1
|
Li L, Chen X, Yan S, Zhang Y. Metabolomics Reveals the Mechanism by Which Sodium Butyrate Promotes the Liver Pentose Phosphate Pathway and Fatty Acid Synthesis in Lactating Goats. Animals (Basel) 2024; 14:3249. [PMID: 39595302 PMCID: PMC11591463 DOI: 10.3390/ani14223249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
This study aimed to explore the effects of sodium butyrate on liver metabolism in goats subjected to a high-concentrate diet. We randomly assigned twelve Saanen-lactating goats into two groups, one of which received a high-concentrate diet (concentrate: forage = 60:40, control group), while the other received the same basal diet supplemented with sodium butyrate (SB) (10 g/kg basal diet, SB group). Compared with the control diet, the SB diet considerably increased the milk fat percentage and content (p < 0.05), with an increase of 0.67% in the milk fat content of the SB group. By employing a global metabolomics approach based on ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), we identified 6748 ions in ESI+ mode and 3573 ions in ESI- mode after liver isolation from both groups. A total of twenty-three metabolites, including phospholipids, fatty acids, and ribose phosphate, were found to be dysregulated according to a search against the human metabolome database (HMDB). Pathway analysis revealed activation of the pentose phosphate pathway, glycerophospholipid metabolism, and unsaturated fatty acid synthesis. The SB diet also modulated the expression of key lipogenic enzymes, such as acetyl-CoA carboxylase (ACC) and stearoyl-CoA desaturase (SCD-1), which are downstream targets of the transcription factor sterol regulatory element-binding proteins-1c (SREBP-1c), inducing a significant upregulation (p < 0.05). Furthermore, 6-phosphogluconate dehydrogenase (6PGDH) levels in the liver were elevated after the lactating goats were fed the SB diet (p < 0.05). Our study reveals that the SB diet may offer substantial benefits in enhancing the milk quality of subacute ruminal acidosis (SARA) goats. This is accomplished by augmenting the activity of the liver pentose phosphate pathway and the process of de novo fatty acid synthesis in lactating goats.
Collapse
Affiliation(s)
- Lin Li
- School of Chemical Engineering and Biotechnology, Xingtai University, Xingtai 054001, China;
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (X.C.); (S.Y.)
- Hebei Key Laboratory of Digital Freshwater Aquaculture Technology, Xingtai University, Xingtai 054001, China
| | - Xi Chen
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (X.C.); (S.Y.)
| | - Shuping Yan
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (X.C.); (S.Y.)
| | - Yuanshu Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (X.C.); (S.Y.)
| |
Collapse
|
2
|
Mi H, Hu F, Gebeyew K, Cheng Y, Du R, Gao M, He Z, Tan Z. Genome wide transcriptome analysis provides bases on hepatic lipid metabolism disorder affected by increased dietary grain ratio in fattening lambs. BMC Genomics 2023; 24:364. [PMID: 37386405 DOI: 10.1186/s12864-023-09465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The liver is a principal metabolic organ and has a major role in regulating lipid metabolism. With the development of rapidly fattening livestock in the modern breeding industry, the incidence of hepatic steatosis and accumulation in animals was significantly increased. However, the molecular mechanisms responsible for hepatic lipid metabolic disturbances in a high concentrate diet remain unclear. The objective of this study was to evaluate the effects of increasing concentrate level in a fattening lamb diet on biochemical indices, hepatic triglycerides (TG) concentration, and hepatic transcriptomic profiles. In the present study, 42 weaned lambs (about 3 ± 0.3 months old) were randomly assigned to the GN60 group (60% concentrate of dry matter, GN60, n = 21) or GN70 group (70% concentrate of dry matter, n = 21) for a 3-months feeding trial. RESULTS No difference was observed in the growth performance or plasma biochemical parameters between the GN60 group and the GN70 group. The hepatic TG concentration was higher in the GN70 group than GN60 group (P < 0.05). Hepatic transcriptomic analysis showed that there were 290 differentially expressed genes identified between GN60 and GN70 groups, with 125 genes up-regulated and 165 genes down-regulated in the GN70 group. The enriched Gene Ontology (GO) items and KEGG pathways and protein-protein interaction (PPI) network of differentially expressed genes (DEGs) revealed that the majority of enriched pathways were related to lipid metabolism. Further analysis revealed that the fatty acid synthesis was up-regulated, while fatty acid transport, oxidation, and TG degradation were down-regulated in the GN70 group when compared with the GN60 group. CONCLUSIONS These results indicated that GN70 induced excess lipid deposition in the liver of lambs during the fattening period, with high synthesis rates and low degradation rates of TG. The identified mechanisms may help understand hepatic metabolism in lambs with a high concentrate diet and provide insight into decreasing the risk of liver metabolism disorder in animals.
Collapse
Affiliation(s)
- Hui Mi
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Hu
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kefyalew Gebeyew
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Cheng
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruiping Du
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, Inner Mongolia, 010031, China
| | - Min Gao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, Inner Mongolia, 010031, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Meng M, Zhao X, Huo R, Li X, Chang G, Shen X. Disodium Fumarate Alleviates Endoplasmic Reticulum Stress, Mitochondrial Damage, and Oxidative Stress Induced by the High-Concentrate Diet in the Mammary Gland Tissue of Hu Sheep. Antioxidants (Basel) 2023; 12:antiox12020223. [PMID: 36829784 PMCID: PMC9952365 DOI: 10.3390/antiox12020223] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The long-term feeding of the high-concentrate diet (HC) reduced rumen pH and induced subacute rumen acidosis (SARA), leading to mammary gland tissue damage among ruminants. Disodium fumarate enhanced rumen bufferation and alleviated a decrease in rumen pH induced by the HC diet. Therefore, the purpose of this study was to investigate whether disodium fumarate could alleviate endoplasmic reticulum (ER) stress, mitochondrial damage, and oxidative stress induced by the high-concentrate diet in the mammary gland tissue of Hu sheep. In this study, 18 Hu sheep in mid-lactation were randomly divided into three groups: one fed with a low-concentrate diet (LC) diet, one fed with a HC diet, and one fed with a HC diet with disodium fumarate (AHC). Each sheep was given an additional 10 g of disodium fumarate/day. The experiment lasted for eight weeks. After the experiment, rumen fluid, blood, and mammary gland tissue were collected. The results show that, compared with the LC diet, the HC diet could reduce rumen pH, and the pH below 5.6 was more than 3 h, and the LPS content of blood and rumen fluid in HC the diet was significantly higher than in the LC diet. This indicates that the HC diet induced SARA in Hu sheep. However, the supplementation of disodium fumarate in the HC diet increased the rumen pH and decreased the content of LPS in blood and rumen fluid. Compared with the LC diet, the HC diet increased Ca2+ content in mammary gland tissue. However, the AHC diet decreased Ca2+ content. The HC diet induced ER stress in mammary gland tissue by increasing the mRNA and protein expressions of GRP78, CHOP, PERK, ATF6, and IRE1α. The HC diet also activated the IP3R-VDAC1-MCU channel and lead to mitochondrial damage by inhibiting mitochondrial fusion and promoting mitochondrial division, while disodium fumarate could alleviate these changes. In addition, disodium fumarate alleviated oxidative stress induced by the HC diet by activating Nrf2 signaling and reducing ROS production in mammary gland tissue. In conclusion, the supplementation of disodium fumarate at a daily dose of 10 g/sheep enhanced rumen bufferation by maintaining the ruminal pH above 6 and reduced LPS concentration in ruminal fluid and blood. This reaction avoided the negative effect observed by non-supplemented sheep that were fed with a high-concentrate diet involving endoplasmic reticulum stress, oxidative stress, and mitochondrial damage in the mammary gland tissue of Hu sheep.
Collapse
|
4
|
Morar D, Văduva C, Morar A, Imre M, Tulcan C, Imre K. Paraclinical Changes Occurring in Dairy Cows with Spontaneous Subacute Ruminal Acidosis under Field Conditions. Animals (Basel) 2022; 12:2466. [PMID: 36139324 PMCID: PMC9495101 DOI: 10.3390/ani12182466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
This study was undertaken to investigate the changes in the blood and milk biochemical parameters found in naturally occurring and long-lasting spontaneous subacute ruminal acidosis (SARA), with the aim of identifying the patterns of paraclinical changes and providing valuable data for more accurately identifying SARA in cows under field conditions. The study was conducted on a dairy herd with a history of the occurrence of SARA-associated clinical signs. Twelve cows, between 20 and 150 days in milk, were randomly selected and subsequently subjected to venous blood, milk, and ruminal fluid collection. The mean pH value of the ruminal fluid was 5.56 ± 0.32, and 58% (7/12) of the tested cows were SARA positive (ruminal pH ≤ 5.5). The albumin, calcium, and phosphorus serum concentration values were significantly lower (p < 0.05) in the SARA group than in the group of healthy cows. Serum aspartate aminotransferase (AST) and glutamate dehydrogenase (GLDH) activity were significantly higher in the SARA cows (p < 0.05) than in the group of healthy cows. The mean values of milk fat, milk protein content, and milk fat-to-protein ratio were significantly lower (p < 0.05) in the tested cows of the SARA group than in the healthy group of cows. In conclusion, the results of the current study indicate that long-term SARA triggered by a high-concentrate diet is associated with clinically significant changes in both the blood composition (hypoalbuminemia, hypocalcemia, and increased serum AST and GLDH activity) and the milk composition (decreased fat and protein percentage and milk fat-to-protein ratio). Altogether, the obtained results provide a more reliable pattern of paraclinical changes and useful insights for detecting SARA in dairy cows under field conditions.
Collapse
Affiliation(s)
| | | | - Adriana Morar
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine, “King Michael I of Romania” from Timișoara, 300645 Timisoara, Romania
| | | | | | | |
Collapse
|
5
|
Chen Q, Wu C, Yao Z, Cai L, Ni Y, Mao S. Elevated thyroid hormones caused by high concentrate diets participate in hepatic metabolic disorders in dairy cows. Anim Biosci 2022; 35:1184-1194. [PMID: 34991199 PMCID: PMC9262717 DOI: 10.5713/ab.21.0397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022] Open
Abstract
Objective High concentrate diets are widely used to satisfy high-yielding dairy cows; however, long-term feeding of high concentrate diets can cause subacute ruminal acidosis (SARA). The endocrine disturbance is one of the important reasons for metabolic disorders caused by SARA. However, there is no current report about thyroid hormones involved in liver metabolic disorders induced by a high concentrate diet. Methods In this study, 12 mid-lactating dairy cows were randomly assigned to HC (high concentrate) group (60% concentrate of dry matter, n = 6) and LC (low concentrate) group (40% concentrate of dry matter, n = 6). All cows were slaughtered on the 21st day, and the samples of blood and liver were collected to analyze the blood biochemistry, histological changes, thyroid hormones, and the expression of genes and proteins. Results Compared with LC group, HC group showed decreased serum triglyceride, free fatty acid, total cholesterol, low-density lipoprotein cholesterol, increased hepatic glycogen, and glucose. For glucose metabolism, the gene and protein expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase 1 in the liver were significantly up-regulated in HC group. For lipid metabolism, the expression of sterol regulatory element-binding protein 1, long-chain acyl-CoA synthetase 1, and fatty acid synthase in the liver was decreased in HC group, whereas carnitine palmitoyltransferase 1α and peroxisome proliferator activated receptor α were increased. Serum triiodothyronine, thyroxin, free triiodothyronine (FT3), and hepatic FT3 increased in HC group, accompanied by increased expression of thyroid hormone receptor (THR) in the liver. Conclusion Taken together, thyroid hormones may increase hepatic gluconeogenesis, β-oxidation and reduce fatty acid synthesis through the THR pathway to participate in the metabolic disorders caused by a high concentrate diet.
Collapse
Affiliation(s)
- Qu Chen
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Wu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihao Yao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Liuping Cai
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Li L, Tang W, Zhao M, Gong B, Cao M, Li J. Study on the regulation mechanism of lipopolysaccharide on oxidative stress and lipid metabolism of bovine mammary epithelial cells. Physiol Res 2021; 70:777-785. [PMID: 34505530 DOI: 10.33549/physiolres.934682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The long-term feeding of a high-concentrate diet (the concentrate ratio is greater than 60 %) leads to mammary gland inflammatory response in ruminants and decreased quality in dairy cows and affects the robust development of the dairy industry. The main reason is closely related to elevated lipopolysaccharide (LPS) in the body. In this experiment, a bovine mammary epithelial cell line (MAC-T) was used as a model, and LPS at different concentrations (0 ng/ml, 1 ng/ml, 10 ng/ml, 100 ng/ml, 1000 ng/ml, 10000 ng/ml) was added to the cells. The cell survival rate, oxidative stress indicators, total lipid droplet area, triglyceride content and key genes regulating lipid metabolism were detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT), assay kit, microscope observation and RT-PCR methods to explore the regulatory mechanism of mammary health and milk fat synthesis. The results showed that compared with those of the control group, the survival rates of cells were significantly decreased after 9 h of stimulation with 1000 ng/ml and 10000 ng/ml LPS (P<0.01). The contents of superoxide dismutase (SOD), catalase (CAT) and total antioxidant capacity (T-AOC) in cells were significantly decreased (P<0.05). Compared with that of the control group, the content of malondialdehyde (MDA) in cells was significantly increased (P<0.05) after stimulation with 10000 ng/ml LPS for 9 h. After 9 h of stimulation with 100 ng/ml, 1000 ng/ml and 10000 ng/ml LPS, the total lipid drop area and triglyceride (TG) content of MAC-T cells were significantly decreased (P<0.05). The expression levels of fatty acid synthesis-related genes Acetyl-CoA carboxylase (ACC) and Stearoyl-CoA desaturase 1 (SCD-1) were significantly decreased after 9 h of stimulation with 100 ng/ml, 1000 ng/ml and 10000 ng/ml LPS (P<0.05), while the expression levels of Fatty Acid synthetase (FAS) were significantly decreased after stimulation with 1000 ng/ml and 10000 ng/ml LPS (P<0.05). TG synthesis by the related gene Diacylglycerol acyltransferase-1 (DGAT1) was significantly lower than that of the control group after stimulation with 1000 ng/ml and 10000 ng/ml LPS for 9 h (P<0.05), and Diacylglycerol acyltransferase-2 (DGAT2) also showed a significant decrease after 10000 ng/ml LPS stimulation (P<0.05). In conclusion, adding different concentrations of LPS to MAC-T cells not only led to a decrease in cell activity, resulting in oxidative damage, but also affected fatty acid and TG synthesis, which may ultimately be closely related to the decrease in milk fat synthesis.
Collapse
Affiliation(s)
- L Li
- School of Biological Science and Engineering, Xingtai University, Xingtai, China.
| | | | | | | | | | | |
Collapse
|
7
|
LI L, TANG W, ZHAO M, GONG B, CAO M, LI J. Study on the Regulation Mechanism of Lipopolysaccharide on Oxidative Stress and Lipid Metabolism of Bovine Mammary Epithelial Cells. Physiol Res 2021. [DOI: 10.33549//physiolres.934682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The long-term feeding of a high-concentrate diet (the concentrate ratio is greater than 60 %) leads to mammary gland inflammatory response in ruminants and decreased quality in dairy cows and affects the robust development of the dairy industry. The main reason is closely related to elevated lipopolysaccharide (LPS) in the body. In this experiment, a bovine mammary epithelial cell line (MAC-T) was used as a model, and LPS at different concentrations (0 ng/ml, 1 ng/ml, 10 ng/ml, 100 ng/ml, 1000 ng/ml, 10000 ng/ml) was added to the cells. The cell survival rate, oxidative stress indicators, total lipid droplet area, triglyceride content and key genes regulating lipid metabolism were detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT), assay kit, microscope observation and RT-PCR methods to explore the regulatory mechanism of mammary health and milk fat synthesis. The results showed that compared with those of the control group, the survival rates of cells were significantly decreased after 9 h of stimulation with 1000 ng/ml and 10000 ng/ml LPS (P<0.01). The contents of superoxide dismutase (SOD), catalase (CAT) and total antioxidant capacity (T-AOC) in cells were significantly decreased (P<0.05). Compared with that of the control group, the content of malondialdehyde (MDA) in cells was significantly increased (P<0.05) after stimulation with 10000 ng/ml LPS for 9 h. After 9 h of stimulation with 100 ng/ml, 1000 ng/ml and 10000 ng/ml LPS, the total lipid drop area and triglyceride (TG) content of MAC-T cells were significantly decreased (P<0.05). The expression levels of fatty acid synthesis-related genes Acetyl-CoA carboxylase (ACC) and Stearoyl-CoA desaturase 1 (SCD-1) were significantly decreased after 9 h of stimulation with 100 ng/ml, 1000 ng/ml and 10000 ng/ml LPS (P<0.05), while the expression levels of Fatty Acid synthetase (FAS) were significantly decreased after stimulation with 1000 ng/ml and 10000 ng/ml LPS (P<0.05). TG synthesis by the related gene Diacylglycerol acyltransferase-1 (DGAT1) was significantly lower than that of the control group after stimulation with 1000 ng/ml and 10000 ng/ml LPS for 9 h (P<0.05), and Diacylglycerol acyltransferase-2 (DGAT2) also showed a significant decrease after 10000 ng/ml LPS stimulation (P<0.05). In conclusion, adding different concentrations of LPS to MAC-T cells not only led to a decrease in cell activity, resulting in oxidative damage, but also affected fatty acid and TG synthesis, which may ultimately be closely related to the decrease in milk fat synthesis.
Collapse
Affiliation(s)
- L LI
- School of Biological Science and Engineering, Xingtai University, Xingtai, China
| | - W TANG
- School of Biological Science and Engineering, Xingtai University, Xingtai, China
| | - M ZHAO
- Department of Pathology, Xingtai People's Hospital, Hebei Medical University Affiliated Hospital, Xingtai, China
| | - B GONG
- School of Biological Science and Engineering, Xingtai University, Xingtai, China
| | - M CAO
- School of Biological Science and Engineering, Xingtai University, Xingtai, China
| | - J LI
- School of Biological Science and Engineering, Xingtai University, Xingtai, China
| |
Collapse
|
8
|
Wu Y, Sun Y, Zhang R, He T, Huang G, Tian K, Liu J, Chen J, Dong G. Sodium Butyrate More Effectively Mitigates the Negative Effects of High-Concentrate Diet in Dairy Cows than Sodium β-Hydroxybutyrate via Reducing Free Bacterial Cell Wall Components in Rumen Fluid and Plasma. Toxins (Basel) 2021; 13:352. [PMID: 34069117 PMCID: PMC8157208 DOI: 10.3390/toxins13050352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022] Open
Abstract
The present study was aimed at investigating the effects of sodium butyrate and sodium β-hydroxybutyrate on lactation and health of dairy cows fed a high-concentrate (HC) diet. Eighty mid-lactation dairy cows with an average milk yield of 33.75 ± 5.22 kg/d were randomly allocated to four groups (n = 20 per group) and were fed either a low-concentrate (LC) diet, a HC diet, the HC diet with 1% sodium butyrate (HCSB), or the HC diet with 1% sodium β-hydroxybutyrate (HCHB). The feeding trial lasted for 7 weeks, with a 2-week adaptation period and a 5-week measurement period, and the trial started from 96 ± 13 d in milk. Sodium butyrate supplementation delayed the decline in milk production and improved milk synthesis efficiency and milk fat content. Additionally, it decreased the proinflammatory cytokines and acute phase proteins (APPs) in plasma, the leucocytes in blood, the somatic cell count (SCC) in milk, and the gene expression of pattern recognition receptors (PRRs) and proinflammatory cytokines in the mammary gland, due to decreasing the contents of bacterial cell wall components (lipopolysaccharide, LPS; peptidoglycan, PGN; and lipoteichoic acid, LTA) in the rumen and plasma, compared with the HC diet. Sodium β-hydroxybutyrate supplementation also improved milk yield, milk synthesis efficiency and milk fat content and partially reduced the adverse effects caused by the HC diet, but it had no effect on decreasing bacterial cell wall components in the rumen and plasma, compared with the HC diet. Collectively, both sodium butyrate and sodium β-hydroxybutyrate mitigated the negative effects of HC diet on lactation and health of dairy cows, with sodium butyrate being more effective than sodium β-hydroxybutyrate.
Collapse
Affiliation(s)
- Yongjiang Wu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (Y.W.); (Y.S.); (R.Z.); (T.H.); (G.H.); (K.T.); (J.L.); (J.C.)
| | - Yawang Sun
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (Y.W.); (Y.S.); (R.Z.); (T.H.); (G.H.); (K.T.); (J.L.); (J.C.)
| | - Ruiming Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (Y.W.); (Y.S.); (R.Z.); (T.H.); (G.H.); (K.T.); (J.L.); (J.C.)
| | - Tianle He
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (Y.W.); (Y.S.); (R.Z.); (T.H.); (G.H.); (K.T.); (J.L.); (J.C.)
| | - Guohao Huang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (Y.W.); (Y.S.); (R.Z.); (T.H.); (G.H.); (K.T.); (J.L.); (J.C.)
| | - Ke Tian
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (Y.W.); (Y.S.); (R.Z.); (T.H.); (G.H.); (K.T.); (J.L.); (J.C.)
- United Graduate School of Agricultural Science, Gifu University, Gifu 501-1193, Japan
| | - Junhui Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (Y.W.); (Y.S.); (R.Z.); (T.H.); (G.H.); (K.T.); (J.L.); (J.C.)
- Centre for Research in Agricultural Genomics (CRAG), University Autonomous of Barcelona, 08193 Barcelona, Spain
| | - Juncai Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (Y.W.); (Y.S.); (R.Z.); (T.H.); (G.H.); (K.T.); (J.L.); (J.C.)
| | - Guozhong Dong
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (Y.W.); (Y.S.); (R.Z.); (T.H.); (G.H.); (K.T.); (J.L.); (J.C.)
| |
Collapse
|
9
|
Shen J, Han X, Zheng L, Liu S, Jin C, Liu T, Cao Y, Lei X, Yao J. High Rumen-Degradable Starch Diet Promotes Hepatic Lipolysis and Disrupts Enterohepatic Circulation of Bile Acids in Dairy Goats. J Nutr 2020; 150:2755-2763. [PMID: 32856057 DOI: 10.1093/jn/nxaa238] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/10/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND High rumen-degradable starch (RDS) diets decrease milk fat. The increase of LPS in plasma associated with increased RDS impairs liver function, immune response and lipid metabolism, which depress the precursors for milk fat. OBJECTIVE This study investigated the mechanism of depression of milk fat precursors in the liver and small intestine of dairy goats fed different RDS diets. METHOD Eighteen Guanzhong lactating goats (second lactation, 45.8 ± 1.54 kg) and 6 ruminally cannulated dairy goats (aged 2-3 y, 54.0 ± 2.40 kg) were fed 3 different diets with low dietary RDS concentrations of 20.52% (LRDS), medium RDS of 22.15% (MRDS), and high RDS of 24.88% (HRDS) for 36 and 21 d, respectively, in experiments 1 and 2. The liver metabolites and jejunal microbiota in experiment 1 and LPS concentrations in rumen fluid and plasma in experiment 2 were measured. One-way ANOVA was used to analyze the biochemical parameters and mRNA or protein expression. The MIXED procedure was used to analyze LPS concentrations. RESULTS In experiment 1, the HRDS diet showed increased activity of alkaline phosphatase (27.4 to 41.4 U/L) in plasma (P < 0.05) compared with LRDS treatment. The HRDS diet significantly increased the hepatic concentrations of l-carnitine (129%), l-palmitoylcarnitine (306%), taurochenodeoxycholate (856%), and taurodeoxycholic acid (588%) in liver (variable importance in the projection > 1, P < 0.10) compared with the LRDS treatment. Goats fed the HRDS diet had 33.6% greater liver protein expression of carnitine palmitoyltransferase-1 (P < 0.05), and greater relative abundance of Firmicutes and Ruminococcus 2 in the jejunal content (linear discriminant analysis > 2.0, P < 0.05) than did goats fed LRDS diet. In experiment 2, goats fed the HRDS diet had greater LPS concentrations in rumen fluid (7.57 to 13.6 kEU/mL) and plasma (0.037 to 0.179 EU/mL) (P < 0.05) than did goats fed LRDS diet. CONCLUSIONS Feeding the HRDS diet promoted hepatic lipid β-oxidation and disrupted phospholipid and bile acids metabolisms in liver, thereby reducing the supply of lipogenic precursors to the mammary gland in dairy goats.
Collapse
Affiliation(s)
- Jing Shen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoying Han
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lixin Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shimin Liu
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Australia
| | - Chunjia Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinjian Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Ohtaki T, Ogata K, Kajikawa H, Sumiyoshi T, Asano S, Tsumagari S, Horikita T. Effect of high-concentrate corn grain diet-induced elevated ruminal lipopolysaccharide levels on dairy cow liver function. J Vet Med Sci 2020; 82:971-977. [PMID: 32461536 PMCID: PMC7399309 DOI: 10.1292/jvms.20-0117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A high-concentrate diet destroys gram-negative bacteria in the cattle rumen, leading to elevated ruminal lipopolysaccharide (LPS) levels. LPS causes liver inflammation through the
hepatic portal vein but little is known about the effects of rumen-derived LPS on liver function and the reproductive organs. In this study, we determined the effect of increasing
rumen fluid LPS levels on liver function and genital LPS levels. Cows were assigned to control (CON; n=5) and high-concentrate diet (HC; n=7) groups. We observed that the ruminal
LPS and haptoglobin (Hp) levels were significantly higher and albumin levels were lower in the HC group than in the CON group. In the HC group, The Hp levels and aspartate
transaminase (AST) activity were significantly higher and the total cholesterol levels were significantly lower after high-concentrate diet feeding than before feeding. No
differences were observed in LPS levels in the peripheral veins, hepatic veins, hepatic portal vein, uterine perfusate, and follicular fluids between the groups. In all samples,
the LPS level in the hepatic portal vein blood positively correlated with the AST activity and serum amyloid A level. In conclusion, our results indicate that high-concentrate
diets do not have a direct effect on the reproductive organs upon a moderate ruminal LPS level increase. However, an increased ruminal LPS influx into the liver might affect
negatively liver function.
Collapse
Affiliation(s)
- Tadatoshi Ohtaki
- Laboratory of Theriogenology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Kanae Ogata
- Laboratory of Theriogenology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Hiroshi Kajikawa
- Laboratory of Animal Nutrition, Department of Animal Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Toshiaki Sumiyoshi
- Laboratory of Large Animal Clinical Sciences, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Sanae Asano
- Laboratory of Animal Nutrition, Department of Animal Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Shigehisa Tsumagari
- Laboratory of Theriogenology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Tetsuya Horikita
- Laboratory of Theriogenology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
11
|
Keita H, dos Santos CBR, Ramos MM, Padilha EC, Serafim RB, Castro AN, Amado JRR, da Silva GM, Ferreira IM, Giuliatti S, Carvalho JCT. Assessment of the hypoglycemic effect of Bixin in alloxan-induced diabetic rats: in vivo and in silico studies. J Biomol Struct Dyn 2020; 39:1017-1028. [DOI: 10.1080/07391102.2020.1724567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hady Keita
- Laboratory of Drugs Discovery, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil
- Division of Post-Grade, University of the Sierra, Ixtlán de Juárez, México
| | - Cleydson Breno Rodrigues dos Santos
- Laboratory of Drugs Discovery, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil
- Laboratory of Modeling and Computational Chemistry, Department of Biological Sciences and Health, Federal University of Amapa, Macapá, Brazil
| | - Matheus Mercês Ramos
- Research Group Biocatalysis and Apllied Organic Synthesis, Federal University of Amapa, Macapá, Brazil
| | - Elias Carvalho Padilha
- Department of Natural Active Principles and Toxicology, Faculty of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | - Rodolfo Bortolozo Serafim
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Andres Navarrete Castro
- Laboratory of Pharmacology of Natural Products, Faculty of Chemistry, Department of Pharmacy, Universidad Autonoma Nacional de Mexico, Ciudad de Mexico, Mexico
| | - Jesus Rafael Rodriguez Amado
- Laboratory of Drugs Discovery, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil
| | - Gabriel Monteiro da Silva
- Bioinformatics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Irlon Maciel Ferreira
- Research Group Biocatalysis and Apllied Organic Synthesis, Federal University of Amapa, Macapá, Brazil
| | - Silvana Giuliatti
- Bioinformatics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - José Carlos Tavares Carvalho
- Laboratory of Drugs Discovery, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil
- Laboratory of Modeling and Computational Chemistry, Department of Biological Sciences and Health, Federal University of Amapa, Macapá, Brazil
- Research Group Biocatalysis and Apllied Organic Synthesis, Federal University of Amapa, Macapá, Brazil
| |
Collapse
|
12
|
Li L, Wang HH, Nie XT, Jiang WR, Zhang YS. Sodium butyrate ameliorates lipopolysaccharide-induced cow mammary epithelial cells from oxidative stress damage and apoptosis. J Cell Biochem 2019; 120:2370-2381. [PMID: 30259565 DOI: 10.1002/jcb.27565] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/02/2018] [Indexed: 01/24/2023]
Abstract
This study investigated the molecular mechanism by which sodium butyrate (NaB) causes oxidative stress damage induced by lipopolysaccharide (LPS) on cow mammary epithelial cells (MAC-T). We found that NaB significantly increased the activities of antioxidant enzymes, including superoxide dismutase, glutathione peroxidase, catalase, peroxidase, and total antioxidant capacity and decreased the reactive oxygen species production in LPS-induced MAC-T cells. NaB attenuated protein damage and reduced apoptosis in LPS-induced MAC-T cells. The messenger RNA (mRNA) levels of caspase-3, caspase-9, and Bax decreased, while the Bcl-2 mRNA level increased in LPS-induced MAC-T cells treated with NaB. Our results showed that NaB treatment increased the phosphoinositide 3-kinase (PI3K) and phospho-AKT (P-AKT) protein levels, whereas it decreased the Bax, caspase-3, and caspase-9 protein levels in LPS-induced MAC-T cells. However, the increase in PI3K and P-AKT protein levels and the decrease in Bax, caspase-3, and caspase-9 protein levels induced by NaB treatment were reversed when the cells were pretreated with LY294002 (PI3K inhibitor). These results indicate that NaB ameliorates LPS-induced oxidative damage by increasing antioxidative enzyme activities and ameliorating protein damage in MAC-T cells. In addition, NaB decreased apoptosis by inhibiting caspase-3, caspase-9, and Bax protein levels, and this action was mainly achieved via activation of the PI3K/AKT signaling pathways in LPS-induced MAC-T cells. These results provide substantial information for NaB as a chemical supplement to treat oxidative stress and its related diseases in ruminants.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, China
| | - Huan-Huan Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, China
| | - Xin-Tian Nie
- Department of Mechanical Engineering, College of Engineering, Nanjing Agriculture University, Nanjing, China
| | - Wan-Ru Jiang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, China
| | - Yuan-Shu Zhang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, China
| |
Collapse
|
13
|
Li L, He ML, Wang K, Zhang YS. Buffering agent via insulin-mediated activation of PI3K/AKT signaling pathway to regulate lipid metabolism in lactating goats. Physiol Res 2018; 67:753-764. [PMID: 30044118 DOI: 10.33549/physiolres.933698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Ruminants are often fed a high-concentrate (HC) diet to meet lactating demands, yet long-term concentrate feeding induces subacute ruminal acidosis (SARA) and leads to a decrease in milk fat. Buffering agent could enhance the acid base buffer capacity and has been used to prevent ruminant rumen SARA and improve the content of milk fat. Therefore, we tested whether a buffering agent increases lipid anabolism in the livers of goats and influences of milk fat synthesis. Twelve Saanen-lactating goats were randomly assigned to two groups: one group received a HC diet (Concentrate: Forage=60:40, Control) and the other group received the same diet with a buffering agent added (10 g sodium butyrate, C(4)H(7)NaO(2); 10 g sodium bicarbonate, NaHCO(3); BG) over a 20-week experimental period. Overall, milk fat increase (4.25+/-0.08 vs. 3.24+/-0.10; P<0.05), and lipopolysaccharide levels in the jugular (1.82+/-0.14 vs. 3.76+/-0.33) and rumen fluid (23,340+/-134 vs. 42,550+/-136) decreased in the buffering agent group (P<0.05). Liver consumption and release of nonesterified fatty acid (NEFA) into the bloodstream increased (P<0.05). Phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT) and ribosomal protein S6 kinase (p70S6K) up-regulated significantly in the livers of the buffering agent group (P<0.05). It also up-regulated expression of the transcription factor sterol regulatory element binding protein-1c (SREBP-1c) and its downstream targets involved in fatty acid synthetic, including fatty acid synthetase (FAS), stearoyl-CoA desaturase (SCD-1) and acetyl-CoA carboxylase 1 (ACC1) (P<0.05). The BG diet increased insulin levels in blood (19.43+/-0.18 vs. 13.81+/-0.10, P<0.05), and insulin receptor was likewise elevated in the liver (P<0.05). Cumulatively, the BG diet increased plasma concentrations of NEFA by INS-PI3K/AKTSREBP-1c signaling pathway promoting their synthesis in the liver. The increased NEFA concentration in the blood during BG feeding may explain the up-regulated in the milk fat of lactating goats.
Collapse
Affiliation(s)
- L Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China.
| | | | | | | |
Collapse
|
14
|
Li LL, Wang D, Ge CY, Yu L, Zhao JL, Ma HT. Dehydroepiandrosterone reduced lipid droplet accumulation via inhibiting cell proliferation and improving mitochondrial function in primary chicken hepatocytes. Physiol Res 2018. [PMID: 29527919 DOI: 10.33549/physiolres.933769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Dehydroepiandrosterone (DHEA) possesses fat-reducing effect, while little information is available on whether DHEA regulates cell proliferation and mitochondrial function, which would, in turn, affect lipid droplet accumulation in the broiler. In the present study, the lipid droplet accumulation, cell proliferation, cell cycle and mitochondrial membrane potential were analysis in primary chicken hepatocytes after DHEA treated. The results showed that total area and counts of lipid droplets were significantly decreased in hepatocytes treated with DHEA. The cell viability was significantly increased, while cell proliferation was significantly inhibited in a dose dependent manner in primary chicken hepatocytes after DHEA treated. DHEA treatment significantly increased the cell population in S phase and decreased the population in G2/M in primary chicken hepatocytes. Meanwhile, the cyclin A and cyclin-dependent kinases 2 (CDK2) mRNA abundance were significantly decreased in hepatocytes after DHEA treated. No significant differences were observed in the number of mitochondria, while the mitochondrial membrane permeability and succinate dehydrogenase (SDH) activity were significantly increased in hepatocytes after DHEA treated. In conclusion, our results demonstrated that DHEA reduced lipid droplet accumulation by inhibiting hepatocytes proliferation and enhancing mitochondrial function in primary chicken hepatocytes.
Collapse
Affiliation(s)
- L L Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
15
|
Xu T, Ma N, Wang Y, Shi X, Chang G, Loor JJ, Shen X. Sodium Butyrate Supplementation Alleviates the Adaptive Response to Inflammation and Modulates Fatty Acid Metabolism in Lipopolysaccharide-Stimulated Bovine Hepatocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6281-6290. [PMID: 29877079 DOI: 10.1021/acs.jafc.8b01439] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study aimed to evaluate whether sodium butyrate (SB) attenuates the hepatic response to LPS-induced inflammation in bovine hepatocytes. Hepatocytes isolated from cows at ∼160 days in milk (DIM) were exposed to 0.5 mmol/L SB for 18 h as pretreatment. Cells pretreated with SB were used for the SB group, and those subjected to 4 μg/mL lipopolysaccharide (LPS) challenge for 6 h were used for the lipopolysaccharide pretreated with SB (LSB) group. The LPS-challenged hepatocytes showed increases in TNF-α and IL-6 production in culture medium (37 ± 11, P < 0.05); these increases were attenuated by pretreatment with SB in the LSB group (267 ± 4, P < 0.05). Compared to that in LPS-treated cells, the phospho-p65 and phospho-IκBα protein expression and nuclear translocation were suppressed when SB was added. Genes ( SREBP1c, SCD1, and DGAT1) and proteins (SREBP1c and SCD1) related to fatty acid metabolism were upregulated in LSB cells compared to those in LPS-treated cells ( P < 0.05). The ratios of phospho-AMPKα to AMPKα (0.32 ± 0.03 vs 0.70 ± 0.07) and phospho-ACCα to ACCα were decreased (0.81 ± 0.06 vs 2.06 ± 0.16) ( P < 0.05) in the LSB group. SB pretreatment reversed the histone H3 deacetylation that was increased by LPS stimulation in bovine hepatocytes (0.54 ± 0.02 vs 1.27 ± 0.11, P < 0.05). Our results suggest that SB pretreatment suppresses the hepatocyte changes that occur during the LPS-induced inflammatory response, which is accompanied by enhanced fatty acid synthesis, downregulated fatty acid oxidation, and histone H3 deacetylation, thus neutralizing the negative effects of infection.
Collapse
Affiliation(s)
- Tianle Xu
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Nana Ma
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Yan Wang
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Xiaoli Shi
- College of Animal Science and Technology , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Guangjun Chang
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Xiangzhen Shen
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| |
Collapse
|
16
|
Li L, He ML, Liu Y, Zhang YS. Buffering agent-induced lactose content increases via growth hormone-mediated activation of gluconeogenesis in lactating goats. Physiol Res 2018; 67:317-329. [PMID: 29303609 DOI: 10.33549/physiolres.933715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Dairy goats are often fed a high-concentrate (HC) diet to meet their lactation demands; however, long-term concentrate feeding is unhealthy and leads to milk yield and lactose content decreases. Therefore, we tested whether a buffering agent is able to increase the output of glucose in the liver and influence lactose synthesis. Eight lactating goats were randomly assigned to two groups: one group received a HC diet (Concentrate : Forage = 6:4, HG) and the other group received the same diet with a buffering agent added (0.2 % NaHCO(3), 0.1 % MgO, BG) over a 19-week experimental period. The total volatile fatty acids and lipopolysaccharide (LPS) declined in the rumen, which led the rumen pH to become stabile in the BG goats. The milk yield and lactose content increased. The alanine aminotransferase, aspartate transaminase, alkaline phosphatase, pro-inflammatory cytokines, LPS and lactate contents in the plasma significantly decreased, whereas the prolactin and growth hormone levels increased. The hepatic vein glucose content increased. In addition, pyruvate carboxylase (PC), phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6PC) expression in the liver was significantly up-regulated. In the mammary glands, the levels of glucose transporter type 1, 8, 12 as well as of sodium-glucose cotransporter 1 increased. Cumulative buffering agent treatment increased the blood concentrations of glucose via gluconeogenesis and promoted its synthesis in the liver. This treatment may contribute to the increase of the milk yield and lactose synthesis of lactating goats.
Collapse
Affiliation(s)
- L Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| | | | | | | |
Collapse
|
17
|
Molecular spectrum of excision repair cross-complementation group 8 gene defects in Chinese patients with Cockayne syndrome type A. Sci Rep 2017; 7:13686. [PMID: 29057985 PMCID: PMC5651726 DOI: 10.1038/s41598-017-14034-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/05/2017] [Indexed: 01/09/2023] Open
Abstract
There are two genetics complementary groups Cockayne syndrome type A and B (CS-A and CS-B OMIM 216400, 133540), which is a rare autosomal recessive segmental progeroid syndrome. Homozygous or compound heterozygous mutations in the excision repair cross-complementation group 8 gene (ERCC8) result in CS-A, and mutations in ERCC6 result in CS-B. Homozygous ERCC6/ERCC8 mutations also result in UV-sensitive syndrome. In this study, twenty-one Han Chinese patients with CS were investigated to identify mutations in ERCC8/ERCC6, of which thirteen cases with CS-A were identified with the mutations of ERCC8. There are five types mutations of ERCC8 in our study, such as exon 4 rearrangement, c.394_398delTTACA, c.299insA, c.843 + 2 T > C, and c.2 T > A. An estimated frequency of exon 4 rearrangement accounts for 69.23% and c.394_398delTTACA accounts for 11.53% in our cohort. Haplotype analysis revealed that the exon 4 rearrangement and c.394_398delTTACA mutations originated from a common founder in the Chinese population respectively. With the identification of three novel ERCC8 mutations, this study expanded the molecular spectrum of known ERCC8 defects, and furthermore, suggests that the exon 4 rearrangement and c.394_398delTTACA mutations may be a common underlying cause of CS-A in the Chinese population, which is different from that in other populations.
Collapse
|