1
|
Cui M, Liu Z, Wang S, Bae S, Guo H, Zhou J, Liu R, Wang L. CRISPR-based dissection of microRNA-23a ~ 27a ~ 24-2 cluster functionality in hepatocellular carcinoma. Oncogene 2024; 43:2708-2721. [PMID: 39112518 PMCID: PMC11364504 DOI: 10.1038/s41388-024-03115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
The miR-23a ~ 27a ~ 24-2 cluster, commonly upregulated in diverse cancers, including hepatocellular carcinoma (HCC), raises questions about the specific functions of its three mature miRNAs and their integrated function. Utilizing CRISPR knockout (KO), CRISPR interference (CRISPRi), and CRISPR activation (CRISPRa) technologies, we established controlled endogenous miR-23a ~ 27 ~ a24-2 cell models to unravel their roles and signaling pathways in HCC. Both miR-23a KO and miR-27a KO displayed reduced cell growth in vitro and in vivo, revealing an integrated oncogenic function. Functional analysis indicated cell cycle arrest, particularly at the G2/M phase, through the downregulation of CDK1/cyclin B activation. High-throughput RNA-seq, combined with miRNA target prediction, unveiled the miR-23a/miR-27a-regulated gene network, validated through diverse technologies. While miR-23a and miR-27a exhibited opposing roles in cell migration and mesenchymal-epithelial transition, an integrated CRISPRi/a analysis suggested an oncogenic role of the miR-23a ~ 27a ~ 24-2 cluster in cell migration. This involvement potentially encompasses two signaling axes: miR-23a-BMPR2 and miR-27a-TMEM170B in HCC cells. In conclusion, our CRISPRi/a study provides a valuable tool for comprehending the integrated roles and underlying mechanisms of endogenous miRNA clusters, paving the way for promising directions in miRNA-targeted therapy interventions.
Collapse
Affiliation(s)
- Mengying Cui
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhichao Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shuaibin Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sejong Bae
- Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hua Guo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Lizhong Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Zhai C, Liu B, Kan F, Zhai S, Zhang R. MicroRNA‑27a‑3p regulates the proliferation and chemotaxis of pulmonary macrophages in non‑small cell lung carcinoma tissues through CXCL2. Oncol Lett 2023; 26:492. [PMID: 37854860 PMCID: PMC10579986 DOI: 10.3892/ol.2023.14079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/26/2022] [Indexed: 10/20/2023] Open
Abstract
The present study aimed to investigate microRNA (miRNA)-27a-3p expression in the pulmonary macrophages and peripheral blood of patients with early non-small cell lung carcinoma (NSCLC) and its regulatory effect on the infiltration of pulmonary macrophages into cancer tissues and invasion of NSCLC cells. Blood specimens were withdrawn from 36 patients with NSCLC and 29 healthy subjects. NSCLC tissues and cancer-adjacent tissues were both obtained from patients with NSCLC; furthermore, certain tissue samples were used to extract macrophages. The levels of miRNA-27a-3p and C-X-C motif ligand chemokine 2 (CXCL2) mRNA were detected by reverse transcription-quantitative PCR and the levels of CXCL2 protein were measured by ELISA and western blot analysis. A dual-luciferase reporter assay was performed to determine the interactions between miRNA and mRNA. An MTT assay was employed to examine the viability of transfected cells and macrophages and a Transwell assay was performed to assess chemotaxis. The differential expression of miRNA-27a-3p in NSCLC tissues, pulmonary macrophages and peripheral blood indicated that miRNA-27a-3p exerted different roles in these specimens. CXCL2 was upregulated in NSCLC tissues at both transcriptional and translational levels. In addition, the untranslated region of CXCL2 was confirmed to be directly targeted by miRNA-27a-3p prior to its transcriptional activation. Furthermore, miRNA-27a-3p regulated CXCL2 expression, thereby affecting the proliferation of human pulmonary macrophages. The present study highlights that miRNA-27a-3p expression in the pulmonary macrophages and peripheral blood of patients with NSCLC is downregulated, while its target gene CXCL2 is upregulated. miRNA-27a-3p may regulate the viability and chemotaxis of macrophages in tumor tissues of patients with NSCLC through CXCL2 and is expected to become a genetic marker of this disease.
Collapse
Affiliation(s)
- Congying Zhai
- Department of Pulmonary and Critical Care Medicine, Zibo First Hospital, Zibo, Shandong 255200, P.R. China
| | - Baoliang Liu
- Department of Pulmonary and Critical Care Medicine, Zibo First Hospital, Zibo, Shandong 255200, P.R. China
| | - Fanggong Kan
- Department of Oncology, Zibo First Hospital, Zibo, Shandong 255200, P.R. China
| | - Shuhui Zhai
- Department of Clinical Medicine, Jining Medical College, Jining, Shandong 272067, P.R. China
| | - Ronghua Zhang
- Department of Pulmonary and Critical Care Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
3
|
Eslami M, Khazeni S, Khanaghah XM, Asadi MH, Ansari MA, Garjan JH, Lotfalizadeh MH, Bayat M, Taghizadieh M, Taghavi SP, Hamblin MR, Nahand JS. MiRNA-related metastasis in oral cancer: moving and shaking. Cancer Cell Int 2023; 23:182. [PMID: 37635248 PMCID: PMC10463971 DOI: 10.1186/s12935-023-03022-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
Across the world, oral cancer is a prevalent tumor. Over the years, both its mortality and incidence have grown. Oral cancer metastasis is a complex process involving cell invasion, migration, proliferation, and egress from cancer tissue either by lymphatic vessels or blood vessels. MicroRNAs (miRNAs) are essential short non-coding RNAs, which can act either as tumor suppressors or as oncogenes to control cancer development. Cancer metastasis is a multi-step process, in which miRNAs can inhibit or stimulate metastasis at all stages, including epithelial-mesenchymal transition, migration, invasion, and colonization, by targeting critical genes in these pathways. On the other hand, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), two different types of non-coding RNAs, can regulate cancer metastasis by affecting gene expression through cross-talk with miRNAs. We reviewed the scientific literature (Google Scholar, Scopus, and PubMed) for the period 2000-2023 to find reports concerning miRNAs and lncRNA/circRNA-miRNA-mRNA networks, which control the spread of oral cancer cells by affecting invasion, migration, and metastasis. According to these reports, miRNAs are involved in the regulation of metastasis pathways either by directly or indirectly targeting genes associated with metastasis. Moreover, circRNAs and lncRNAs can induce or suppress oral cancer metastasis by acting as competing endogenous RNAs to inhibit the effect of miRNA suppression on specific mRNAs. Overall, non-coding RNAs (especially miRNAs) could help to create innovative therapeutic methods for the control of oral cancer metastases.
Collapse
Affiliation(s)
- Meghdad Eslami
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Khazeni
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Xaniar Mohammadi Khanaghah
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Asadi
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Amin Ansari
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Hayati Garjan
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mobina Bayat
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Sweef O, Zaabout E, Bakheet A, Halawa M, Gad I, Akela M, Tousson E, Abdelghany A, Furuta S. Unraveling Therapeutic Opportunities and the Diagnostic Potential of microRNAs for Human Lung Cancer. Pharmaceutics 2023; 15:2061. [PMID: 37631277 PMCID: PMC10459057 DOI: 10.3390/pharmaceutics15082061] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Lung cancer is a major public health problem and a leading cause of cancer-related deaths worldwide. Despite advances in treatment options, the five-year survival rate for lung cancer patients remains low, emphasizing the urgent need for innovative diagnostic and therapeutic strategies. MicroRNAs (miRNAs) have emerged as potential biomarkers and therapeutic targets for lung cancer due to their crucial roles in regulating cell proliferation, differentiation, and apoptosis. For example, miR-34a and miR-150, once delivered to lung cancer via liposomes or nanoparticles, can inhibit tumor growth by downregulating critical cancer promoting genes. Conversely, miR-21 and miR-155, frequently overexpressed in lung cancer, are associated with increased cell proliferation, invasion, and chemotherapy resistance. In this review, we summarize the current knowledge of the roles of miRNAs in lung carcinogenesis, especially those induced by exposure to environmental pollutants, namely, arsenic and benzopyrene, which account for up to 1/10 of lung cancer cases. We then discuss the recent advances in miRNA-based cancer therapeutics and diagnostics. Such information will provide new insights into lung cancer pathogenesis and innovative diagnostic and therapeutic modalities based on miRNAs.
Collapse
Affiliation(s)
- Osama Sweef
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Elsayed Zaabout
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ahmed Bakheet
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| | - Mohamed Halawa
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ibrahim Gad
- Department of Statistics and Mathematics, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed Akela
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ehab Tousson
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Ashraf Abdelghany
- Biomedical Research Center of University of Granada, Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
| | - Saori Furuta
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| |
Collapse
|
5
|
Li Q, Li J, Wang K, Liao L, Li Y, Liang H, Huang C, Gan J, Dong X, Hu Y, Cheng J, Ji H, Liu C, Zeng M, Yu S, Wang B, Qian J, Tang Z, Peng Y, Tang S, Li M, Zhou J, Yan J, Li C. Activation of Sphingomyelin Phosphodiesterase 3 in Liver Regeneration Impedes the Progression of Colorectal Cancer Liver Metastasis Via Exosome-Bound Intercellular Transfer of Ceramides. Cell Mol Gastroenterol Hepatol 2023; 16:385-410. [PMID: 37245564 PMCID: PMC10372907 DOI: 10.1016/j.jcmgh.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND & AIMS The machinery that prevents colorectal cancer liver metastasis (CRLM) in the context of liver regeneration (LR) remains elusive. Ceramide (CER) is a potent anti-cancer lipid involved in intercellular interaction. Here, we investigated the role of CER metabolism in mediating the interaction between hepatocytes and metastatic colorectal cancer (CRC) cells to regulate CRLM in the context of LR. METHODS Mice were intrasplenically injected with CRC cells. LR was induced by 2/3 partial hepatectomy (PH) to mimic the CRLM in the context of LR. The alteration of corresponding CER-metabolizing genes was examined. The biological roles of CER metabolism in vitro and in vivo were examined by performing a series of functional experiments. RESULTS Induction of LR augmented apoptosis but promoted matrix metalloproteinase 2 (MMP2) expression and epithelial-mesenchymal transition (EMT) to increase the invasiveness of metastatic CRC cells, resulting in aggressive CRLM. Up-regulation of sphingomyelin phosphodiesterase 3 (SMPD3) was determined in the regenerating hepatocytes after LR induction and persisted in the CRLM-adjacent hepatocytes after CRLM formation. Hepatic Smpd3 knockdown was found to further promote CRLM in the context of LR by abolishing mitochondrial apoptosis and augmenting the invasiveness in metastatic CRC cells by up-regulating MMP2 and EMT through promoting the nuclear translocation of β-catenin. Mechanistically, we found that hepatic SMPD3 controlled the generation of exosomal CER in the regenerating hepatocytes and the CRLM-adjacent hepatocytes. The SMPD3-produced exosomal CER critically conducted the intercellular transfer of CER from the hepatocytes to metastatic CRC cells and impeded CRLM by inducing mitochondrial apoptosis and restricting the invasiveness in metastatic CRC cells. The administration of nanoliposomal CER was found to suppress CRLM in the context of LR substantially. CONCLUSIONS SMPD3-produced exosomal CER constitutes a critical anti-CRLM mechanism in LR to impede CRLM, offering the promise of using CER as a therapeutic agent to prevent the recurrence of CRLM after PH.
Collapse
Affiliation(s)
- Qingping Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jieyuan Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Kai Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Leyi Liao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiyi Li
- Department of Radiation Oncology, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hanbiao Liang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Can Huang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Gan
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoyu Dong
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yaowen Hu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaxin Cheng
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongli Ji
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Cuiting Liu
- Central Laboratory, Southern Medical University, Guangzhou, Guangdong, China
| | - Minghui Zeng
- Institute of Scientific Research, Southern Medical University, Guangzhou, Guangdong, China
| | - Sheng Yu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Biao Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianping Qian
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongshun Tang
- The First Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Yonghong Peng
- Central Laboratory, Southern Medical University, Guangzhou, Guangdong, China
| | - Shanhua Tang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengxuan Li
- The First Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Zhou
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jun Yan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Chuanjiang Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Liang J, Liu L, Tang H, Ma Q, Sang Y, Kang X. UVB-induced SFRP1 methylation potentiates skin damage by promoting cell apoptosis and DNA damage. Exp Dermatol 2022; 31:1443-1453. [PMID: 35657114 DOI: 10.1111/exd.14621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
Abstract
In response to the accumulation of genetic mutations and cellular changes, ultraviolet radiation B (UVB) skin lesions undergo dysplasia and transform into a cutaneous squamous cell carcinoma (CSCC). Consistent with our previous findings that secreted frizzled-related protein 1 (SFRP1), a member of the SFRP gene family, was downregulated in human CSCC tissue samples, we found a significant downregulation of SFRP1 in HaCaT, A431, and SCL-1 cells after UVB irradiation. DNA methyltransferase 1 (DNMT1) was significantly increased in CSCC tissues as well as UVB-exposed A431 and SCL-1 cells. Bisulfite genomic sequencing analysis showed that the downregulation of SFRP1 was mainly due to methylation of the SFRP1 promoter, as indicated by increased methylation rate of SFRP1 after UVB irradiation in HaCaT cells. Moreover, demethylation treatment with 5-aza'-deoxycytidine (5-AzaC) increased SFRP1 expression and reduced the methylation rate of SFRP1 in HaCaT cells. Flow cytometry analyses demonstrated that 5-AzaC treatment or overexpression of SFRP1 ameliorated UVB-induced apoptosis, while knockdown of SFRP1 promoted UVB-induced apoptosis in HaCaT cells. In addition, a comet assay confirmed that 5-AzaC treatment reduced DNA damage following UVB irradiation, while knockdown of SFRP1 enhanced DNA damage following UVB irradiation. In conclusion, our study identified DNA methylation of SFRP1 as a key mediator in the UVB-induced apoptosis of keratinocytes. These findings indicate that reinforcing SFRP1 defenses by 5-AzaC may help prevent UVB-induced skin damage.
Collapse
Affiliation(s)
- Junqin Liang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Lina Liu
- Departmental of medical research, Naval Medical Center of PLA, Shanghai, China
| | - Hongbo Tang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Qingyu Ma
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Yingbing Sang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Xiaojing Kang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| |
Collapse
|
7
|
Niklander S, Guerra D, Contreras F, González-Arriagada W, Marín C. MicroRNAs and their role in the malignant transformation of oral leukoplakia: a scoping review. Med Oral Patol Oral Cir Bucal 2022; 27:e77-e84. [PMID: 34564679 PMCID: PMC8719793 DOI: 10.4317/medoral.24975] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND MiRNAs are small non-coding RNAs that regulate gene expression at the post-transcriptional level and have been associated with malignant transformation of oral epithelial precursor lesions such as oral leukoplakia. The aim was to perform a scoping review of the contemporary literature about the different roles of miRNAs during the malignant transformation of oral leukoplakia. MATERIAL AND METHODS We conducted a systematic search with the following MeSH terms: 'oral leukoplakia', 'carcinoma in situ', 'microRNAs', 'mouth neoplasms' and 'epithelial-mesenchymal transition' in PubMed/MEDLINE, EMBASE and SpringerLink. RESULTS Fifteen articles were included for analysis, among which in vivo and in vitro articles were included. A total of 21 different miRNAs were found to be involved in the malignant transformation process of oral leukoplakia. Regarding their possible effects, 6 miRNAs were classified as oncogenic, 5 as tumour suppressors and 10 were related to epithelial-mesenchymal transition, invasion and migration. CONCLUSIONS Based on the current review, we concluded that miRNAs-21, 345, 181-b and 31* seem to be potential markers of malignant transformation of oral leukoplakia. However, further clinical prospective studies are needed in order to validate their utility as prognostic biomarkers.
Collapse
Affiliation(s)
- S Niklander
- Departamento de Patología y Medicina Oral Universidad Andres Bello Postcode: 2520000. Quillota 980, Viña del Mar, Chile
| | | | | | | | | |
Collapse
|
8
|
Quercetin potentiates 5-fluorouracil effects in human colon cancer cells through targeting the Wnt/β-catenin signalling pathway: the role of miR-27a. Contemp Oncol (Pozn) 2022; 26:229-238. [PMID: 36381675 PMCID: PMC9641630 DOI: 10.5114/wo.2022.120361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/18/2022] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION 5-fluorouracil (5-FU) is the most widely used chemotherapeutic drug in treating colorectal cancer. However, its toxicity to normal tissues and tumour resistance are the main hurdles to efficient cancer treatment. MiR27-a promotes the proliferation of colon cancer cells by stimulating the Wnt/β-catenin pathway. The present study was conducted to examine whether quercetin (Q) combined with 5-FU improves the anti-proliferative effect of 5-FU on HCT-116 and Caco-2 cell lines through detection of the miR-27a/Wnt/β-catenin signalling pathway. MATERIAL AND METHODS Cell viability in HCT-116 and Caco-2 cell lines following quercetin and 5-FU treatment alone and in combination for 48 hours was determined using the MTT assay. The flow cytometry, quantitative real-time polymerase chain reaction, and ELISA techniques were used. RESULTS Our results showed that combination of quercetin and 5-FU exhibited greater cytotoxic efficacy than did 5-FU alone. Co-administration of both drugs either in combination 1 (1 : 1 Q: 5-FU) or in combination 2 (1 : 0.5 Q: 5-FU) enhanced apoptosis in HCT-116 and Caco-2 cells compared with 5-FU alone and significantly inhibited the expression of miR-27a, leading to upregulation of secreted frizzled-related protein 1 and suppression of Wnt/β-catenin signalling, which was confirmed by a significant decrease in cyclin D1 expression. CONCLUSIONS Quercetin strongly enhanced 5-FU sensitivity via suppression of the miR-27a/Wnt/β-catenin signalling pathway in CRC, which advocates further research of this combination with the lower dose of 5-FU.
Collapse
|
9
|
Madhulaxmi M, Abhinav RP. Protein changes of WNT signaling pathway in oral cancer. Oral Oncol 2021; 123:105624. [PMID: 34826689 DOI: 10.1016/j.oraloncology.2021.105624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Marimuthu Madhulaxmi
- Department of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai 600077, India
| | - Rajendra Prabhu Abhinav
- Department of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai 600077, India.
| |
Collapse
|
10
|
Wang DB, Li X, Lu XK, Sun ZY, Zhang X, Chen X, Ma L, Xia HG. Transthyretin Suppressed Tumor Progression in Nonsmall Cell Lung Cancer by Inactivating MAPK/ERK Pathway. Cancer Biother Radiopharm 2021. [PMID: 34698529 DOI: 10.1089/cbr.2021.0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Lung malignancy is a main source of disease passing all throughout the planet, whereas the transthyretin (TTR) is a specific biomarker for clinical diagnosis. However, its role in lung malignancy stays to be obscure. Materials and Methods: In the current examination, the authors made an endeavor to research impact of abnormal expression of TTR on nonsmall cell lung carcinoma (NSCLC) by overexpression or knockdown of TTR. To further explore the instruments' fundamental mechanism part of TTR in NSCLC, several signal pathways were searched and verified. To confirm the effect of TTR overexpression on tumors, in vivo experiments were conducted. Result: It was found that upregulated TTR clearly stifled cell proliferation, migration, invasion, and expanded apoptosis. Significant suppression of phosphor-extracellular signal-regulated kinase (ERK) was observed in TTR-treated NSCLC cells, implying that TTR was important for cellular progress by regulating mitogen-activated protein kinase/ERK signaling pathway. In in vivo experiment, overexpression of TTR promoted cell apoptosis and inhibited tumor growth. Conclusion: Overall, the results suggest that TTR has a potential antitumor effect in human NSCLC progression, which provides theoretical basis for the diagnosis and treatment of NSCLC. Above all, further understanding of TTR was useful for clinical care. Clinical Trial Registration Number: 2016-08.
Collapse
Affiliation(s)
- Dong-Bin Wang
- Department of Thoracic Surgery, Tianjin Hospital, Tianjin, China
| | - Xuan Li
- Department of Graduate School, Tianjin Medical University, Tianjin, China
| | - Xi-Ke Lu
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Zhong-Yi Sun
- Department of Thoracic Surgery, Tianjin Hospital, Tianjin, China
| | - Xun Zhang
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Xia Chen
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Lan Ma
- Department of Thoracic Surgery, Tianjin Hospital, Tianjin, China
| | - Hong-Gang Xia
- Department of Thoracic Surgery, Tianjin Hospital, Tianjin, China
| |
Collapse
|
11
|
Li SS, Sun Q, Hua MR, Suo P, Chen JR, Yu XY, Zhao YY. Targeting the Wnt/β-Catenin Signaling Pathway as a Potential Therapeutic Strategy in Renal Tubulointerstitial Fibrosis. Front Pharmacol 2021; 12:719880. [PMID: 34483931 PMCID: PMC8415231 DOI: 10.3389/fphar.2021.719880] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays important roles in embryonic development and tissue homeostasis. Wnt signaling is induced, and β-catenin is activated, associated with the development and progression of renal fibrosis. Wnt/β-catenin controls the expression of various downstream mediators such as snail1, twist, matrix metalloproteinase-7, plasminogen activator inhibitor-1, transient receptor potential canonical 6, and renin-angiotensin system components in epithelial cells, fibroblast, and macrophages. In addition, Wnt/β-catenin is usually intertwined with other signaling pathways to promote renal interstitial fibrosis. Actually, given the crucial of Wnt/β-catenin signaling in renal fibrogenesis, blocking this signaling may benefit renal interstitial fibrosis. There are several antagonists of Wnt signaling that negatively control Wnt activation, and these include soluble Fzd-related proteins, the family of Dickkopf 1 proteins, Klotho and Wnt inhibitory factor-1. Furthermore, numerous emerging small-molecule β-catenin inhibitors cannot be ignored to prevent and treat renal fibrosis. Moreover, we reviewed the knowledge focusing on anti-fibrotic effects of natural products commonly used in kidney disease by inhibiting the Wnt/β-catenin signaling pathway. Therefore, in this review, we summarize recent advances in the regulation, downstream targets, role, and mechanisms of Wnt/β-catenin signaling in renal fibrosis pathogenesis. We also discuss the therapeutic potential of targeting this pathway to treat renal fibrosis; this may shed new insights into effective treatment strategies to prevent and treat renal fibrosis.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, China
- The First School of Clinical Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Qian Sun
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, China
- The First School of Clinical Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Meng-Ru Hua
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| | - Ping Suo
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| | - Jia-Rong Chen
- Department of Clinical Pharmacy, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, China
| | - Ying-Yong Zhao
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| |
Collapse
|
12
|
Isoorientin inhibits epithelial-to-mesenchymal properties and cancer stem-cell-like features in oral squamous cell carcinoma by blocking Wnt/β-catenin/STAT3 axis. Toxicol Appl Pharmacol 2021; 424:115581. [PMID: 34019859 DOI: 10.1016/j.taap.2021.115581] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 01/22/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is among the most prevalent cancers of the head and neck. This study revealed that isoorientin attenuates OSCC cell stemness and epithelial-mesenchymal transition potential through the inhibition of JAK/signal transducer and activator of transcription 3 (STAT3) and Wnt/β-catenin signaling in cell lines. Our findings indicated that isoorientin is a potential inhibitor of β-catenin/STAT3 in vitro and in vivo. We analyzed possible synergism between isoorientin and cisplatin in OSCC. A sulforhodamine B assay, colony formation assay, tumorsphere-formation assay, and Wnt reporter activity assay were used for determining cell invasion, cell migration, drug cytotoxicity, and cell viability with potential molecular mechanisms in vitro. Isoorientin reduced the expression of p-STAT3, β-catenin, and p-GSK3 as well as downstream effectors TCF1/TCF7 and LEF1 and significantly reduced β-catenin colocalization in the nucleus. Isoorientin markedly strengthened the cytotoxic effects of cisplatin against SAS and SCC-25. Therefore, combining isoorientin and cisplatin treatments can potentially improve the anticancer effect of cisplatin. Isoorientin inhibited the tumorigenicity and growth of OSCC through the abrogation of Wnt/β-catenin/STAT3 signaling in vivo. Thus, isoorientin disrupted the β-catenin signaling pathway through the inactivation of STAT3 signaling. In conclusion, targeting OSCC-SC-mediated stemness with isoorientin to eradicate OSCC-SCs may be an effective strategy for preventing relapse and metastasis of OSCC and providing long-term survival benefits.
Collapse
|
13
|
MicroRNA-27a targets Sfrp1 to induce renal fibrosis in diabetic nephropathy by activating Wnt/β-Catenin signalling. Biosci Rep 2021; 40:225114. [PMID: 32484208 PMCID: PMC7295625 DOI: 10.1042/bsr20192794] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic nephropathy (DN) commonly causes end-stage renal disease (ESRD). Increasing evidence indicates that abnormal miRNA expression is tightly associated with chronic kidney disease (CKD). This work aimed to investigate whether miR-27a can promote the occurrence of renal fibrosis in DN by suppressing the expression of secreted frizzled-related protein 1 (Sfrp1) to activate Wnt/β-catenin signalling. Therefore, we assessed the expression levels of miR-27a, Sfrp1, Wnt signalling components, and extracellular matrix (ECM)-related molecules in vitro and in vivo. Sfrp1 was significantly down-regulated in a high-glucose environment, while miR-27a levels were markedly increased. A luciferase reporter assay confirmed that miR-27a down-regulated Sfrp1 by binding to the 3′ untranslated region directly. Further, NRK-52E cells under high-glucose conditions underwent transfection with miR-27a mimic or the corresponding negative control, miR-27a inhibitor or the corresponding negative control, si-Sfrp1, or combined miR-27a inhibitor and si-Sfrp1. Immunoblotting and immunofluorescence were performed to assess the relative expression levels of Wnt/β-catenin signalling and ECM components. The mRNA levels of Sfrp1, miR-27a, and ECM-related molecules were also detected by quantitative real-time PCR (qPCR). We found that miR-27a inhibitor inactivated Wnt/β-catenin signalling and reduced ECM deposition. Conversely, Wnt/β-catenin signalling was activated, while ECM deposition was increased after transfection with si-Sfrp1. Interestingly, miR-27a inhibitor attenuated the effects of si-Sfrp1. We concluded that miR-27a down-regulated Sfrp1 and activated Wnt/β-catenin signalling to promote renal fibrosis.
Collapse
|
14
|
Patni AP, Harishankar MK, Joseph JP, Sreeshma B, Jayaraj R, Devi A. Comprehending the crosstalk between Notch, Wnt and Hedgehog signaling pathways in oral squamous cell carcinoma - clinical implications. Cell Oncol (Dordr) 2021; 44:473-494. [PMID: 33704672 DOI: 10.1007/s13402-021-00591-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a malignant oral cavity neoplasm that affects many people, especially in developing countries. Despite several advances that have been made in diagnosis and treatment, the morbidity and mortality rates due to OSCC remain high. Accumulating evidence indicates that aberrant activation of cellular signaling pathways, such as the Notch, Wnt and Hedgehog pathways, occurs during the development and metastasis of OSCC. In this review, we have articulated the roles of the Notch, Wnt and Hedgehog signaling pathways in OSCC and their crosstalk during tumor development and progression. We have also examined possible interactions and associations between these pathways and treatment regimens that could be employed to effectively tackle OSCC and/or prevent its recurrence. CONCLUSIONS Activation of the Notch signaling pathway upregulates the expression of several genes, including c-Myc, β-catenin, NF-κB and Shh. Associations between the Notch signaling pathway and other pathways have been shown to enhance OSCC tumor aggressiveness. Crosstalk between these pathways supports the maintenance of cancer stem cells (CSCs) and regulates OSCC cell motility. Thus, application of compounds that block these pathways may be a valid strategy to treat OSCC. Such compounds have already been employed in other types of cancer and could be repurposed for OSCC.
Collapse
Affiliation(s)
- Anjali P Patni
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - M K Harishankar
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Joel P Joseph
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Bhuvanadas Sreeshma
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Rama Jayaraj
- College of Human and Human Sciences, Charles Darwin University, Ellangowan Drive, Darwin, Northern Territory, 0909, Australia
| | - Arikketh Devi
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
15
|
Ghafouri-Fard S, Gholipour M, Taheri M, Shirvani Farsani Z. MicroRNA profile in the squamous cell carcinoma: prognostic and diagnostic roles. Heliyon 2020; 6:e05436. [PMID: 33204886 PMCID: PMC7653070 DOI: 10.1016/j.heliyon.2020.e05436] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/27/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are human malignancies associated with both genetic and environmental factors. MicroRNAs (miRNAs) as a group of small non-coding RNAs have prominent roles in the development of this kind of cancer. Expressions of several miRNAs have been demonstrated to be increased in HNSCC samples vs. non-malignant tissues. In silico prediction tools and functional analyses have confirmed the function of some miRNAs in the modulation of cancer-associated targets, thus indicating these miRNAs as onco-miRs. Moreover, numerous miRNAs have been down-regulated in HNSCC samples. Their targets mostly enhance cell proliferation or inhibit apoptosis. miRNAs signature has practical implications in the diagnosis, staging, and management of HNSC. Most notably, numerous miRNAs have been shown to alter response of tumor cells to anti-cancer drugs such as cisplatin and doxorubicin. Circulating levels of these small transcripts have been suggested as promising biomarkers for diagnosis of HNSCC. In the present manuscript, we sum up the available literature regarding the miRNAs signature in HNSCC and their role as diagnostic/prognostic biomarkers.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirvani Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University G.C., Tehran, Iran
| |
Collapse
|
16
|
Role and the molecular mechanism of lncRNA PTENP1 in regulating the proliferation and invasion of cervical cancer cells. Gene Ther 2020; 29:464-475. [PMID: 32973352 DOI: 10.1038/s41434-020-00189-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022]
Abstract
Cervical cancer ranks second in the major causes of cancer-relevant death in female population worldwide. It is extensively reported that lncRNAs are implicated in biological activities of diverse cancers. LncRNA PTENP1 has been recently reported as a tumor suppressor in several malignancies. However, the pathophysiological function and the potential regulatory mechanism of PTENP1 in cervical cancer have never been studied. In this research, PTENP1 was pronouncedly downregulated in cervical cancer tissues, and low PTENP1 level was tightly linked to advanced stage and poor prognosis in cervical cancer. Overexpressing PTENP1 inhibited cervical cancer progression by suppressing cell growth, motility and epithelial-to-mesenchymal transition (EMT). PTENP1 was confirmed to decoy miR-27a-3p to upregulate EGR1 expression in cervical cancer cells. Additionally, EGR1 knockdown reversed the repressive effect of PTENP1 overexpression on cervical cancer progression. In a word, current study was the first to uncover the biological functions of PTENP1 as well as its modulatory mechanism in cervical cancer, which may offer a new potent target for treating patients with cervical cancer.
Collapse
|
17
|
Barlak N, Capik O, Sanli F, Karatas OF. The roles of microRNAs in the stemness of oral cancer cells. Oral Oncol 2020; 109:104950. [PMID: 32828020 DOI: 10.1016/j.oraloncology.2020.104950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 02/08/2023]
Abstract
Oral cancer (OC), which is the most common form of head and neck cancers, has one of the lowest (~50%) overall 5-year survival rates. The main reasons for this high mortality rate are diagnosis of OC in advanced stages in most patients and spread to distant organs via lymph node metastasis. Many studies have shown that a small population of cells within the tumor plays vital roles in the initiation, progression, and metastasis of the tumor, resistance to chemotherapeutic agents, and recurrence. These cells, identified as cancer stem cells (CSCs), are the main reasons for the failure of current treatment modalities. Deregulated expressions of microRNAs are closely related to tumor prognosis, metastasis and drug resistance. In addition, microRNAs play important roles in regulating the functions of CSCs. Until now, the roles of microRNAs in the acquisition and maintenance of OC stemness have not been elucidated in detail yet. Here in this review, we summarized significant findings and the latest literature to better understand the involvement of CSCs in association with dysregulated microRNAs in oral carcinogenesis. Possible roles of these microRNAs in acquisition and maintenance of CSCs features during OC pathogenesis were summarized.
Collapse
Affiliation(s)
- Neslisah Barlak
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey; Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Ozel Capik
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey; Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Fatma Sanli
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey; Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey; Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey.
| |
Collapse
|
18
|
Lei Y, Chen L, Zhang G, Shan A, Ye C, Liang B, Sun J, Liao X, Zhu C, Chen Y, Wang J, Zhang E, Deng L. MicroRNAs target the Wnt/β‑catenin signaling pathway to regulate epithelial‑mesenchymal transition in cancer (Review). Oncol Rep 2020; 44:1299-1313. [PMID: 32700744 PMCID: PMC7448411 DOI: 10.3892/or.2020.7703] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Epithelial‑mesenchymal transition (EMT), during which cancer cells lose the epithelial phenotype and gain the mesenchymal phenotype, has been verified to result in tumor migration and invasion. Numerous studies have shown that dysregulation of the Wnt/β‑catenin signaling pathway gives rise to EMT, which is characterized by nuclear translocation of β‑catenin and E‑cadherin suppression. Wnt/β‑catenin signaling was confirmed to be affected by microRNAs (miRNAs), several of which are down‑ or upregulated in metastatic cancer cells, indicating their complex roles in Wnt/β‑catenin signaling. In this review, we demonstrated the targets of various miRNAs in altering Wnt/β‑catenin signaling to promote or inhibit EMT, which may elucidate the underlying mechanism of EMT regulation by miRNAs and provide evidence for potential therapeutic targets in the treatment of invasive tumors.
Collapse
Affiliation(s)
- Yuhe Lei
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Lei Chen
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Ge Zhang
- Department of Big Data Research of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Aiyun Shan
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Chunfeng Ye
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Liang
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jiayu Sun
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Xin Liao
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Changfeng Zhu
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Yueyue Chen
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jing Wang
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Enxin Zhang
- Department of Oncology, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Lijuan Deng
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
19
|
microRNAs in oral cancer: Moving from bench to bed as next generation medicine. Oral Oncol 2020; 111:104916. [PMID: 32711289 DOI: 10.1016/j.oraloncology.2020.104916] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/04/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022]
Abstract
Oral cancer is the thirteenth most common cancer in the world, with India contributing to 33% of the global burden. Lack of specific non-invasive markers, non-improvement in patient survival and tumor recurrence remain a major clinical challenge in oral cancer. Epigenetic regulation in the form of microRNAs (miRs) that act as tumor suppressor miRs or oncomiRs has gained significant momentum with the advancement in the field, suggesting the potential for clinical application of miRs in oral cancer. The current review of literature identified miR-21, miR-27a(-3p), miR-31, miR-93, miR-134, miR-146, miR-155, miR-196a, miR-196b, miR-211, miR-218, miR-222, miR-372 and miR-373 to be up-regulated and let-7a, let-7b, let-7c, let-7d, let-7e, let-7f, let-7g, let-7i, miR-26a, miR-99a-5p, miR-137, miR-139-5p, miR-143-3p, miR-184 and miR-375 to be down-regulated in oral cancer. Mechanistic studies have uncovered several miRs that are deregulated at varying levels and in different stages of oral cancer progression, thus providing clinical utility in better diagnosis as well as usefulness in prognosis by identifying patients with poor prognosis or stratifying patients based on responsiveness to chemo- and radio-therapy. Lastly, exogenous modulation of miR expression using miRNA-based drugs in combination with first-line agents may be adopted as a new therapeutic modality to treat oral cancer. Knowledge of miRs and their involvement in key molecular processes, clinical association, responsiveness to therapy and clinical advancement may highlight additional avenues in order to improve patient morbidity and mortality. Furthermore, combinatorial approaches with miR-therapy may be efficacious in oral cancer.
Collapse
|
20
|
Ben W, Zhang G, Huang Y, Sun Y. MiR-27a-3p Regulated the Aggressive Phenotypes of Cervical Cancer by Targeting FBXW7. Cancer Manag Res 2020; 12:2925-2935. [PMID: 32431539 PMCID: PMC7198449 DOI: 10.2147/cmar.s234897] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Background Abnormally expressed microRNAs (miRNAs) contribute greatly to the initiation and development of human cancers, including cervical cancer, by regulating the target mRNAs. MiR-27a-3p was up-regulated and acted as an oncogene in multiple cancers. However, the function of miR-27a-3p in cervical cancer has not been fully understood. Methods The expression of miR-27a-3p in cervical cancer tissues and cell lines was detected by RT-pPCR. MTT assay, colony formation assay and flow cytometry analysis were performed to determine the effects of miR-27a-3p on the growth of cervical cancer cells. The targets of miR-27a-3p were predicted using the miRDB database. Luciferase reporter assay was utilized to confirm the binding between miR-27a-3p and the 3ʹ-untranslated region (UTR) of targets. The expression of target proteins was determined by RT-qPCR and Western blot. Results Our results found that miR-27a-3p was overexpressed in cervical cancer tissues and cell lines. Down-regulation of miR-27a-3p significantly inhibited the proliferation, colony formation and promoted apoptosis of cervical cancer cells. Overexpression of miR-27a-3p enhanced the cell proliferation. miR-27a-3p was found to bind the 3ʹ-UTR of F-box and WD repeat domain containing 7 (FBXW7) and resulted in the down-regulation of FBXW7. The up-regulated level of miR-27a-3p was inversely correlated with that of FBXW7 in cervical cancer tissues. Additionally, reintroducing of FBXW7 significantly attenuated the promoting effect of miR-27a-3p on the proliferation of cervical cancer cells. Conclusion These results indicated the growth-promoting function of miR-27a-3p in cervical cancer via targeting FBXW7. Our finding suggested the potential application of miR-27a-3p/FBXW7 axis in the diagnosis and treatment of cervical cancer.
Collapse
Affiliation(s)
- Wei Ben
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Guangmei Zhang
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Yangang Huang
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Yuhui Sun
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| |
Collapse
|
21
|
Lerner N, Schreiber‐Avissar S, Beit‐Yannai E. Extracellular vesicle-mediated crosstalk between NPCE cells and TM cells result in modulation of Wnt signalling pathway and ECM remodelling. J Cell Mol Med 2020; 24:4646-4658. [PMID: 32168427 PMCID: PMC7176886 DOI: 10.1111/jcmm.15129] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/14/2020] [Accepted: 02/16/2020] [Indexed: 12/27/2022] Open
Abstract
Primary open-angle glaucoma is a leading cause of irreversible blindness, often associated with increased intraocular pressure. Extracellular vesicles (EVs) carry a specific composition of proteins, lipids and nucleotides have been considered as essential mediators of cell-cell communication. Their potential impact for crosstalk between tissues responsible for aqueous humour production and out-flow is largely unknown. The study objective was to investigate the effects of EVs derived from non-pigmented ciliary epithelium (NPCE) primary cells on the expression of Wnt proteins in a human primary trabecular meshwork (TM) cells and define the mechanism underlying exosome-mediated regulation that signalling pathway. Consistent with the results in TM cell line, EVs released by both primary NPCE cells and NPCE cell line showed diminished pGSK3β phosphorylation and decreased cytosolic levels of β-catenin in primary TM cells. At the molecular level, we showed that NPCE exosome treatment downregulated the expression of positive GSKβ regulator-AKT protein but increased the levels of GSKβ negative regulator-PP2A protein in TM cells. NPCE exosome protein analysis revealed 584 miRNAs and 182 proteins involved in the regulation of TM cellular processes, including WNT/β-catenin signalling pathway, cell adhesion and extracellular matrix deposition. We found that negative modulator of Wnt signalling miR-29b was abundant in NPCE exosomal samples and treatment of TM cells with NPCE EVs significantly decreased COL3A1 expression. Suggesting that miR-29b can be responsible for decreased levels of WNT/β-catenin pathway. Overall, this study highlights a potential role of EVs derived from NPCE cells in modulating ECM proteins and TM canonical Wnt signalling.
Collapse
Affiliation(s)
- Natalie Lerner
- Clinical Biochemistry and Pharmacology DepartmentBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Sofia Schreiber‐Avissar
- Clinical Biochemistry and Pharmacology DepartmentBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Elie Beit‐Yannai
- Clinical Biochemistry and Pharmacology DepartmentBen‐Gurion University of the NegevBeer‐ShevaIsrael
| |
Collapse
|
22
|
You X, Zhou Z, Chen W, Wei X, Zhou H, Luo W. MicroRNA-495 confers inhibitory effects on cancer stem cells in oral squamous cell carcinoma through the HOXC6-mediated TGF-β signaling pathway. Stem Cell Res Ther 2020; 11:117. [PMID: 32171324 PMCID: PMC7071696 DOI: 10.1186/s13287-020-1576-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/03/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is associated with high morbidity and ranks sixth among malignancies worldwide. Increasing evidence suggests that microRNAs (miRNAs or miRs) play a critical role in regulating cancer stem cells (CSCs), which drive the proliferation and spread of OSCC. Therefore, based on the alteration of aberrantly expressed miR-495 and homeobox C6 (HOXC6) by Gene Expression Omnibus (GEO) analysis, we subsequently explore the potential effect of miR-495 on the progression of CSCs in OSCC. Methods After the isolation of CSCs from the clinical tissue samples of OSCC patients, the expression of miR-495 and HOXC6 was determined, followed by the validation of the relationship between miR-495 and HOXC6. Subsequently, gain- and loss-function approach was performed to detect the role of miR-495 and HOXC6 in cell proliferation, migration, invasion, cell cycle entry, apoptosis, and epithelial-mesenchymal transition (EMT) of CSCs in OSCC, as well as the tumor growth in vivo. Results HOXC6 was highly expressed while miR-495 was poorly expressed in OSCC. HOXC6 was verified to be a target gene of miR-495, and miR-495 could inhibit the activation of the TGF-β signaling pathway. CSCs with miR-495 overexpression or HOXC6 silencing exhibited reversed EMT process; reduced abilities of proliferation, migration, and invasion; and promoted cell apoptosis in vitro. Moreover, inhibited tumor growth was observed in vivo after injection with miR-495 agomir or sh-HOXC6. In contrast, the downregulation of miR-495 showed an induced role in the progression of OSCC. Conclusion These findings suggest that miR-495 may suppress HOXC6 to inhibit EMT, proliferation, migration, and invasion while promoting apoptosis of CSCs in OSCC by inhibiting the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Xiaolong You
- Department of Head and Neck Surgery, Jiangxi Cancer Hospital, No. 519, Beijing East Road, Nanchang, 330029, Jiangxi Province, People's Republic of China
| | - Zhengyu Zhou
- Department of Intensive Care Medicine, Jiangxi Cancer Hospital, Nanchang, 330029, People's Republic of China
| | - Wen Chen
- Department of Plastic Surgery, Jiangxi Cancer Hospital, Nanchang, 330029, People's Republic of China
| | - Xiaoyong Wei
- Department of Liver Oncology, Jiangxi Cancer Hospital, Nanchang, 330029, People's Republic of China
| | - Heqiang Zhou
- Department of Head and Neck Surgery, Jiangxi Cancer Hospital, No. 519, Beijing East Road, Nanchang, 330029, Jiangxi Province, People's Republic of China
| | - Wenzheng Luo
- Department of Head and Neck Surgery, Jiangxi Cancer Hospital, No. 519, Beijing East Road, Nanchang, 330029, Jiangxi Province, People's Republic of China.
| |
Collapse
|
23
|
The Role of Carcinogenesis-Related Biomarkers in the Wnt Pathway and Their Effects on Epithelial-Mesenchymal Transition (EMT) in Oral Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12030555. [PMID: 32121061 PMCID: PMC7139589 DOI: 10.3390/cancers12030555] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/27/2022] Open
Abstract
As oral squamous cell carcinoma (OSCC) can develop from potentially malignant disorders (PMDs), it is critical to develop methods for early detection to improve the prognosis of patients. Epithelial-mesenchymal transition (EMT) plays an important role during tumor progression and metastasis. The Wnt signaling pathway is an intercellular pathway in animals that also plays a fundamental role in cell proliferation and regeneration, and in the function of many cell or tissue types. Specific components of master regulators such as epithelial cadherin (E-cadherin), Vimentin, adenomatous polyposis coli (APC), Snail, and neural cadherin (N-cadherin), which are known to control the EMT process, have also been implicated in the Wnt cascade. Here, we review recent findings on the Wnt signaling pathway and the expression mechanism. These regulators are known to play roles in EMT and tumor progression, especially in OSCC. Characterizing the mechanisms through which both EMT and the Wnt pathway play a role in these cellular pathways could increase our understanding of the tumor genesis process and may allow for the development of improved therapeutics for OSCC.
Collapse
|
24
|
Bioinformatic screening and experimental analysis identify SFRP1 as a prognostic biomarker for tongue squamous cell carcinomas. Arch Oral Biol 2019; 110:104587. [PMID: 31734541 DOI: 10.1016/j.archoralbio.2019.104587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To provide a prognostic biomarker and a potential therapeutic target for tongue squamous cell carcinoma (TSCC). DESIGN Screening the prognostic genes of TSCC by bioinformatics, and verifying the correlation between the above genes and the prognosis of TSCC by experiments. RESULTS Twenty-four common differentially expressed genes (DEGs) between TSCC and the corresponding normal tissues were screened from four sets of TSCC functional gene expression series in Gene Expression Omnibus (GEO) datasets. Further bioinformatics research based on the data from The Cancer Genome Atlas (TCGA), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) indicate that the low expression of SFRP1 might be correlated with poor prognosis of TSCC patients. By colony formation assay, reverse transcription polymerase chain reaction (RT-PCR), western blotting, immunohistochemical staining, flowcytometry, lentivirus transfection and animal experiments, it was confirmed that the low level of SFRP1 expression correlated with poor prognosis of TSCC patients. CONCLUSION This study identified SFRP1 as a novel prognostic biomarker and a potential therapeutic target for TSCC.
Collapse
|
25
|
Jiang Z, Zhang Y, Chen X, Wu P, Chen D. Inactivation of the Wnt/β-catenin signaling pathway underlies inhibitory role of microRNA-129-5p in epithelial-mesenchymal transition and angiogenesis of prostate cancer by targeting ZIC2. Cancer Cell Int 2019; 19:271. [PMID: 31649488 PMCID: PMC6805653 DOI: 10.1186/s12935-019-0977-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
Background Prostate cancer (PCa) is a common disease that often occurs among older men and a frequent cause of malignancy associated death in this group. microRNA (miR)-129-5p has been identified as an essential regulator with a significant role in the prognosis of PC. Therefore, this study aimed to investigate roles of miR-129-5p in PCa. Methods Microarray analysis was conducted to identify PCa-related genes. The expression of miR-129-5p and ZIC2 in PCa tissues was investigated. To understand the role of miR-129-5p and ZIC2 in PCa, DU145 cells were transfected with mimic or inhibitor of miR-129-5p, or si-ZIC2 and the expression of Wnt, β-catenin, E-cadherin, vimentin, N-cadherin, vascular endothelial growth factor (VEGF), and CD31, as well as the extent of β-catenin phosphorylation was determined. In addition, cell proliferation, migration, invasion, angiogenesis, apoptosis and tumorigenesis were detected. Results miR-129-5p was poorly expressed and ZIC2 was highly expressed in PCa tissues. Down-regulation of ZIC2 or overexpression of miR-129-5p reduced the expression of ZIC2, Wnt, β-catenin, N-cadherin, vimentin, and β-catenin phosphorylation but increased the expression of E-cadherin. Importantly, miR-129-5p overexpression significantly reduced cell migration, invasion, angiogenesis and tumorigenesis while increasing cell apoptosis. Conclusions The findings of the present study indicated that overexpression of miR-129-5p or silencing of ZIC2 could inhibit epithelial–mesenchymal transition (EMT) and angiogenesis in PCa through blockage of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Zhenming Jiang
- 1Department of Urology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001 Liaoning People's Republic of China
| | - Yuxi Zhang
- 1Department of Urology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001 Liaoning People's Republic of China.,Department of Urology, People's Hospital of Datong Hui and Tu Autonomous County, No. 1, Wenhua Road, Qiaotou Town, Datong Hui and Tu Autonomous County, Xining, 810100 Qinghai People's Republic of China
| | - Xi Chen
- 3Department of Pharmacy, The First Hospital of China Medical University, Shenyang, 110001 People's Republic of China
| | - Pingeng Wu
- 1Department of Urology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001 Liaoning People's Republic of China
| | - Dong Chen
- 4Central Lab, The First Hospital of China Medical University, Shenyang, 110001 People's Republic of China
| |
Collapse
|
26
|
Chen Q, Liu T, Bao Y, Zhao T, Wang J, Wang H, Wang A, Gan X, Wu Z, Wang L. CircRNA cRAPGEF5 inhibits the growth and metastasis of renal cell carcinoma via the miR-27a-3p/TXNIP pathway. Cancer Lett 2019; 469:68-77. [PMID: 31629934 DOI: 10.1016/j.canlet.2019.10.017] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 02/08/2023]
Abstract
Circular RNAs (circRNAs) are reported to act as important regulators in cancers. CircRNA RAPGEF5 (cRAPGEF5) is derived from exons 2-6 of the RAPGEF5 gene and may promote papillary thyroid cancer progression. However, the role of cRAPGEF5 in renal cell carcinoma (RCC) remains unclear. In this study, we found cRAPGEF5 to be significantly downregulated in RCC tissues. Among 245 RCC cases, cRAPGEF5 downregulation correlated positively with aggressive clinical characteristics and independently predicted poor overall survival and recurrence-free survival. Functional assays demonstrated that cRAPGEF5 suppresses RCC proliferation and migration in vitro and in vivo. Mechanistically, RNA Immunoprecipitation and circRNA in vivo precipitation assays showed that cRAPGEF5 functions as a sponge of oncogenic miR-27a-3p, which targets the suppressor gene TXNIP. Interactions between miR-27a-3p and cRAPGEF5 or TXNIP were confirmed by dual-luciferase reporter assays. In conclusion, cRAPGEF5 plays a role in suppressing RCC via the miR-27a-3p/TXNIP pathway and may serve as a promising prognostic biomarker and novel therapeutic target for RCC patients.
Collapse
Affiliation(s)
- Qiong Chen
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Tao Liu
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Yi Bao
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Tangliang Zhao
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Jie Wang
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Hui Wang
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Anbang Wang
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Xinxin Gan
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Zhenjie Wu
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| | - Linhui Wang
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
27
|
Zhang J, Cao Z, Yang G, You L, Zhang T, Zhao Y. MicroRNA-27a (miR-27a) in Solid Tumors: A Review Based on Mechanisms and Clinical Observations. Front Oncol 2019; 9:893. [PMID: 31572683 PMCID: PMC6751266 DOI: 10.3389/fonc.2019.00893] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are a family of highly conserved, non-coding single-stranded RNAs transcribed as ~70 nucleotide precursors to an 18–22 nucleotide product (1). miRNAs can silence their homologous target genes at the post-transcriptional level, and these genes have been revealed to play an important role in tumorigenesis, invasion and metastasis (2). MicroRNA-27a (miR-27a), transcripted by miR-27a gene, has proved to implicate with many kinds of solid tumors, showing potential as a useful biomarker or drug target for clinical application. However, even though miR-27a has been reported in many cancers, the mechanism and signal pathways of miR-27 in oncogenesis, invasion, and metastasis are still obscure. Moreover, recent studies show that miR-27a pays an important role in epithelial-mesenchymal-transition, regulating tumor immune response, and chemoresistance. In this review, we summarize the current literature, demonstrate the established link between miR-27a and tumorigenesis, and focus on recently identified mechanisms. The review also aims to demonstrate the potential of miR-27a as a diagnostic and/or prognostic biomarker in solid tumors and to discuss the possibilities of targeted therapy and drug design.
Collapse
Affiliation(s)
- Jingcheng Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
28
|
Fang C, Li Y. Prospective applications of microRNAs in oral cancer. Oncol Lett 2019; 18:3974-3984. [PMID: 31579085 PMCID: PMC6757290 DOI: 10.3892/ol.2019.10751] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNA molecules that are generally encoded by endogenous genes and exert suppressive effects on post-transcriptional regulation of their target genes by translation repression or degradation of mRNA. This subsequently mediates activation or blocking of downstream signaling pathways associated with oral malignancies. Aberrant levels of certain miRNAs have been identified in cell experiments, clinical carcinomatous specimens, saliva, serum or plasma samples of patients with oral malignancies. miRNAs are associated with multiple aspects of oral cancer, including tumor growth, cellular proliferation, apoptosis, migration, invasion, metastasis, glycometabolism, radiosensitivity and chemosensitivity. miRNAs have the potential to be used in clinical applications as minimally invasive or non-invasive tools for early diagnosis and prognosis by the detection of serum, plasma and saliva levels, and may provide a new ancillary or additional reference index of traditional pathological grading and clinical staging. Furthermore, miRNAs may be used as prognostic biomarkers or targets for novel therapies for oral cancer.
Collapse
Affiliation(s)
- Chuan Fang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yadong Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
29
|
Li E, Han K, Zhou X. microRNA-27a-3p Down-regulation Inhibits Malignant Biological Behaviors of Ovarian Cancer by Targeting BTG1. Open Med (Wars) 2019; 14:577-585. [PMID: 31410369 PMCID: PMC6689206 DOI: 10.1515/med-2019-0065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is the most deadly malignant tumor. MicroRNA-27a-3p (miR-27a-3p) was a tumor oncogene in various cancers. However, the role and mechanism of miR-27a-3p in ovarian cancer are still unknown. In this study, we found that miR-27a-3p over-expression could significantly promote the viability of SK-OV-3 cells, enhance cell migration and invasion, and reduce cell apoptosis. Besides, results from western blot assay showed that miR-27a-3p over-expression could increase Bcl-2 protein expression and decrease Bax protein expression. Furthermore, TargetScan and the dual luciferase reporter gene assay revealed that BTG anti-proliferation factor 1 (BTG1) was a direct target of miR-27a-3p. In addition, we found that miR-27a-3p down-regulation suppressed SK-OV-3 cell viability, migration and invasion, and promoted cell apoptosis. All the effects of miR-27a-3p down-regulation on SK-OV-3 cells were reversed by BTG1-siRNA. Therefore, miR-27a-3p/BTG1 axis may be a new potential target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Enfang Li
- Department of Obstetrics and Gynecology, Taikang Xianlin Gulou Hospital, No. 188 Lingshan North Road, Qixia District, Nanjing 210000, China
| | - Ke Han
- Department of Obstetrics and Gynecology, Taikang Xianlin Gulou Hospital, No. 188 Lingshan North Road, Qixia District, Nanjing 210000, China
| | - Xuan Zhou
- Department of Obstetrics and Gynecology, Taikang Xianlin Gulou Hospital, No. 188 Lingshan North Road, Qixia District, Nanjing 210000, China
| |
Collapse
|
30
|
Huang C, Wang L, Song H, Wu C. MiR-29a inhibits the progression of oral squamous cell carcinoma by targeting Wnt/β-catenin signalling pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3037-3042. [PMID: 31342798 DOI: 10.1080/21691401.2019.1576712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chao Huang
- Department of Stomatology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Lili Wang
- Department of Prosthodontics, Tianjin Stomatological Hospital, Tianjin, China
| | - Hongguang Song
- Department of Stomatology, Beijing DCN Orthopaedic Hospital, Beijing, China
| | - Cungang Wu
- Department of Ultrasonography, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
31
|
Zhang LY, Chen Y, Jia J, Zhu X, He Y, Wu LM. MiR-27a promotes EMT in ovarian cancer through active Wnt/𝜷-catenin signalling by targeting FOXO1. Cancer Biomark 2019; 24:31-42. [PMID: 30614794 DOI: 10.3233/cbm-181229] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ovarian cancer (OC) is the fifth most common type of cancer in women worldwide. MiR-27a plays an important role in the development of ovarian cancer. However, the exact function and molecular mechanism of miR-27a in epithelial-mesenchymal transition (EMT) has not been thoroughly elucidated to date. METHODS Quantitative real-time PCR (qRT-PCR) was used to determine the expression of miR-27a and FOXO1 mRNA in ovarian tissues and cells. The function of miR-27a in ovarian cancer was investigated through overexpression and knockdown of miR-27a in vitro. Wound healing and Transwell assays were performed to evaluate the migration and invasive capacity of the cells. A luciferase reporter assay was conducted to confirm the interaction between miR-27a and FOXO1. Western blotting was used to evaluate FOXO1, EMT and Wnt/β-catenin relative protein expression. RESULTS In our study, we found that the mRNA expression level of miR-27a was significantly higher in ovarian cancer tissues and in HO8910 and OV90 cells. Functional experiments showed that miR-27a overexpression potentiated the migration and invasion of HO8910 and OV90 cells, while miR-27a inhibition reduced the cells' migration and invasion. Moreover, miR-27a upregulated the expression of mesenchymal cell markers and downregulated the expression of epithelial cell markers, which were restored via silencing of miR-27a expression. Subsequently, miR-27a was found to directly target and suppress the expression of FOXO1. Finally, we demonstrated that miR-27a promoted the progression of ovarian cancer cells and induced the process of EMT via the Wnt/β-catenin signalling pathway through inhibition of FOXO1. CONCLUSIONS Taken together, these results indicate that targeting miR-27a and FOXO1 could represent a strategy for anticancer therapy in ovarian cancer.
Collapse
Affiliation(s)
- Li-Ya Zhang
- Department of Gynecology, Huizhou No. 2 Women's and Children's Healthcare Hospital, Huizhou, Guangdong 516001, China
| | - Yuan Chen
- Huizhou College of Life Sciences, Huizhou, Guangdong 516001, China
| | - Jue Jia
- Department of Gynecology, Shandong Provincial Tumor Hospital, Jinan, Shandong 250117, China
| | - Xi Zhu
- Department of Gynecology, Shenyang Maternal and Child Hospital, Shenyang, Liaoning 110000, China
| | - Yan He
- Department of Gynecology, Huizhou No. 2 Women's and Children's Healthcare Hospital, Huizhou, Guangdong 516001, China
| | - Li-Ming Wu
- Department of Gynecology, Huizhou No. 2 Women's and Children's Healthcare Hospital, Huizhou, Guangdong 516001, China
| |
Collapse
|
32
|
Liu T, Zou XZ, Huang N, Ge XY, Yao MZ, Liu H, Zhang Z, Hu CP. miR-27a promotes endothelial-mesenchymal transition in hypoxia-induced pulmonary arterial hypertension by suppressing BMP signaling. Life Sci 2019; 227:64-73. [PMID: 31004656 DOI: 10.1016/j.lfs.2019.04.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 12/27/2022]
Abstract
AIM Growing evidence suggests that endothelial-mesenchymal transition (EndMT) play key roles in pulmonary arterial remodeling during pulmonary arterial hypertension (PAH), but the underlying mechanisms have yet to be fully understood. miR-27a has been shown to promote proliferation of pulmonary arterial cells during PAH, but its role in EndMT remains unexplored. This study was designed to investigate the role and underlying mechanism of miR-27a in EndMT during PAH. MAIN METHODS Rats were exposed in hypoxia (10% O2) for 3 weeks to induce PAH, and human pulmonary artery endothelial cells (HPAECs) were exposed in hypoxia (1% O2) for 48 h to induce EndMT. Immunohistochemistry, in situ hybridization, immunofluorescence, real-time PCR and Western blot were conducted to detect the expressions of RNAs and proteins, and luciferase assay was used to verify the putative binding site of miR-27a. KEY FINDINGS We found that hypoxia up-regulated miR-27a in the tunica intima of rat pulmonary arteries and HPAECs, and that inhibition of miR-27a suppressed hypoxia-induced EndMT. Furthermore, elevated expression of miR-27a suppressed bone morphogenetic protein (BMP) signaling by targeting Smad5, thereby lessening Id2-mediated repression of the 2 critical mediators of EndMT (Snail and Twist). SIGNIFICANCE Our data unveiled a novel role of miR-27a in EndMT during hypoxia-induced PAH. Thus, targeting of miR-27a-related pathway may be therapeutically harnessed to treat PAH.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Xiao-Zhou Zou
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, China
| | - Ning Huang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Xiao-Yue Ge
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Mao-Zhong Yao
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Hong Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Zheng Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China.
| | - Chang-Ping Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
33
|
Ding J, Cheng Y, Zhang Y, Liao S, Yin T, Yang J. The miR‐27a‐3p/USP25 axis participates in the pathogenesis of recurrent miscarriage by inhibiting trophoblast migration and invasion. J Cell Physiol 2019; 234:19951-19963. [PMID: 30953360 DOI: 10.1002/jcp.28593] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Jinli Ding
- Reproductive Medical Center Renmin Hospital of Wuhan University Wuhan China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development Wuhan China
| | - Yanxiang Cheng
- Department of Gynecology and Obstetrics Renmin Hospital of Wuhan University Wuhan China
| | - Yi Zhang
- Reproductive Medical Center Renmin Hospital of Wuhan University Wuhan China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development Wuhan China
| | - Shujie Liao
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Tailang Yin
- Reproductive Medical Center Renmin Hospital of Wuhan University Wuhan China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development Wuhan China
| | - Jing Yang
- Reproductive Medical Center Renmin Hospital of Wuhan University Wuhan China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development Wuhan China
| |
Collapse
|
34
|
Li H, Chen A, Yuan Q, Chen W, Zhong H, Teng M, Xu C, Qiu Y, Cao J. NF-κB/Twist axis is involved in chysin inhibition of ovarian cancer stem cell features induced by co-treatment of TNF-α and TGF-β. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:101-112. [PMID: 31933724 PMCID: PMC6943996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/06/2018] [Indexed: 06/10/2023]
Abstract
Chrysin (ChR) inhibits various cancer cells and possesses anti-inflammatory activities. NF-kB has been shown to regulate the expression of genes involved in epithelial-mesenchymal transformation (EMT) by upregulation of TWIST1. This study aimed to assess whether ChR can inhibit EMT phenotype and cancer stem-like cell (CSLC) features in ovarian cancer cells co-treated with TNF-α and TGF-β. Here, OVCAR-3 cells were co-treated with TNF-α and TGF-β in the presence or absence of ChR. Then, the expression levels of E-cadherin, N-cadherin, CD133, CD44, NF-κBp65, and TWIST1 were analyzed by western blotting. Wound healing and tumor sphere formation assays were performed to assess the migration and sphere-forming capabilities of cells, respectively. Overexpression and/or knockdown of NF-κBp65 and/or TWIST1 were used to explore the molecular mechanisms. We showed that ChR inhibited EMT and CSLC properties in ovarian cancer cells administered TNF-α after prolonged TGF-β treatment, in a dose-dependent manner. Also, knockdown of NF-κBp65 and ChR cooperatively enhanced the inhibition of NF-κBp65 and TWIST1 expression, EMT phenotype, and CSLC properties. Conversely, overexpression of NF-κBp65 antagonized the above-mentioned activities of ChR. Furthermore, TWIST1 silencing or overexpression did not affect the ChR treatment effect on NF-κBp65 levels, but it reduced or enhanced EMT and CSLC properties. In conclusion, ChR can inhibit a proinflammatory cytokine to induce EMT and CSLC characteristics in OVCAR-3 cells, which may be involved in blocking the NF-κB/Twist axis.
Collapse
Affiliation(s)
- Huazhen Li
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Guangzhou Medical University511447, Guangdong, China
| | - A Chen
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceChangsha 410013, China
| | - Qiaoqi Yuan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Guangzhou Medical University511447, Guangdong, China
| | - Weifeng Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Guangzhou Medical University511447, Guangdong, China
| | - Huimin Zhong
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Guangzhou Medical University511447, Guangdong, China
| | - Mo Teng
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Guangzhou Medical University511447, Guangdong, China
| | - Chang Xu
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceChangsha 410013, China
| | - Yebei Qiu
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceChangsha 410013, China
| | - Jianguo Cao
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceChangsha 410013, China
| |
Collapse
|
35
|
Meng W, Efstathiou J, Singh R, McElroy J, Volinia S, Cui R, Ibrahim A, Johnson B, Gupta N, Mehta S, Wang H, Miller E, Nguyen P, Fleming J, Wu CL, Haque SJ, Shipley W, Chakravarti A. MicroRNA Biomarkers for Patients With Muscle-Invasive Bladder Cancer Undergoing Selective Bladder-Sparing Trimodality Treatment. Int J Radiat Oncol Biol Phys 2018; 104:197-206. [PMID: 30583038 DOI: 10.1016/j.ijrobp.2018.12.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/28/2018] [Accepted: 12/16/2018] [Indexed: 01/16/2023]
Abstract
PURPOSE Trimodality therapy with maximal transurethral resection of bladder tumor and definitive chemoradiation reserving cystectomy for salvage of local recurrence is an accepted treatment alternative to upfront cystectomy for selected patients with muscle-invasive bladder cancer. There is a need for molecular biomarkers to predict which patients will respond to bladder preservation therapy. METHODS AND MATERIALS We sought to identify biomarkers with the ability to predict response to chemoradiation and survival after selective bladder preservation therapy in a cohort of 40 patients using a microRNA profiling approach. In vitro experiments were performed using transitional cell carcinoma lines CRL1749, HTB5, and HTB4. RESULTS We identified a panel of microRNAs associated with overall survival in our bladder preservation cohort and in the TCGA cohort. We also identified several microRNAs, including miR-23a and miR-27a, microRNAs of the miR-23a cluster, to be suggestively associated with complete response to chemoradiation therapy. The microRNAs were significantly associated with overall survival in The Cancer Genome Atlas cohort. In vitro studies suggest that the functional roles of miR-23a and miR-27a involve targeting the SFRP1 protein, a negative regulator of the Wnt signaling pathway. The upregulation of β-catenin in the Wnt signaling pathway mediated proliferation, migration, invasion, and sensitivity to radiation and cisplatin treatment in bladder cancer cells. CONCLUSIONS Our results indicate that miR-23a and miR-27a act as oncomirs, and once independently validated, they may help appropriately triage selected bladder cancer patients to individualize treatment.
Collapse
Affiliation(s)
- Wei Meng
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jason Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Rajbir Singh
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Joseph McElroy
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | | | - Ri Cui
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Ahmed Ibrahim
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden; Division of Pharmaceutical Industries, National Research Centre, Dokki, Egypt
| | - Benjamin Johnson
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | | | | | - Huabao Wang
- The Genomics Shared Resource, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Eric Miller
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Phuong Nguyen
- Department of Radiation Oncology, Ohio Valley Medical Center, Wheeling, West Virginia
| | - Jessica Fleming
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Chin-Lee Wu
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - S Jaharul Haque
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - William Shipley
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
36
|
Pan S, Zhao X, Wang X, Tian X, Wang Y, Fan R, Feng N, Zhang S, Gu X, Jia M, Li J, Yang L, Wang K, Guo H, Pei J. Sfrp1 attenuates TAC-induced cardiac dysfunction by inhibiting Wnt signaling pathway- mediated myocardial apoptosis in mice. Lipids Health Dis 2018; 17:202. [PMID: 30153824 PMCID: PMC6114876 DOI: 10.1186/s12944-018-0832-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/19/2018] [Indexed: 01/12/2023] Open
Abstract
Background Hemodynamic overload causes cardiac hypertrophy leading to heart failure. Wnt signaling pathway was reported activated in heart failure. Secreted frizzled related protein 1 (Sfrp1) is a suppressor of Wnt signaling activation. The aim of the present study was to investigate the protective effect of Sfrp1 on hemodynamic overload- induced cardiac dysfunction. Methods A mice transverse aortic constriction (TAC)- induced heart failure model was established. A recombinant adeno-associated virus 9 (AAV9) vector was used to deliver Sfrp1 gene into myocardium. Fluorescence and immunohistochemistry staining was used to evaluate the effectiveness of viral vector delivery. Invasive hemodynamic examination was used to evaluate cardiac systolic and diastolic functions. Myocardium apoptosis was detected by TUNEL assay. The expression levels of Sfrp1, β-catenin, caspase3, Bax, Bcl-2 and c-Myc were measured by Western blotting. Results Increased mean arterial pressure and impaired cardiac function confirmed the establishment of TAC model. Sfrp1 protein expression was effectively increased in myocardium of mice treated with AAV9-Sfrp1 viral vector. The viral vector administration improved both systolic and diastolic cardiac functions by reducing myocardial apoptosis in TAC mice. The expression levels of β-catenin, caspase3 and Bax were significantly reduced while the expression levels of Bcl-2 and c-Myc were dramatically increased in myocardium by the viral vector treatment in TAC mice. Conclusions AAV9 viral vector delivered sfrp1 expression gene into myocardium, which attenuated TAC-induced cardiac dysfunction by inhibiting Wnt signaling pathway activation- mediated apoptosis.
Collapse
Affiliation(s)
- Shuo Pan
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China.,1st Department of Cardiology, People's Hospital of Shaanxi Province, Xi'an, Shaanxi Province, China
| | - Xiujuan Zhao
- Ultrasonic Center, Northwest Women and Children's Hospital, Xi'an, Shaanxi Province, China
| | - Xu Wang
- Student Brigade, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xin Tian
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yuanbo Wang
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Rong Fan
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Na Feng
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Shumiao Zhang
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiaoming Gu
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Min Jia
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Juan Li
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Lu Yang
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Kaiyan Wang
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Haitao Guo
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
| | - Jianming Pei
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
37
|
Functional Role of Non-Coding RNAs during Epithelial-To-Mesenchymal Transition. Noncoding RNA 2018; 4:ncrna4020014. [PMID: 29843425 PMCID: PMC6027143 DOI: 10.3390/ncrna4020014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 01/17/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a key biological process involved in a multitude of developmental and pathological events. It is characterized by the progressive loss of cell-to-cell contacts and actin cytoskeletal rearrangements, leading to filopodia formation and the progressive up-regulation of a mesenchymal gene expression pattern enabling cell migration. Epithelial-to-mesenchymal transition is already observed in early embryonic stages such as gastrulation, when the epiblast undergoes an EMT process and therefore leads to the formation of the third embryonic layer, the mesoderm. Epithelial-to-mesenchymal transition is pivotal in multiple embryonic processes, such as for example during cardiovascular system development, as valve primordia are formed and the cardiac jelly is progressively invaded by endocardium-derived mesenchyme or as the external cardiac cell layer is established, i.e., the epicardium and cells detached migrate into the embryonic myocardial to form the cardiac fibrous skeleton and the coronary vasculature. Strikingly, the most important biological event in which EMT is pivotal is cancer development and metastasis. Over the last years, understanding of the transcriptional regulatory networks involved in EMT has greatly advanced. Several transcriptional factors such as Snail, Slug, Twist, Zeb1 and Zeb2 have been reported to play fundamental roles in EMT, leading in most cases to transcriptional repression of cell⁻cell interacting proteins such as ZO-1 and cadherins and activation of cytoskeletal markers such as vimentin. In recent years, a fundamental role for non-coding RNAs, particularly microRNAs and more recently long non-coding RNAs, has been identified in normal tissue development and homeostasis as well as in several oncogenic processes. In this study, we will provide a state-of-the-art review of the functional roles of non-coding RNAs, particularly microRNAs, in epithelial-to-mesenchymal transition in both developmental and pathological EMT.
Collapse
|
38
|
Li J, Zhou J, Xu Z, Huang H, Chen M, Ji J. MicroRNA‐27a‐3p inhibits cell viability and migration through down‐regulating DUSP16 in hepatocellular carcinoma. J Cell Biochem 2018; 119:5143-5152. [DOI: 10.1002/jcb.26526] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Jin‐Mao Li
- Department of Hepatobiliary and Pancreas SurgeryThe Central Hospital of Enshi Tujia and Miao Autonomous PrefectureEnshiChina
| | - Jun Zhou
- Department of OncologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Zhen Xu
- Department of General SurgeryHuai'an Hospital Affiliated of Xuzhou Medical College and Huai'an Second People's HospitalHuai'anChina
| | - Hai‐Jin Huang
- Department of General SurgeryHongze District People's HospitalHuai'anChina
| | - Min‐Jiang Chen
- Radiology Department and Interventional Radiology CenterThe Fifth Affiliated Hospital of Wenzhou Medical UniversityAffiliated Lishui Hospital of Zhejiang UniversityThe Central Hospital of Zhejiang LishuiLishuiChina
| | - Jian‐Song Ji
- Radiology Department and Interventional Radiology CenterThe Fifth Affiliated Hospital of Wenzhou Medical UniversityAffiliated Lishui Hospital of Zhejiang UniversityThe Central Hospital of Zhejiang LishuiLishuiChina
| |
Collapse
|
39
|
Jiang P, Chen A, Wu X, Zhou M, Ul Haq I, Mariyam Z, Feng Q. NEAT1 acts as an inducer of cancer stem cell-like phenotypes in NSCLC by inhibiting EGCG-upregulated CTR1. J Cell Physiol 2018; 233:4852-4863. [PMID: 29152741 DOI: 10.1002/jcp.26288] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/17/2017] [Accepted: 11/06/2017] [Indexed: 12/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) play significant roles in the pathogenesis of various cancers, including lung cancer. In this study, we aimed to investigate the biological function of lncRNA nuclear enriched abundant transcript 1 (NEAT1) in cancer stem cells (CSCs). CSCs have been suggested as the main cause of tumor metastasis, tumor recurrence, and chemotherapy resistance. The copper transporter 1 (CTR1) has been the focus of many recent studies because of its correlation with cisplatin (CDDP) resistance. So far, the mechanism of how NEAT1 regulates CSCs in NSCLC remains unknown. In the current study, lung cancer stem cells were enriched from the parental NSCLC cells. We observed that NEAT1 was up-regulated while copper transporter 1 (CTR1) was down-regulated in the enriched NSCLC cancer stem cells. Knockdown of NEAT1 was able to decrease the CSC-like properties in NSCLC cells, while over-expression of NEAT1 could contribute to the stemness respectively. Meanwhile, appropriate doses of EGCG restrained the stemness triggered by over-expressing NEAT1 via inducing CTR1 expression. Wnt signal pathway and epithelial-to-mesenchymal transition (EMT) process were involved in NEAT1-induced CSCs in NSCLC. These findings may suggest a novel role of NEAT1 for NSCLC treatment.
Collapse
Affiliation(s)
- Pan Jiang
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Aochang Chen
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyue Wu
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ming Zhou
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ijaz Ul Haq
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zahula Mariyam
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qing Feng
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
40
|
Methylation-associated silencing of SFRP1 gene in high-grade serous ovarian carcinomas. Ann Diagn Pathol 2017; 31:45-49. [DOI: 10.1016/j.anndiagpath.2017.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/14/2022]
|
41
|
Kou B, Liu W, Tang X, Kou Q. HMGA2 facilitates epithelial-mesenchymal transition in renal cell carcinoma by regulating the TGF-β/Smad2 signaling pathway. Oncol Rep 2017; 39:101-108. [PMID: 29138866 PMCID: PMC5783590 DOI: 10.3892/or.2017.6091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 11/01/2017] [Indexed: 12/11/2022] Open
Abstract
High-mobility group AT-hook 2 (HMGA2), a member of the high mobility group family, has been reported to correlate with cancer progression. However, there is no report concerning the correlation between HMGA2 and metastasis in renal cell carcinoma. In the present study, we found that HMGA2 was highly expressed in five renal cell carcinoma cell lines compared with that in the normal renal tubular epithelial HK2 cell line. Additionally, HMGA2 facilitated cell migration and invasion of renal cell carcinoma cells, as evidenced by wound healing and Transwell assays. Subsequently, our results revealed that the E-cadherin level was upregulated, while N-cadherin, Twist1 and Twist2 expression were downregulated in HMGA2-depleted ACHN cells. In contrast, overexpression of HMGA2 in 786-O cells enhanced epithelial-mesenchymal transition (EMT). In addition, analysis of the database Cancer Browser further validated the positive correlation between HGMA2 and Twist1 or Twist2 in renal cell carcinoma. Meanwhile, Kaplan-Meier analysis indicated that low HMGA2 expression was closely associated with an increased overall survival in renal cell carcinoma patients. To confirm the underlying mechanism of HMGA2-regulated EMT, our results revealed that silencing of HMGA2 downregulated the mRNA and protein levels of TGF-β and Smad2, while HMGA2 overexpression had the opposite effect. Furthermore, TGF-β overexpression could partially reverse the anti-metastatic effect and mesenchymal-epithelial transition (MET) by HMGA2 loss, while TGF-β deficiency impeded the pro-metastatic phenotype and high expression of EMT markers induced by HMGA2 overexpression. In summary, our results demonstrated that HMGA2 facilitated a metastatic phenotype and the EMT process in renal cell carcinoma cells in vitro through a TGF-β-dependent pathway. In addition, these data strongly suggest that HGMA2 may serve as a potential therapeutic target and prognostic biomarker against renal cell carcinoma in the future.
Collapse
Affiliation(s)
- Bo Kou
- Department of Cardiovascular Surgery, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wei Liu
- Department of Urology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaoshuang Tang
- Department of Urology, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qingshan Kou
- Medical Center, First People's Hospital of Xianyang, Xianyang, Shaanxi 712000, P.R. China
| |
Collapse
|
42
|
Liang J, Tang J, Shi H, Li H, Zhen T, Duan J, Kang L, Zhang F, Dong Y, Han A. miR-27a-3p targeting RXRα promotes colorectal cancer progression by activating Wnt/β-catenin pathway. Oncotarget 2017; 8:82991-83008. [PMID: 29137318 PMCID: PMC5669944 DOI: 10.18632/oncotarget.19635] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/06/2017] [Indexed: 12/27/2022] Open
Abstract
This study aimed to elucidate how miR-27a-3p modulates the Wnt/β-catenin signaling pathway to promote colorectal cancer (CRC) progression. Our results showed that the expression of miR-27a-3p was up-regulated in CRC and closely associated with histological differentiation, clinical stage, distant metastasis and CRC patients' survival. miR-27a-3p mimic suppressed apoptosis and promoted proliferation, migration, invasion of CRC cells in vitro and in vivo. Whereas miR-27a-3p inhibitor promoted apoptosis and suppressed proliferation, migration, invasion of CRC cells in vitro and in vivo. Furthermore, RXRα was the target gene of miR-27a-3p in CRC. miR-27a-3p expression negatively correlated with RXRα expression in CRC tissues. The underlining mechanism study showed that miR-27a-3p/RXRα/Wnt/β-catenin signaling pathway is involved in CRC progression. In conclusion, our findings first demonstrate that miR-27a-3p is a prognostic and/or potential therapeutic biomarker for CRC patients and RXRα as miR-27a-3p targeting gene plays an important role in activation of the Wnt/β-catenin pathway during CRC progression.
Collapse
Affiliation(s)
- Jiangtao Liang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianming Tang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huijuan Shi
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hui Li
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tiantian Zhen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jing Duan
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lili Kang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fenfen Zhang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yu Dong
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Anjia Han
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|