC Cancer 2020; 20:377. [PMID: 32370743 PMCID: PMC7201801 DOI: 10.1186/s12885-020-06857-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/13/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Previously, we have shown that miR-18a and miR-18b gene expression strongly correlates with high proliferation, oestrogen receptor -negativity (ER-), cytokeratin 5/6 positivity and basal-like features of breast cancer. METHODS We investigated the expression and localization of miR-18a and -18b in formalin fixed paraffin embedded (FFPE) tissue from lymph node negative breast cancers (n = 40), by chromogenic in situ hybridization (CISH). The expression level and in situ localization of miR-18a and -18b was assessed with respect to the presence of tumour infiltrating lymphocytes (TILs) and immunohistochemical markers for ER, CD4, CD8, CD20, CD68, CD138, PAX5 and actin. Furthermore, in two independent breast cancer cohorts (94 and 377 patients) the correlation between miR-18a and -18b expression and the relative quantification of 22 immune cell types obtained from the CIBERSORT tool was assessed. RESULTS CISH demonstrated distinct and specific cytoplasmic staining for both miR-18a and miR-18b, particularly in the intratumoural stroma and the stroma surrounding the tumour margin. Staining by immunohistochemistry revealed some degree of overlap of miR-18a and -18b with CD68 (monocytes/macrophages), CD138 (plasma cells) and the presence of high percentages of TILs. CIBERSORT analysis showed a strong correlation between M1-macrophages and CD4+ memory activated T-cells with mir-18a and -18b. CONCLUSIONS Our study demonstrates that miR-18a and miR-18b expression is associated with ER- breast tumours that display a high degree of inflammation. This expression is potentially associated specifically with macrophages. These results suggest that miR-18a and miR-18b may play a role in the systemic immunological response in ER- tumours.
Collapse
Affiliation(s)
- Nina Gran Egeland
- Department of Pathology, Stavanger University Hospital, Box 8100, 4068, Stavanger, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Kristin Jonsdottir
- Department of Pathology, Stavanger University Hospital, Box 8100, 4068, Stavanger, Norway.
| | - Miriam Ragle Aure
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kristine Sahlberg
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Research and Innovation, Vestre Viken Hospital Trust, Drammen, Norway
| | - Vessela N Kristensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, Norway
| | | | - Ivar Skaland
- Department of Pathology, Stavanger University Hospital, Box 8100, 4068, Stavanger, Norway
| | - Einar Gudlaugsson
- Department of Pathology, Stavanger University Hospital, Box 8100, 4068, Stavanger, Norway
| | - Jan P A Baak
- Department of Pathology, Stavanger University Hospital, Box 8100, 4068, Stavanger, Norway.,Dr. Med. Jan Baak AS, Tananger, Norway
| | - Emiel A M Janssen
- Department of Pathology, Stavanger University Hospital, Box 8100, 4068, Stavanger, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| |
Collapse
|
13
|
Hypoxia-Induced Centrosome Amplification Underlies Aggressive Disease Course in HPV-Negative Oropharyngeal Squamous Cell Carcinomas. Cancers (Basel) 2020; 12:cancers12020517. [PMID: 32102296 PMCID: PMC7072660 DOI: 10.3390/cancers12020517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/07/2020] [Accepted: 02/17/2020] [Indexed: 01/28/2023] Open
Abstract
Human papillomavirus-negative (HPV-neg) oropharyngeal squamous cell carcinomas (OPSCCs) are associated with poorer overall survival (OS) compared with HPV-positive (HPV-pos) OPSCCs. The major obstacle in improving outcomes of HPV-neg patients is the lack of robust biomarkers and therapeutic targets. Herein, we investigated the role of centrosome amplification (CA) as a prognostic biomarker in HPV-neg OPSCCs. A quantitative evaluation of CA in clinical specimens of OPSCC revealed that (a) HPV-neg OPSCCs exhibit higher CA compared with HPV-pos OPSCCs, and (b) CA was associated with poor OS, even after adjusting for potentially confounding clinicopathologic variables. Contrastingly, CA was higher in HPV-pos cultured cell lines compared to HPV-neg ones. This divergence in CA phenotypes between clinical specimens and cultured cells can therefore be attributed to an inaccurate recapitulation of the in vivo tumor microenvironment in the cultured cell lines, namely a hypoxic environment. The exposure of HPV-neg OPSCC cultured cells to hypoxia or stabilizing HIF-1α genetically increased CA. Both the 26-gene hypoxia signature as well as the overexpression of HIF-1α positively correlated with increased CA in HPV-neg OPSCCs. In addition, we showed that HIF-1α upregulation is associated with the downregulation of miR-34a, increase in CA and expression of cyclin- D1. Our findings demonstrate that the evaluation of CA may aid in therapeutic decision-making, and CA can serve as a promising therapeutic target for HPV-neg OPSCC patients.
Collapse
|
14
|
Mittal K, Aneja R. Spotlighting the hypoxia-centrosome amplification axis. Med Res Rev 2020; 40:1508-1513. [PMID: 32039498 DOI: 10.1002/med.21663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/03/2019] [Accepted: 01/27/2020] [Indexed: 12/17/2022]
Abstract
The abysmal success rate of anticancer drugs in clinical trials, is in part, attributable to discordance between cultured cancer cells and patient tumors. While tumors in vivo, display a lower mitotic index, patient tumors portray much higher centrosomal aberrations, relative to in vitro cultured cells. The microenvironment too differs considerably between the in vitro and in vivo scenarios. Notably, another hallmark of cancer, hypoxia, is not recapitulated in cell lines cultured under normoxic conditions. These observations raise the possibility that hypoxia may be the missing link that explains the discordance between cell biological phenomena in vitro versus physiological conditions. Further, the interplay between hypoxia and centrosome amplification (CA) is relatively understudied. Recent research from our laboratory, geared toward examining the biological link between the two, has uncovered that hypoxia induces the expression of proteins (Plk4, Aurora A, Cyclin D) implicated in CA, in a hypoxia-inducible factor 1α (HIF-1α)-dependent context. Our studies evidence that hypoxia fuels CA that underlie intratumoral heterogeneity and metastatic potential of cancer cells. Given the advent of HIF-1α inhibitors, this research has ramifications in aiding patient risk stratification and designing new cancer drug therapies to facilitate clinical decision-making.
Collapse
Affiliation(s)
- Karuna Mittal
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, Georgia
| |
Collapse
|
15
|
de Almeida BP, Vieira AF, Paredes J, Bettencourt-Dias M, Barbosa-Morais NL. Pan-cancer association of a centrosome amplification gene expression signature with genomic alterations and clinical outcome. PLoS Comput Biol 2019; 15:e1006832. [PMID: 30856170 PMCID: PMC6411098 DOI: 10.1371/journal.pcbi.1006832] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/25/2019] [Indexed: 02/05/2023] Open
Abstract
Centrosome amplification (CA) is a common feature of human tumours and a promising target for cancer therapy. However, CA's pan-cancer prevalence, molecular role in tumourigenesis and therapeutic value in the clinical setting are still largely unexplored. Here, we used a transcriptomic signature (CA20) to characterise the landscape of CA-associated gene expression in 9,721 tumours from The Cancer Genome Atlas (TCGA). CA20 is upregulated in cancer and associated with distinct clinical and molecular features of breast cancer, consistently with our experimental CA quantification in patient samples. Moreover, we show that CA20 upregulation is positively associated with genomic instability, alteration of specific chromosomal arms and C>T mutations, and we propose novel molecular players associated with CA in cancer. Finally, high CA20 is associated with poor prognosis and, by integrating drug sensitivity with drug perturbation profiles in cell lines, we identify candidate compounds for selectively targeting cancer cells exhibiting transcriptomic evidence for CA.
Collapse
Affiliation(s)
- Bernardo P. de Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - André F. Vieira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| | - Joana Paredes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| | | | - Nuno L. Barbosa-Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
16
|
Arnandis T, Monteiro P, Adams SD, Bridgeman VL, Rajeeve V, Gadaleta E, Marzec J, Chelala C, Malanchi I, Cutillas PR, Godinho SA. Oxidative Stress in Cells with Extra Centrosomes Drives Non-Cell-Autonomous Invasion. Dev Cell 2018; 47:409-424.e9. [PMID: 30458137 PMCID: PMC6251975 DOI: 10.1016/j.devcel.2018.10.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 01/07/2023]
Abstract
Centrosomal abnormalities, in particular centrosome amplification, are recurrent features of human tumors. Enforced centrosome amplification in vivo plays a role in tumor initiation and progression. However, centrosome amplification occurs only in a subset of cancer cells, and thus, partly due to this heterogeneity, the contribution of centrosome amplification to tumors is unknown. Here, we show that supernumerary centrosomes induce a paracrine-signaling axis via the secretion of proteins, including interleukin-8 (IL-8), which leads to non-cell-autonomous invasion in 3D mammary organoids and zebrafish models. This extra centrosomes-associated secretory phenotype (ECASP) promotes invasion of human mammary cells via HER2 signaling activation. Further, we demonstrate that centrosome amplification induces an early oxidative stress response via increased NOX-generated reactive oxygen species (ROS), which in turn mediates secretion of pro-invasive factors. The discovery that cells with extra centrosomes can manipulate the surrounding cells highlights unexpected and far-reaching consequences of these abnormalities in cancer.
Collapse
Affiliation(s)
- Teresa Arnandis
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Pedro Monteiro
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sophie D Adams
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | | | - Vinothini Rajeeve
- Integrative Cell Signalling and Proteomics, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Emanuela Gadaleta
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jacek Marzec
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Claude Chelala
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Ilaria Malanchi
- Tumour Host Interaction Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Pedro R Cutillas
- Integrative Cell Signalling and Proteomics, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Susana A Godinho
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
17
|
Prolyl-4-hydroxylase Α subunit 2 (P4HA2) expression is a predictor of poor outcome in breast ductal carcinoma in situ (DCIS). Br J Cancer 2018; 119:1518-1526. [PMID: 30410060 PMCID: PMC6288166 DOI: 10.1038/s41416-018-0337-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/09/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022] Open
Abstract
Background Extracellular matrix (ECM) plays a crucial role in tumour behaviour. Prolyl-4-hydroxlase-A2 (P4HA2) is a key enzyme in ECM remodelling. This study aims to evaluate the prognostic significance of P4HA2 in breast ductal carcinoma in situ (DCIS). Methods P4HA2 expression was assessed immunohistochemically in malignant cells and surrounding stroma of a large DCIS cohort comprising 481 pure DCIS and 196 mixed DCIS and invasive carcinomas. Outcome analysis was evaluated using local recurrence free interval (LRFI). Results High P4HA2 expression was detected in malignant cells of half of pure DCIS whereas its expression in stroma was seen in 25% of cases. Higher P4HA2 expression was observed in mixed DCIS cases compared to pure DCIS both in tumour cells and in stroma. High P4HA2 was associated with features of high risk DCIS including younger age, higher grade, comedo necrosis, triple negative and HER2-positive phenotypes. Interaction between P4HA2 and radiotherapy was also observed regarding the outcome. High P4HA2 expression was an independent prognostic factor in predicting shorter LRFI. Conclusion P4HA2 plays a role in DCIS progression and can potentially be used to predict DCIS outcome. Incorporation of P4HA2 with other clinicopathological parameters could refine DCIS risk stratification that can potentially guide management decisions.
Collapse
|