1
|
Suryawanshi RM, Shimpi RB, Muralidharan V, Nemade LS, Gurugubelli S, Baig S, Vikhe SR, Dhawale SA, Mortuza MR, Sweilam SH, Siddiqui FA, Khan SL, Tutone M, Ahmad I, Begh MZA. ADME, Toxicity, Molecular Docking, Molecular Dynamics, Glucokinase activation, DPP-IV, α-amylase, and α-glucosidase Inhibition Assays of Mangiferin and Friedelin for Antidiabetic Potential. Chem Biodivers 2025; 22:e202402738. [PMID: 39714369 DOI: 10.1002/cbdv.202402738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Today the alarming situation of diabetes seeks innovative antidiabetic medications, especially those derived from natural sources, as natural substances are safer than manufactured pharmaceuticals. Therefore, this study investigated the inhibitory properties of mangiferin and friedelin against glucokinase (GK), dipeptidyl peptidase-IV (DPP-IV), α-amylase, and α-glucosidase using computational methods, in vitro enzyme assays, and in-depth ADMET analysis. The study utilized a computer-aided drug design approach to assess the potential therapeutic properties of mangiferin and friedelin as Type 2 diabetes mellitus (T2DM) therapeutic agents. Molecular docking studies' outcomes encouraged the evaluation of both compounds in in vitro enzymatic assays. The docking study results were validated with the help of molecular dynamics simulation. Mangiferin and friedelin showed that they activated GK 20% and 5% more than the basal activity of the enzyme, respectively. In the DPP-IV enzyme assay, mangiferin and friedelin demonstrated IC50 values (74.93 ± 0.71 and 110.64 ± 0.21 µg/mL, respectively) comparable with the reference compound sitagliptin. Moreover, mangiferin and friedelin showed IC50 comparable to acarbose against α-amylase (9.72 ± 0.15, 11.84 ± 0.06, and 10.19 ± 0.05 mg/mL, respectively). In the α-glucosidase enzyme assay, mangiferin, friedelin, and acarbose displayed 11.72 ± 0.10, 14.34 ± 0.02, and 9.14 ± 0.06 mg/mL of IC50 values, respectively. The compounds showed promising in silico ADMET and drug-likeness properties, with potential binding affinities with all enzymes. In vitro enzymatic assays showed mangiferin and friedelin activated GK 20% and 5% more than basal activity, with IC50 values comparable to acarbose.
Collapse
Affiliation(s)
- Ravikiran Maheshrao Suryawanshi
- Department of Industrial Pharmacy and Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Rupali Bhalchandra Shimpi
- Department of Pharmacognosy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - V Muralidharan
- Department of Pharmaceutical Chemistry, Vishnu Institute of Pharmaceutical Education and Research, Hyderabad, India
| | | | | | - Shahajan Baig
- Department of Pharmacology, Government College of Pharmacy, Osmanpura, Chhatrapati Sambhaji Nagar, Maharashtra, India
| | - Sunayana Rahul Vikhe
- Department of Pharmacognosy, Pravara Rural College of Pharmacy, Loni, Maharashtra, India
| | - Sachin A Dhawale
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical Education and Research Aurangabad, Chhatrapati Sambhaji Nagar, Maharashtra, India
| | | | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| | - Falak A Siddiqui
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, Maharashtra, India
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, Maharashtra, India
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Md Zamshed Alam Begh
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
2
|
Liu C, Wu L, Fu L, Li X, Zhao B, Zhang H. Mangiferin prevents glucolipotoxicity-induced pancreatic beta-cell injury through modulation of autophagy via AMPK-mTOR signaling pathway. Arch Physiol Biochem 2025; 131:71-80. [PMID: 39225043 DOI: 10.1080/13813455.2024.2387697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/07/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024]
Abstract
The aim of this study was to investigate the protective effects of Mangiferin (MG) on glucolipotoxicity-induced pancreatic beta-cell injury. In vivo administration of MG significantly reduced the level of blood glucose in high-fat diet (HFD)-fed mice. MG treatment inhibited beta-cell apoptosis in HFD-treated mice. In vitro, MG protected INS-1 cells against apoptosis and impairment of insulin secretion following High glucose/Palmitic acid (HG/PA) treatment. MG treatment enhanced autophagy flux which was blocked by HG/PA treatment. Inhibition of autophagosome formation by 3-Methyladenine or blockade of autolysosome by Chloroquine reversed the protective effects of MG on INS-1 cells. MG treatment increased AMPK phosphorylation and reduced mTOR activation in INS-1 cells. Administration of the AMPK blocker abrogated MG-induced autophagy, and similar results were observed in INS-1 cells after cotreatment with MG and mTOR activator. In conclusion, MG ameliorated pancreatic beta-cell injury induced by glucolipotoxicity through modulation of autophagy via the AMPK-mTOR pathway.
Collapse
Affiliation(s)
- Chongxiao Liu
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liurong Wu
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihong Fu
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaohua Li
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bingxia Zhao
- Center of Minimally Invasive Treatment for Tumor, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongli Zhang
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Kaur A, Thakur S, Deswal G, Chopra B, Dhingra AK, Guarve K, Grewal AS. In silico docking based screening of constituents from Persian shallot as modulators of human glucokinase. J Diabetes Metab Disord 2023; 22:547-570. [PMID: 37255832 PMCID: PMC10225407 DOI: 10.1007/s40200-022-01176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/16/2022] [Indexed: 06/01/2023]
Abstract
Purpose Small molecule glucokinase (GK) modulators not only decrease fasting and basal plasma sugar contents but also progress glucose tolerance. The hydro-ethanolic extract of the Persian shallot (Allium hirtifolium Boiss.) decreased blood glucose, improved plasma insulin and amplified GK action. The present study was proposed to screen phytoconstituents from Persian shallot as human GK activators using in silico docking studies. Methods A total of 91 phytoconstituents reported in Persian shallot (A. hirtifolium Boiss.) were assessed in silico for the prediction of drug-like properties and molecular docking investigations were carried out with human GK using AutoDock vina with the aim of exploring the binding interactions between the phytoconstituents and GK enzyme followed by in silico prediction of toxicity. Results Almost all the phytoconstituents tested showed good pharmacokinetic parameters for oral bioavailability and drug-likeness. In the docking analysis, cinnamic acid, methyl 3,4,5-trimethoxy benzoate, quercetin, kaempferol, kaempferol 3-O-β-D-glucopyranosyl-(1- > 4)-glucopyranoside, 5-hydroxy-methyl furfural, ethyl N-(O-anisyl) formimidate, 2-pyridinethione and ascorbic acid showed appreciable hydrogen bond and hydrophobic type interactions with the allosteric site residues of the GK enzyme. Conclusion These screened phytoconstituents may serve as promising hit molecules for further development of clinically beneficial and safe allosteric activators of the human GK enzyme.
Collapse
Affiliation(s)
- Anmol Kaur
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana India
| | - Shivani Thakur
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana India
| | - Geeta Deswal
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana India
| | - Bhawna Chopra
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana India
| | | | - Kumar Guarve
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana India
| | | |
Collapse
|
4
|
Patil VR, Dhote AM, Patil R, Amnerkar ND, Lokwani DK, Ugale VG, Charbe NB, Firke SD, Chaudhari P, Shah SK, Mehta CH, Nayak UY, Khadse SC. Identification of structural scaffold from interbioscreen (IBS) database to inhibit 3CLpro, PLpro, and RdRp of SARS-CoV-2 using molecular docking and dynamic simulation studies. J Biomol Struct Dyn 2023; 41:13168-13179. [PMID: 36757134 DOI: 10.1080/07391102.2023.2175377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/15/2023] [Indexed: 02/10/2023]
Abstract
A novel coronavirus SARS-CoV-2 has caused a worldwide pandemic and remained a severe threat to the entire human population. Researchers worldwide are struggling to find an effective drug treatment to combat this deadly disease. Many FDA-approved drugs from varying inhibitory classes and plant-derived compounds are screened to combat this virus. Still, due to the lack of structural information and several mutations of this virus, initial drug discovery efforts have limited success. A high-resolution crystal structure of important proteins like the main protease (3CLpro) that are required for SARS-CoV-2 viral replication and polymerase (RdRp) and papain-like protease (PLpro) as a vital target in other coronaviruses still presents important targets for the drug discovery. With this knowledge, scaffold library of Interbioscreen (IBS) database was explored through molecular docking, MD simulation and postdynamic binding free energy studies. The 3D docking structures and simulation data for the IBS compounds was studied and articulated. The compounds were further evaluated for ADMET studies using QikProp and SwissADME tools. The results revealed that the natural compounds STOCK2N-00385, STOCK2N-00244, and STOCK2N-00331 interacted strongly with 3CLpro, PLpro, and RdRp, respectively, and ADMET data was also observed in the range of limits for almost all the compounds with few exceptions. Thus, it suggests that these compounds may be potential inhibitors of selected target proteins, or their structural scaffolds can be further optimized to obtain effective drug candidates for SARS-CoV-2. The findings of in-silico data need to be supported by in-vivo studies which could shed light on understanding the exact mode of inhibitory action.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vikas R Patil
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Karvand Naka Shirpur, Dist. Dhule, Maharashtra, India
| | - Ashish M Dhote
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Karvand Naka Shirpur, Dist. Dhule, Maharashtra, India
| | - Rina Patil
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Karvand Naka Shirpur, Dist. Dhule, Maharashtra, India
| | - Nikhil D Amnerkar
- Department of Pharmaceutical Chemistry, Adv. V. R. Manohar Institute of Diploma in Pharmacy (Govt.-Aided), Nagpur, Nagpur, Maharashtra, India
| | - Deepak K Lokwani
- Department of Pharmaceutical Chemistry, Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra, India
| | - Vinod G Ugale
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Karvand Naka Shirpur, Dist. Dhule, Maharashtra, India
| | - Nitin B Charbe
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Sandip D Firke
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Karvand Naka Shirpur, Dist. Dhule, Maharashtra, India
| | - Prashant Chaudhari
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Karvand Naka Shirpur, Dist. Dhule, Maharashtra, India
| | - Sapan K Shah
- Department of Pharmaceutical Chemistry, Priyadarshini J. L. College of Pharmacy, Nagpur, Maharashtra, India
| | - Chetan H Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Saurabh C Khadse
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Karvand Naka Shirpur, Dist. Dhule, Maharashtra, India
| |
Collapse
|
5
|
Targeting human Glucokinase for the treatment of type 2 diabetes: an overview of allosteric Glucokinase activators. J Diabetes Metab Disord 2022; 21:1129-1137. [PMID: 35673438 PMCID: PMC9167346 DOI: 10.1007/s40200-022-01019-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
Abstract
Diabetes mellitus is a worldwide impacting disorder and the ratio through which the number of diabetic patients had increased worldwide, puts medical professionals to serious stress for its effective management. Due to its polygenic origin and involvement of multiple genes to its pathophysiology, leads to understanding of this ailment more complex. It seems that current interventions, such as dietary changes, life style changes and drug therapy such as oral hypoglycaemics and insulin, are unable to halt the trend. There are various novel and emerging targets on which the researchers are paying attention to combat with this ailment successfully. Human glucokinase (GK) enzyme is one of these novel and emerging targets for management of diabetes. Its availability in the pancreas and liver cells makes this target more lucrative. GK's presence in the pancreatic and hepatic cells plays a very important function for the management of glucose homoeostasis. Small molecules that activate GK allosterically provide an alternative strategy for restoring/improving glycaemic regulation, especially in type 2 diabetic patients. Although after enduring many setbacks in the development of the GK activators, interest has been renewed especially due to introduction of novel dual acting GK activator dorzagliatin, and a novel hepato-selective GK activator, TTP399. This review article has been formulated to discuss importance of GK in glucose homeostasis, recent updates on small molecules of GK activators, clinical status of GK activators and challenges in development of GK activators.
Collapse
|
6
|
Yang Y, Zheng M, Han F, Shang L, Li M, Gu X, Li H, Chen L. Ziprasidone suppresses pancreatic adenocarcinoma cell proliferation by targeting GOT1 to trigger glutamine metabolism reprogramming. J Mol Med (Berl) 2022; 100:599-612. [PMID: 35212782 DOI: 10.1007/s00109-022-02181-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a fatal malignant tumor whose effective treatment has not been found. The redox state and proliferative activity of PDAC cells are maintained by the conversion of aspartic acid in the cytoplasm into oxaloacetate though aspartate aminotransferase 1 (GOT1). Therefore, GOT1 inhibitors as a potential approach for treating PDAC have attracted more attention of researchers. Ziprasidone effectively inhibited GOT1 in a non-competitive manner. The potential cytotoxicity and anti-proliferation effects of ziprasidone against PDAC cells in vitro and in vivo were evaluated. Ziprasidone can induce glutamine metabolism disorder and redox state imbalance of PDAC cells by targeting GOT1, thereby inhibiting proliferation, preventing migration, and inducing apoptosis. Ziprasidone displayed significant in vivo antitumor efficacy in SW1990 cell-derived xenografts. What's more, knockdown of GOT1 in SW1990 reduced the anti-proliferative effects of ziprasidone. As a novel GOT1 inhibitor, ziprasidone may be a lead compound for the treatment of PDAC. KEY MESSAGES: Small molecule inhibitors targeting GOT1 may provide a therapeutic target in PDAC. Ziprasidone effectively inhibited GOT1 enzyme in a non-competitive manner. Ziprasidone repressed glutamine metabolism and inhibited the growth of tumor in vivo. Knockdown of GOT1 decreased the anti-proliferative effects of ziprasidone.
Collapse
Affiliation(s)
- Yueying Yang
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mengzhu Zheng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fei Han
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lei Shang
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, China
| | - Mingxue Li
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiaoxia Gu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hua Li
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lixia Chen
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
7
|
Abstract
INTRODUCTION The number of diabetic patients is increasing, posing a heavy social and economic burden worldwide. Traditional drug development technology is time-consuming and costly, and the emergence of computer-aided drug design (CADD) has changed this situation. This study reviews the applications of CADD in diabetic drug designing. AREAS COVERED In this article, the authors focus on the advance in CADD in diabetic drug design by elaborating the discovery, including peroxisome proliferator-activated receptor (PPAR), G protein-coupled receptor 40 (GPR40), dipeptidyl peptidase-IV (DDP-IV), protein tyrosine phosphatase 1B (PTP1B), sodium-dependent glucose transporter 2 (SGLT-2), and glucokinase (GK). Some drug discovery of these targets is related to CADD strategies. EXPERT OPINION There is no doubt that CADD has contributed to the discovery of novel anti-diabetic agents. However, there are still many limitations and challenges, such as lack of co-crystal complex, dynamic simulations, water, and metal ion treatment. In the near future, artificial intelligence (AI) may be a promising strategy to accelerate drug discovery and reduce costs by identifying candidates. Moreover, AlphaFold, a deep learning model that predicts the 3D structure of proteins, represents a considerable advancement in the structural prediction of proteins, especially in the absence of homologous templates for protein structures.
Collapse
Affiliation(s)
- Wanqiu Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China.,Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou, PR China.,Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China.,Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou, PR China.,Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, PR China
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China.,Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou, PR China
| |
Collapse
|
8
|
Kazi A, Chatpalliwar V. Design, Synthesis, Molecular Docking and In vitro Biological Evaluation of
Benzamide Derivatives as Novel Glucokinase Activators. CURRENT ENZYME INHIBITION 2022; 18:61-75. [DOI: 10.2174/1573408018666220218093451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/25/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
Background:
Glucokinase (GK) is a cytoplasmic enzyme that metabolises glucose to glucose-6-phosphate and supports adjusting blood glucose levels within the normal range in humans. In pancreatic β-cells, it plays a leading role in governing the glucose-stimulated secretion of insulin, and in liver hepatocyte cells, it controls the metabolism of carbohydrates. GK acts as a promising drug target for treating patients with type 2 diabetes mellitus (T2DM).
Objectives:
The present work has been designed to discover some novel substituted benzamide derivatives
Method:
This work involved designing novel benzamide derivatives and their screening by docking studies to determine the binding interactions for the best-fit conformations in the binding site of the GK enzyme. Based on the results of docking studies, the selected molecules were synthesized and tested for in vitro GK enzyme assay. The structures of newly synthesized products were confirmed by IR, NMR, and mass spectroscopy.
Results:
Amongst the designed derivatives, compounds 4c, 4d, 4e, 5h, 5j, 5l, 5m, 5n, 5p, and 5r have shown better binding energy than the native ligand present in the enzyme structure. The synthesized compounds were subjected to in vitro GK enzyme assay. Out of all, compounds 4c, 4d, 5h, 5l, and 5n showed more GK activation than control.
Conclusion::
From the present results, we have concluded that the synthesized derivatives can activate the human GK enzyme effectively, which can be helpful in the treatment of T2DM.
Collapse
Affiliation(s)
- A.A. Kazi
- Department of Pharmaceutical Chemistry, S.N.J.B’s S.S.D.J. College of Pharmacy, Neminagar, Chandwad, Nashik,
Maharashtra, 423101, India
| | - V.A. Chatpalliwar
- Department of Pharmaceutical Chemistry, S.N.J.B’s S.S.D.J. College of Pharmacy, Neminagar, Chandwad, Nashik,
Maharashtra, 423101, India
| |
Collapse
|
9
|
Chen Y, Qie X, Quan W, Zeng M, Qin F, Chen J, Adhikari B, He Z. Omnifarious fruit polyphenols: an omnipotent strategy to prevent and intervene diabetes and related complication? Crit Rev Food Sci Nutr 2021:1-37. [PMID: 34792409 DOI: 10.1080/10408398.2021.2000932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is a metabolic syndrome which cannot be cured. Recently, considerable interest has been focused on food ingredients to prevent and intervene in complications of diabetes. Polyphenolic compounds are one of the bioactive phytochemical constituents with various biological activities, which have drawn increasing interest in human health. Fruits are part of the polyphenol sources in daily food consumption. Fruit-derived polyphenols possess the anti-diabetic activity that has already been proved either from in vitro studies or in vivo studies. The mechanisms of fruit polyphenols in treating diabetes and related complications are under discussion. This is a comprehensive review on polyphenols from the edible parts of fruits, including those from citrus, berries, apples, cherries, mangoes, mangosteens, pomegranates, and other fruits regarding their potential benefits in preventing and treating diabetes mellitus. The signal pathways of characteristic polyphenols derived from fruits in reducing high blood glucose and intervening hyperglycemia-induced diabetic complications were summarized.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Xuejiao Qie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Quan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
10
|
Zhang Y, Zhang X, Xiao Z, Zhang X, Sun H. Hypoglycemic and hypolipidemic dual activities of extracts and flavonoids from Desmodium caudatum and an efficient synthesis of the most potent 8-prenylquercetin. Fitoterapia 2021; 156:105083. [PMID: 34785238 DOI: 10.1016/j.fitote.2021.105083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022]
Abstract
Since glucolipid metabolism disorders is often the mono-target therapy fails in managing blood glucose and lipid levels and the other complications, it is urgent and necessary to seek for the new potential drugs or functional food acting on multi-targets. The hypoglycemic and hypolipidemic dual activities of the root, stems and leaves of Desmodium caudatum, which is used for traditional Chinese medicine, was evaluated. Twelve extracts with different extraction conditions were prepared and extract 9 was find to exhibit potential inhibitory activities of fructose-1, 6-bisphosphatase (FBPase), α-glucosidase, and pancrelipase, as well as promote cellular glucose consumption and reduce cellular content of lipid. Five flavonoids were isolated and identified from extract 9, among which 8-prenylquercetin exhibited potent α-glucosidase (IC50 = 4.38 μM) and FBPase (IC50 = 3.62 μM) dual inhibitory activity, which were 75-fold higher than acarbose (IC50 = 330.10 μM) and comparable with AMP (IC50 = 2.92 μM). In addition, 8-prenylquercetin was able to promote glucose consumption and reduce lipid content. Besides, an efficient synthesis of the most potent 8-prenylquercetin was developed from inexpensive and commercially available rutin in 21% overall yield by 6 steps, which lay the foundation of preparation sufficient amount for follow-up study.
Collapse
Affiliation(s)
- Yinan Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Xiaoting Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Zhiyi Xiao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Xinying Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Hua Sun
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China.
| |
Collapse
|
11
|
Thilagavathi R, Hosseini-Zare MS, Malini M, Selvam C. A comprehensive review on glucokinase activators: Promising agents for the treatment of Type 2 diabetes. Chem Biol Drug Des 2021; 99:247-263. [PMID: 34714587 DOI: 10.1111/cbdd.13979] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/10/2021] [Accepted: 10/23/2021] [Indexed: 01/07/2023]
Abstract
Glucokinase is a key enzyme which converts glucose into glucose-6-phosphate in the liver and pancreatic cells of the human. In the liver, glucokinase promotes the synthesis of glycogen, and in the pancreas, it helps in glucose-sensitive insulin release. It serves as a "glucose sensor" and thereby plays an important role in the regulation of glucose homeostasis. Due to this activity, glucokinase is considered as an attractive drug target for type 2 diabetes. It created a lot of interest among the researchers, and several small molecules were discovered. The research work was initiated in 1990. However, the hypoglycemic effect, increased liver burden, and loss of efficacy over time were faced during clinical development. Dorzagliatin, a novel glucokinase activator that acts on both the liver and pancreas, is in the late-stage clinical development. TTP399, a promising hepatoselective GK activator, showed a clinically significant and sustained reduction in glycated hemoglobin with a low risk of adverse effects. The successful findings generated immense interest to continue further research in finding small molecule GK activators for the treatment of type 2 diabetes. The article covers different series of GK activators reported over the past decade and the structural insights into the GK-GK activator binding which, we believe will stimulate the discovery of novel GK activators to treat type 2 diabetes.
Collapse
Affiliation(s)
- Ramasamy Thilagavathi
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| | - Maryam Sadat Hosseini-Zare
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| | - Manokaran Malini
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| | - Chelliah Selvam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| |
Collapse
|
12
|
Grewal AS, Lather V, Charaya N, Sharma N, Singh S, Kairys V. Recent Developments in Medicinal Chemistry of Allosteric Activators of Human Glucokinase for Type 2 Diabetes Mellitus Therapeutics. Curr Pharm Des 2020; 26:2510-2552. [PMID: 32286938 DOI: 10.2174/1381612826666200414163148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Glucokinase (GK), a cytoplasmic enzyme catalyzes the metabolism of glucose to glucose- 6-phosphate with the help of ATP and aids in the controlling of blood glucose levels within the normal range in humans. In pancreatic β-cells, it plays a chief role by controlling the glucose-stimulated secretion of insulin and in liver hepatocyte cells, it controls the metabolism of carbohydrates. GK acts as a promising drug target for the pharmacological treatment of patients with type 2 diabetes mellitus (T2DM) as it plays an important role in the control of carbohydrate metabolism. METHODS Data used for this review was based on the search from several science databases as well as various patent databases. The main data search terms used were allosteric GK activators, diabetes mellitus, type 2 diabetes, glucokinase, glucokinase activators and human glucokinase. RESULTS This article discusses an overview of T2DM, the biology of GK, the role of GK in T2DM, recent updates in the development of small molecule GK activators reported in recent literature, mechanism of action of GK activators and their clinical status. CONCLUSION GK activators are the novel class of pharmacological agents that enhance the catalytic activity of GK enzyme and display their antihyperglycemic effects. Broad diversity of chemical entities including benzamide analogues, carboxamides, acrylamides, benzimidazoles, quinazolines, thiazoles, pyrimidines, pyridines, orotic acid amides, amino acid derivatives, amino phosphates and urea derivatives have been synthesized in past two decades as potent allosteric activators of GK. Presently, the pharmaceutical companies and researchers are focusing on the design and development of liver-selective GK activators for preventing the possible adverse effects associated with GK activators for the long-term treatment of T2DM.
Collapse
Affiliation(s)
- Ajmer S Grewal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Viney Lather
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Neha Charaya
- Jan Nayak Ch. Devi Lal Memorial College of Pharmacy, Haryana, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
13
|
Khadse SC, Amnerkar ND, Dighole KS, Dhote AM, Patil VR, Lokwani DK, Ugale VG, Charbe NB, Chatpalliwar VA. Hetero-substituted sulfonamido-benzamide hybrids as glucokinase activators: Design, synthesis, molecular docking and in-silico ADME evaluation. J Mol Struct 2020; 1222:128916. [DOI: 10.1016/j.molstruc.2020.128916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Liu W, Yao C, Shang Q, Liu Y, Liu C, Meng F. Insights into the binding of dorzagliatin with glucokinase: A molecular dynamics simulation. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020. [DOI: 10.1142/s0219633620500273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human glucokinase (GK) is a potentially attractive target for diabetes, playing a prominent role in the control of glucose homeostasis. Dorzagliatin is the first GK activator (GKA) to enter phase III clinical trial. In this study, the possible binding mode of dorzagliatin with GK was investigated via the molecular simulation method. Two other systems in the absence of dorzagliatin and glucose were also studied to disclose the roles of dorzagliatin and glucose. The outcomes revealed that dorzagliatin can create the characteristic hydrogen bonds of GKA with Arg63, and Arg63 can form hydrogen bonds with nearby residues, making a tight binding hydrogen bond network around dorzagliatin. The presence of dorzagliatin can stabilize glucokinase for a period of time, and the binding of glucose may prevent the GK conformational change to a certain extent. Our results may be beneficial to mechanism understanding of GKA, and will be useful in design of novel GKAs for treating metabolic diseases.
Collapse
Affiliation(s)
- Wei Liu
- Tianjin Key Laboratory of Molecular, Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, P. R. China
| | - Chenhui Yao
- Tianjin Key Laboratory of Molecular, Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, P. R. China
| | - Qian Shang
- Tianjin Key Laboratory of Molecular, Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, P. R. China
| | - Yuqiang Liu
- Tianjin Key Laboratory of Molecular, Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, P. R. China
| | - Changying Liu
- Tianjin Key Laboratory of Molecular, Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, P. R. China
| | - Fancui Meng
- Tianjin Key Laboratory of Molecular, Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, P. R. China
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, P. R. China
| |
Collapse
|
15
|
Makhoba XH, Viegas C, Mosa RA, Viegas FPD, Pooe OJ. Potential Impact of the Multi-Target Drug Approach in the Treatment of Some Complex Diseases. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3235-3249. [PMID: 32884235 PMCID: PMC7440888 DOI: 10.2147/dddt.s257494] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
Abstract
It is essential to acknowledge the efforts made thus far to manage or eliminate various disease burden faced by humankind. However, the rising global trends of the so-called incurable diseases continue to put pressure on Pharma industries and other drug discovery platforms. In the past, drugs with more than one target were deemed as undesirable options with interest being on the one-drug-single target. Despite the successes of the single-target drugs, it is currently beyond doubt that these drugs have limited efficacy against complex diseases in which the pathogenesis is dependent on a set of biochemical events and several bioreceptors operating concomitantly. Different approaches have thus been proposed to come up with effective drugs to combat even the complex diseases. In the past, the focus was on producing drugs from screening plant compounds; today, we talk about combination therapy and multi-targeting drugs. The multi-target drugs have recently attracted much attention as promising tools to fight against most challenging diseases, and thus a new research focus area. This review will discuss the potential impact of multi-target drug approach on various complex diseases with focus on malaria, tuberculosis (TB), diabetes and neurodegenerative diseases as the main representatives of multifactorial diseases. We will also discuss alternative ideas to solve the current problems bearing in mind the fourth industrial revolution on drug discovery.
Collapse
Affiliation(s)
- Xolani H Makhoba
- Department of Biochemistry, Genetics and Microbiology, Division of Biochemistry, University of Pretoria, Hatfield, South Africa
| | - Claudio Viegas
- Laboratory of Research in Medicinal Chemistry (PeQuiM), Institute of Chemistry, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Rebamang A Mosa
- Department of Biochemistry, Genetics and Microbiology, Division of Biochemistry, University of Pretoria, Hatfield, South Africa
| | - Flávia P D Viegas
- Laboratory of Research in Medicinal Chemistry (PeQuiM), Institute of Chemistry, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Ofentse J Pooe
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
16
|
Wu P, Liu Z, Jiang X, Fang H. An Overview of Prospective Drugs for Type 1 and Type 2 Diabetes. Curr Drug Targets 2020; 21:445-457. [PMID: 31670620 DOI: 10.2174/1389450120666191031104653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/07/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022]
Abstract
Aims:
The aim of this study is to provide an overview of several emerging anti-diabetic
molecules.
Background:
Diabetes is a complex metabolic disorder involving the dysregulation of glucose homeostasis
at various levels. Insulin, which is produced by β-pancreatic cells, is a chief regulator of glucose
metabolism, regulating its consumption within cells, which leads to energy generation or storage as glycogen.
Abnormally low insulin secretion from β-cells, insulin insensitivity, and insulin tolerance lead to
higher plasma glucose levels, resulting in metabolic complications. The last century has witnessed extraordinary
efforts by the scientific community to develop anti-diabetic drugs, and these efforts have resulted
in the discovery of exogenous insulin and various classes of oral anti-diabetic drugs.
Objective:
Despite these exhaustive anti-diabetic pharmaceutical and therapeutic efforts, long-term
glycemic control, hypoglycemic crisis, safety issues, large-scale economic burden and side effects remain
the core problems.
Method:
The last decade has witnessed the development of various new classes of anti-diabetic drugs
with different pharmacokinetic and pharmacodynamic profiles. Details of their FDA approvals and
advantages/disadvantages are summarized in this review.
Results:
The salient features of insulin degludec, sodium-glucose co-transporter 2 inhibitors, glucokinase
activators, fibroblast growth factor 21 receptor agonists, and GLP-1 agonists are discussed.
Conclusion :
In the future, these new anti-diabetic drugs may have broad clinical applicability. Additional
multicenter clinical studies on these new drugs should be conducted.
Collapse
Affiliation(s)
- Ping Wu
- Department of Pharmacology, 3rd Affiliated Hospital, Soochow University, Changzhou, Jiangsu Province, China
| | - Zhenyu Liu
- Department of Endocrinology, 3rd Affiliated Hospital, Soochow University, Changzhou, Jiangsu Province, China
| | - Xiaohong Jiang
- Department of Endocrinology, 3rd Affiliated Hospital, Soochow University, Changzhou, Jiangsu Province, China
| | - Hao Fang
- Department of Pharmacology, 3rd Affiliated Hospital, Soochow University, Changzhou, Jiangsu Province, China
| |
Collapse
|
17
|
Wang Q, Zhang Q, Luan S, Yang K, Zheng M, Li K, Chen L, Li H. Adapalene inhibits ovarian cancer ES-2 cells growth by targeting glutamic-oxaloacetic transaminase 1. Bioorg Chem 2019; 93:103315. [DOI: 10.1016/j.bioorg.2019.103315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/13/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022]
|
18
|
Slater O, Kontoyianni M. The compromise of virtual screening and its impact on drug discovery. Expert Opin Drug Discov 2019; 14:619-637. [PMID: 31025886 DOI: 10.1080/17460441.2019.1604677] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Docking and structure-based virtual screening (VS) have been standard approaches in structure-based design for over two decades. However, our understanding of the limitations, potential, and strength of these techniques has enhanced, raising expectations. Areas covered: Based on a survey of reports in the past five years, we assess whether VS: (1) predicts binding poses in agreement with crystallographic data (when available); (2) is a superior screening tool, as often claimed; (3) is successful in identifying chemical scaffolds that can be starting points for subsequent lead optimization cycles. Data shows that knowledge of the target and its chemotypes in postprocessing lead to viable hits in early drug discovery endeavors. Expert opinion: VS is capable of accurate placements in the pocket for the most part, but does not consistently score screening collections accurately. What matters is capitalization on available resources to get closer to a viable lead or optimizable series. Integration of approaches, subjective hit selection guided by knowledge of the receptor or endogenous ligand, libraries driven by experimental guides, validation studies to identify the best docking/scoring that reproduces experimental findings, constraints regarding receptor-ligand interactions, thoroughly designed methodologies, and predefined cutoff scoring criteria strengthen VS's position in pharmaceutical research.
Collapse
Affiliation(s)
- Olivia Slater
- a Department of Pharmaceutical Sciences , Southern Illinois University Edwardsville , Edwardsville , IL , USA
| | - Maria Kontoyianni
- a Department of Pharmaceutical Sciences , Southern Illinois University Edwardsville , Edwardsville , IL , USA
| |
Collapse
|
19
|
Gupta MK, Vadde R. Insights into the structure–function relationship of both wild and mutant zinc transporter ZnT8 in human: a computational structural biology approach. J Biomol Struct Dyn 2019; 38:137-151. [PMID: 30633652 DOI: 10.1080/07391102.2019.1567391] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Manoj Kumar Gupta
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, India
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, India
| |
Collapse
|
20
|
Onaolapo AY, Onaolapo OJ. Nutraceuticals and Diet-based Phytochemicals in Type 2 Diabetes Mellitus: From Whole Food to Components with Defined Roles and Mechanisms. Curr Diabetes Rev 2019; 16:12-25. [PMID: 30378500 DOI: 10.2174/1573399814666181031103930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Over the past decades, the development and use of an array of prescription medications have considerably improved the clinical management of type 2 diabetes mellitus and the quality of life of patients. However, as our knowledge of the associated risk factors and approaches to its management increases, the increasing roles of diet and the composition of the diet in the etiology and successful management of diabetes mellitus are being illuminated. Presently, a lot of attention is being given to nutraceuticals and certain phytochemicals that are integral parts of the human diet. It is believed that a clearer understanding of their roles may be crucial to 'non-invasive' or minimallyintrusive management, with regards to daily living of patients. In this review, an overview of nutraceutical components and phytochemicals that may be of benefit, or had been known to be beneficial in diabetes mellitus is given. Also, how the roles of such dietary components are evolving in the management of this disorder is highlighted. Lastly, the obstacles that need to be overcome before nutraceuticals can be considered as options for the clinical management of diabetes mellitus areconsidered. CONCLUSION Despite studies that demonstrate their efficacy, no nutraceutical or food-derived compound has been formally adopted as a direct replacement for any class of antidiabetic drugs.
Collapse
Affiliation(s)
- Adejoke Yetunde Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Olakunle James Onaolapo
- Department of Pharmacology, Behavioural Neuroscience/Neuropharmacology Unit, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| |
Collapse
|
21
|
The Potential of South African Herbal Tisanes, Rooibos and Honeybush in the Management of Type 2 Diabetes Mellitus. Molecules 2018; 23:molecules23123207. [PMID: 30563087 PMCID: PMC6321617 DOI: 10.3390/molecules23123207] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/21/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a metabolic disease that can lead to high morbidity, mortality and long-term complications. Available treatment strategies, which are mainly based on treating hyperglycemia, with insulin and other pharmacological agents are not completely efficient and can even lead to development of unwanted side effects. Scientific evidence suggests that bioactive compounds from teas and other plant-based foods, which are known source of natural antioxidants, could be an attractive strategy to preferentially treat and manage type 2 diabetes mellitus (T2DM) and thus, have significant therapeutic implications. In this review, we attempt an in-depth analysis and discussion of the current progress in our understanding of the antidiabetic potential of two commercialized South Africa herbal tisanes—Rooibos and Honeybush and their polyphenols.
Collapse
|
22
|
Xie Y, Zhou X, Pei H, Chen MC, Sun ZL, Xue YR, Tian XT, Huang CG. Metabolism, pharmacokinetics, and hepatic disposition of xanthones and saponins on Zhimu treatments for exploratively interpreting the discrepancy between the herbal safety and timosaponin A3-induced hepatotoxicity. Acta Pharmacol Sin 2018; 39:1923-1934. [PMID: 29795136 DOI: 10.1038/s41401-018-0012-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/11/2018] [Accepted: 01/31/2018] [Indexed: 11/09/2022]
Abstract
Timosaponin A3, a saponin in Zhimu, elicited hepatotoxicity via oxidative stress. However, the clinical medication of Zhimu has been historically regarded as safe, probably associated with the antioxidants it contains. However, the related information on the in vivo levels of timosaponin A3 and antioxidants remained unclear on Zhimu treatments. Therefore, a combination of the in vitro metabolism, including microbiota-mediated and liver-mediated metabolism, and in vivo pharmacokinetics and hepatic disposition, was conducted for three xanthones (neomangiferin, mangiferin, and norathyriol) and three saponins (timosaponin B2, timosaponin B3, and timosaponin A3) on Zhimu treatments. Consequently, following oral administration of Zhimu decoction to rats, those saponins and xanthones were all observed in the plasma with severe liver first-pass effect, where mangiferin was of the maximum exposure. Despite the ignorable content in the herb, timosaponin A3 elicited sizable hepatic exposure as the microbiota-mediated metabolite of saponins in Zhimu. The similar phenomenon also occurred to norathyriol, the microbiota-mediated metabolite of xanthones. However, the major prototypes in Zhimu were of limited hepatic exposure. We deduced the hepatic collection of norathyriol, maximum circulating levels of mangiferin, and timosaponin B2 and mangiferin interaction may directly or indirectly contribute to the whole anti-oxidation of Zhimu, and then resisted the timosaponin A3-induced hepatotoxicity. Thus, our study exploratively interpreted the discrepancy between herbal safety and timosaponin A3-induced hepatotoxicity. However, given the considerable levels and slow eliminated rate of timosaponin A3 in the liver, more attention should be paid to the safety on the continuous clinical medication of Zhimu in the future.
Collapse
|
23
|
Bano S, Khan AU, Asghar F, Usman M, Badshah A, Ali S. Computational and Pharmacological Evaluation of Ferrocene-Based Acyl Ureas and Homoleptic Cadmium Carboxylate Derivatives for Anti-diabetic Potential. Front Pharmacol 2018; 8:1001. [PMID: 29387011 PMCID: PMC5776112 DOI: 10.3389/fphar.2017.01001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/29/2017] [Indexed: 02/03/2023] Open
Abstract
We investigated possible anti-diabetic effect of ferrocene-based acyl ureas: 4-ferrocenyl aniline (PFA), 1-(4-chlorobenzoyl)-3-(4-ferrocenylphenyl) urea (DPC1), 1-(3-chlorobenzoyl)-3-(4-ferrocenylphenyl) urea (DMC1), 1-(2-chlorobenzoyl)-3-(4-ferrocenylphenyl) urea (DOC1) and homoleptic cadmium carboxylates: bis (diphenylacetato) cadmium (II) (DPAA), bis (4-chlorophenylacetato) cadmium (II) (CPAA), using in silico and in vivo techniques. PFA, DPC1, DMC1, DOC1, DPAA and CPAA exhibited high binding affinities (ACE ≥ −350 Kcal/mol) against targets: aldose reductase, peroxisome proliferator-activated receptor γ, 11β-hydroxysteroid dehydrogenase-1, C-alpha glucosidase and glucokinase, while showed moderate affinities (ACE ≥ −250 Kcal/mol) against N-alpha glucosidase, dipeptidyl peptidase-IV, phosphorylated-Akt, glycogen synthase kinase-3β, fructose-1,6-bisphosphatase and phosphoenolpyruvate carboxykinase, whereas revealed lower affinities (ACE < −250 Kcal/mol) vs. alpha amylase, protein tyrosine phosphatases 1B, glycogen phosphorylase and phosphatidylinositol 3 kinase. In alloxan (300 mg/Kg)-induced diabetic mice, DPAA and DPC1 (1–10 mg/Kg) at day 1, 5, 10, 15, and 20th decreased blood glucose levels, compared to diabetic control group and improved the treated animals body weight. DPAA (10 mg/Kg) and DPC1 (5 mg/Kg) in time-dependent manner (30–120 min.) enhanced tolerance of oral glucose overload in mice. DPAA and DPCI dose-dependently at 1, 5, and 10 mg/Kg decreased glycosylated hemoglobin levels in diabetic animals, as caused by metformin. These results indicate that aforementioned derivatives of ferrocene and cadmium possess anti-diabetic potential.
Collapse
Affiliation(s)
- Shahar Bano
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Arif-Ullah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Faiza Asghar
- Department of Chemistry, Quaid-e-Azam University, Islamabad, Pakistan.,Department of Chemistry, University of Wah, Wah, Pakistan
| | - Muhammad Usman
- Department of Chemistry, Quaid-e-Azam University, Islamabad, Pakistan
| | - Amin Badshah
- Department of Chemistry, Quaid-e-Azam University, Islamabad, Pakistan
| | - Saqib Ali
- Department of Chemistry, Quaid-e-Azam University, Islamabad, Pakistan
| |
Collapse
|
24
|
Li J, Yu H, Wang S, Wang W, Chen Q, Ma Y, Zhang Y, Wang T. Natural products, an important resource for discovery of multitarget drugs and functional food for regulation of hepatic glucose metabolism. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:121-135. [PMID: 29391777 PMCID: PMC5768189 DOI: 10.2147/dddt.s151860] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Imbalanced hepatic glucose homeostasis is one of the critical pathologic events in the development of metabolic syndromes (MSs). Therefore, regulation of imbalanced hepatic glucose homeostasis is important in drug development for MS treatment. In this review, we discuss the major targets that regulate hepatic glucose homeostasis in human physiologic and pathophysiologic processes, involving hepatic glucose uptake, glycolysis and glycogen synthesis, and summarize their changes in MSs. Recent literature suggests the necessity of multitarget drugs in the management of MS disorder for regulation of imbalanced glucose homeostasis in both experimental models and MS patients. Here, we highlight the potential bioactive compounds from natural products with medicinal or health care values, and focus on polypharmacologic and multitarget natural products with effects on various signaling pathways in hepatic glucose metabolism. This review shows the advantage and feasibility of discovering multicompound-multitarget drugs from natural products, and providing a new perspective of ways on drug and functional food development for MSs.
Collapse
Affiliation(s)
- Jian Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin
| | - Haiyang Yu
- Department of Phytochemistry, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sijian Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin
| | - Wei Wang
- Internal Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Qian Chen
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin
| | - Yanmin Ma
- Department of Phytochemistry, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin
| |
Collapse
|