1
|
Zhang Y, Wang Y, Zhang W, Feng S, Xing Y, Wang T, Huang N, Li K, Zhang A. Comprehensive transcriptomic analysis identifies SLC25A4 as a key predictor of prognosis in osteosarcoma. Front Genet 2024; 15:1410145. [PMID: 38957810 PMCID: PMC11217516 DOI: 10.3389/fgene.2024.1410145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024] Open
Abstract
Background Osteosarcoma (OS) is highly malignant and prone to local infiltration and distant metastasis. Due to the poor outcomes of OS patients, the study aimed to identify differentially expressed genes (DEGs) in OS and explore their role in the carcinogenesis and progression of OS. Methods RNA sequencing was performed to identify DEGs in OS. The functions of the DEGs in OS were investigated using bioinformatics analysis, and DEG expression was verified using RT-qPCR and Western blotting. The role of SLC25A4 was evaluated using gene set enrichment analysis (GSEA) and then investigated using functional assays in OS cells. Results In all, 8353 DEGs were screened. GO and KEGG enrichment analyses indicated these DEGs showed strong enrichment in the calcium signaling pathway and pathways in cancer. Moreover, the Kaplan-Meier survival analysis showed ten hub genes were related to the outcomes of OS patients. Both SLC25A4 transcript and protein expression were significantly reduced in OS, and GSEA suggested that SLC25A4 was associated with cell cycle, apoptosis and inflammation. SLC25A4-overexpressing OS cells exhibited suppressed proliferation, migration, invasion and enhanced apoptosis. Conclusion SLC25A4 was found to be significantly downregulated in OS patients, which was associated with poor prognosis. Modulation of SLC25A4 expression levels may be beneficial in OS treatment.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yinghui Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Wenyan Zhang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Shaojie Feng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tianjiao Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Nana Huang
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ka Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Aijun Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
2
|
Wu Z, Song Y, Wang Y, Zhou H, Chen L, Zhan Y, Li T, Xie G, Wu H. Biological role of mitochondrial TLR4-mediated NF-κB signaling pathway in central nervous system injury. Cell Biochem Funct 2024; 42:e4056. [PMID: 38812104 DOI: 10.1002/cbf.4056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Previous studies suggested that central nervous system injury is often accompanied by the activation of Toll-like receptor 4/NF-κB pathway, which leads to the upregulation of proapoptotic gene expression, causes mitochondrial oxidative stress, and further aggravates the inflammatory response to induce cell apoptosis. Subsequent studies have shown that NF-κB and IκBα can directly act on mitochondria. Therefore, elucidation of the specific mechanisms of NF-κB and IκBα in mitochondria may help to discover new therapeutic targets for central nervous system injury. Recent studies have suggested that NF-κB (especially RelA) in mitochondria can inhibit mitochondrial respiration or DNA expression, leading to mitochondrial dysfunction. IκBα silencing will cause reactive oxygen species storm and initiate the mitochondrial apoptosis pathway. Other research results suggest that RelA can regulate mitochondrial respiration and energy metabolism balance by interacting with p53 and STAT3, thus initiating the mitochondrial protection mechanism. IκBα can also inhibit apoptosis in mitochondria by interacting with VDAC1 and other molecules. Regulating the biological role of NF-κB signaling pathway in mitochondria by targeting key proteins such as p53, STAT3, and VDAC1 may help maintain the balance of mitochondrial respiration and energy metabolism, thereby protecting nerve cells and reducing inflammatory storms and death caused by ischemia and hypoxia.
Collapse
Affiliation(s)
- Zhuochao Wu
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, China
| | - Ying Wang
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hua Zhou
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Lingling Chen
- Department of Ultrasonic, Cixi Hospital of Traditional Chinese Medicine, Ningbo, Zhejiang, China
| | - Yunyun Zhan
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ting Li
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guomin Xie
- Department of Neurology, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hao Wu
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Xie S, Peng P, Dong X, Yuan J, Liang J. Novel gene signatures predicting and immune infiltration analysis in Parkinson's disease: based on combining random forest with artificial neural network. Neurol Sci 2024; 45:2681-2696. [PMID: 38265536 DOI: 10.1007/s10072-023-07299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Parkinson's disease (PD) ranks as the second most prevalent neurodegenerative disorder globally, and its incidence is rapidly rising. The diagnosis of PD relies on clinical characteristics. Although current treatments aim to alleviate symptoms, they do not effectively halt the disease's progression. Early detection and intervention hold immense importance. This study aimed to establish a new PD diagnostic model. METHODS Data from a public database were adopted for the construction and validation of a PD diagnostic model with random forest and artificial neural network models. The CIBERSORT platform was applied for the evaluation of immune cell infiltration in PD. Quantitative real-time PCR was performed to verify the accuracy and reliability of the bioinformatics analysis results. RESULTS Leveraging existing gene expression data from the Gene Expression Omnibus (GEO) database, we sifted through differentially expressed genes (DEGs) in PD and identified 30 crucial genes through a random forest classifier. Furthermore, we successfully designed a novel PD diagnostic model using an artificial neural network and verified its diagnostic efficacy using publicly available datasets. Our research also suggests that mast cells may play a significant role in the onset and progression of PD. CONCLUSION This work developed a new PD diagnostic model with machine learning techniques and suggested the immune cells as a potential target for PD therapy.
Collapse
Affiliation(s)
- Shucai Xie
- Department of Critical Care Medicine, National Clinical Research Center for Genetic Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Pei Peng
- Department of Medicine Oncology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde, China
| | - Xingcheng Dong
- Department of Orthopedics, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde, China
| | - Junxing Yuan
- Department of Neurology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), No. 818 Renmin Road, Changde, 415000, Hunan, China
| | - Ji Liang
- Department of Neurology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), No. 818 Renmin Road, Changde, 415000, Hunan, China.
| |
Collapse
|
4
|
Wang L, Song X, Cheng YN, Cheng S, Chen T, Li H, Yan J, Wang X, Zhou H. 1,2,4-Triazole benzamide derivative TPB against Gaeumannomyces graminis var. tritici as a novel dual-target fungicide inhibiting ergosterol synthesis and adenine nucleotide transferase function. PEST MANAGEMENT SCIENCE 2024; 80:1717-1727. [PMID: 38010196 DOI: 10.1002/ps.7900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Isopropyl 4-(2-chloro-6-(1H-1,2,4-triazol-1-yl)benzamido)benzoate (TPB) was a 1,2,4-triazole benzoyl arylamine derivative with excellent antifungal activity, especially against Gaeumannomyces graminis var. tritici (Ggt). Its mechanism of action was investigated by transmission electron microscopy (TEM) observation, assays of sterol composition, cell membrane permeability, intracellular ATP and mitochondrial membrane potential, and mPTP permeability, ROS measurement, RNA sequencing (RNA-seq) analysis. RESULTS TPB interfered with ergosterol synthesis, reducing ergosterol content, increasing toxic intermediates, and finally causing biomembrane disruption such as increasing cell membrane permeability and content leakage, and destruction of organelle membranes such as coarse endoplasmic reticulum and vacuole. Moreover, TPB destroyed the function of adenine nucleotide transferase (ANT), leading to ATP transport obstruction in mitochondria, inhibiting mPTP opening, inducing intracellular ROS accumulation and mitochondrial membrane potential loss, finally resulting in mitochondrial damage including mitochondria swelled, mitochondrial membrane dissolved, and cristae destroyed and reduced. RNA-seq analyses showed that TPB increased the expression of ERG11, ERG24, ERG6, ERG5, ERG3 and ERG2 genes in ergosterol synthesis pathway, interfered with the expression of genes (NDUFS5, ATPeV0E, NCA2 and Pam17) related to mitochondrial structure, and inhibited the expression of genes (WrbA and GST) related to anti-oxidative stress. CONCLUSIONS TPB exhibited excellent antifungal activity against Ggt by inhibiting ergosterol synthesis and destroying ANT function. So, TPB was a novel compound with dual-target mechanism of action and can be considered a promising novel fungicide for the control of wheat Take-all. The results provided new guides for the structural design of active compounds and powerful tools for pathogen resistance management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Limin Wang
- High & New Technology Research Center of Henan Academy of Sciences, Zhengzhou, People's Republic of China
| | - Xiaoyu Song
- High & New Technology Research Center of Henan Academy of Sciences, Zhengzhou, People's Republic of China
| | - Yi-Nan Cheng
- Plant Protection College of Henan Agricultural University, Zhengzhou, People's Republic of China
- Engineering Research Center for Plant Health Protection Technology in Henan Province, Zhengzhou, People's Republic of China
| | - Senxiang Cheng
- High & New Technology Research Center of Henan Academy of Sciences, Zhengzhou, People's Republic of China
| | - Tong Chen
- High & New Technology Research Center of Henan Academy of Sciences, Zhengzhou, People's Republic of China
| | - Honglian Li
- Plant Protection College of Henan Agricultural University, Zhengzhou, People's Republic of China
- Engineering Research Center for Plant Health Protection Technology in Henan Province, Zhengzhou, People's Republic of China
| | - Jingming Yan
- Plant Protection College of Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Xiafei Wang
- Plant Protection College of Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Haifeng Zhou
- Plant Protection College of Henan Agricultural University, Zhengzhou, People's Republic of China
| |
Collapse
|
5
|
Guo M, Lei Y, Liu X, Li X, Xu Y, Zheng D. Association between dietary inflammatory index and chronic kidney disease in middle-aged and elderly populations. Front Nutr 2024; 11:1335074. [PMID: 38298424 PMCID: PMC10827907 DOI: 10.3389/fnut.2024.1335074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Background A link between food-induced inflammation and common chronic diseases has been identified in studies. However, there was uncertainty about the influence of dietary inflammatory potential on the risk of chronic kidney disease (CKD) among middle-aged and older groups. Our research aimed to examine the connection between dietary inflammatory index (DII) to CKD in people aged 40 years and older. Methods This study comprised ten cycles of the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018. Linear associations of DII with CKD, low-eGFR, and albuminuria were examined using multiple logistic regression, whereas non-linear associations were assessed by smoothed curve fitting. Besides, we conducted subgroup analyses and interaction tests. Results Of the 23,175 middle-aged and older individuals, a total of 5,847 suffered from CKD, making up 25.23% of all participants. After adjustment for all covariates, we found that increased DII scores were positive with an increased hazard of CKD (OR = 1.08, 95% CI: 1.05, 1.10, p < 0.0001), and the same was shown between DII and low-eGFR (OR = 1.16, 95% CI: 1.13, 1.19, p < 0.0001). After further converting DII into categorical variables, the above relationship still existed. These relations were consistent in different ages, genders, BMI, whether smoking, whether suffering from hypertension, and whether suffering from diabetes, with no significant stratification differences (all P for interaction >0.05). Surprisingly, we did not find a statistically significant correlation of DII to albuminuria after complete adjustment for covariates (OR = 1.02, 95% CI: 1.00, 1.05, p = 0.0742). Even when DII was considered as a categorical variable, this relation was still not statistically significant. Furthermore, we found an association in the shape of a U between DII and low-eGFR in the fully adjusted model, with a turning point at a DII of 1.6. Conclusion Our findings indicated that middle-aged and older persons with greater levels of DII had a significantly higher risk of CKD.
Collapse
Affiliation(s)
- Meiqian Guo
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Key Laboratory for Chronic Kidney Disease of Xuzhou Medical University, Xuzhou Medical University, Huai’an, China
- Huai’an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Yi Lei
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Key Laboratory for Chronic Kidney Disease of Xuzhou Medical University, Xuzhou Medical University, Huai’an, China
- Huai’an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Xueqing Liu
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Key Laboratory for Chronic Kidney Disease of Xuzhou Medical University, Xuzhou Medical University, Huai’an, China
- Huai’an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Xiang Li
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Key Laboratory for Chronic Kidney Disease of Xuzhou Medical University, Xuzhou Medical University, Huai’an, China
- Huai’an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Yong Xu
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Key Laboratory for Chronic Kidney Disease of Xuzhou Medical University, Xuzhou Medical University, Huai’an, China
- Huai’an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Donghui Zheng
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Key Laboratory for Chronic Kidney Disease of Xuzhou Medical University, Xuzhou Medical University, Huai’an, China
- Huai’an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| |
Collapse
|
6
|
Davuluri KS, Chauhan DS. microRNAs associated with the pathogenesis and their role in regulating various signaling pathways during Mycobacterium tuberculosis infection. Front Cell Infect Microbiol 2022; 12:1009901. [PMID: 36389170 PMCID: PMC9647626 DOI: 10.3389/fcimb.2022.1009901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Despite more than a decade of active study, tuberculosis (TB) remains a serious health concern across the world, and it is still the biggest cause of mortality in the human population. Pathogenic bacteria recognize host-induced responses and adapt to those hostile circumstances. This high level of adaptability necessitates a strong regulation of bacterial metabolic characteristics. Furthermore, the immune reponse of the host virulence factors such as host invasion, colonization, and survival must be properly coordinated by the pathogen. This can only be accomplished by close synchronization of gene expression. Understanding the molecular characteristics of mycobacterial pathogenesis in order to discover therapies that prevent or resolve illness relies on the bacterial capacity to adjust its metabolism and replication in response to various environmental cues as necessary. An extensive literature details the transcriptional alterations of host in response to in vitro environmental stressors, macrophage infection, and human illness. Various studies have recently revealed the finding of several microRNAs (miRNAs) that are believed to play an important role in the regulatory networks responsible for adaptability and virulence in Mycobacterium tuberculosis. We highlighted the growing data on the existence and quantity of several forms of miRNAs in the pathogenesis of M. tuberculosis, considered their possible relevance to disease etiology, and discussed how the miRNA-based signaling pathways regulate bacterial virulence factors.
Collapse
|
7
|
Min HK, Kim SH, Lee JY, Lee SH, Kim HR. DJ-1 controls T cell differentiation and osteoclastogenesis in rheumatoid arthritis. Sci Rep 2022; 12:12767. [PMID: 35896699 PMCID: PMC9329329 DOI: 10.1038/s41598-022-16285-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/07/2022] [Indexed: 11/09/2022] Open
Abstract
Herein, we investigated the effect of DJ-1 on helper T cell differentiation, fibroblast-like synoviocyte (FLS) activation, and osteoclastogenesis in rheumatoid arthritis (RA). Serum and synovial fluid (SF) of RA and osteoarthritis (OA) patients were collected, and DJ-1 and H2O2 levels were investigated. CD4+ cells from peripheral blood mononuclear cells (PBMCs) were cultured under type 17 helper T cell (Th17) polarization conditions, and CD4+ T cell differentiation, pro-inflammatory cytokine levels, and soluble receptor activator of nuclear factor kappa-Β ligand (RANKL) were assessed. RA-FLSs were stimulated with 50 μM H2O2, and DJ-1 (10, 50, 100 ng/mL) to evaluate MMP-9, VEGF, TNF-α, and sRANKL production, while RANKL+ FLSs were assessed using flow cytometry. Monocytes were cultured with RANKL or IL-17A with or without DJ-1 and H2O2-pretreated RA-FLS, and tartrate-resistant acid phosphatase (TRAP) staining and RT-qPCR of osteoclast-related genes were performed. The levels of DJ-1 and H2O2 in serum and SF of RA patients were higher than those of OA patients. Under Th17-polarizing conditions, CD4+RANKL+ and CD4+CCR4+CCR6+CXCR3- T cells decreased, whereas CD4+CD25highFoxp3+ T cell increased after DJ-1 administration. Additionally, IL-17A, TNF-α, and sRANKL levels decreased in DJ-1-treated groups. DJ-1 lowered MMP-9, VEGF, TNF-α, and sRANKL levels, and RANKL+ FLS in ROS-stimulated RA-FLS. Both RANKL and IL-17A stimulated osteoclast differentiation, DJ-1 decreased TRAP+ cell count, and the expression levels of TRAP, ATP6v0d2, NFATc1, and CTSK. These findings were also observed in in vitro osteoclastogenesis with DJ-1 pretreated RA-FLS. As DJ-1 regulates Th17/Treg imbalance, pro-inflammatory cytokine production, RA-FLS activation, and osteoclastogenesis, it holds potential for RA therapy.
Collapse
Affiliation(s)
- Hong Ki Min
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, 05030, Republic of Korea
| | - Se Hee Kim
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, 05030, Republic of Korea
| | - Ji-Yeon Lee
- The Rheumatism Research Center, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Sang-Heon Lee
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1, Neungdong-ro, Gwangjin-gu, Seoul, 05030, Republic of Korea
| | - Hae-Rim Kim
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1, Neungdong-ro, Gwangjin-gu, Seoul, 05030, Republic of Korea.
| |
Collapse
|
8
|
Abstract
Significance: Aging is a natural process that affects most living organisms, resulting in increased mortality. As the world population ages, the prevalence of age-associated diseases, and their associated health care costs, has increased sharply. A better understanding of the molecular mechanisms that lead to cellular dysfunction may provide important targets for interventions to prevent or treat these diseases. Recent Advances: Although the mitochondrial theory of aging had been proposed more than 40 years ago, recent new data have given stronger support for a central role for mitochondrial dysfunction in several pathways that are deregulated during normal aging and age-associated disease. Critical Issues: Several of the experimental evidence linking mitochondrial alterations to age-associated loss of function are correlative and mechanistic insights are still elusive. Here, we review how mitochondrial dysfunction may be involved in many of the known hallmarks of aging, and how these pathways interact in an intricate net of molecular relationships. Future Directions: As it has become clear that mitochondrial dysfunction plays causative roles in normal aging and age-associated diseases, it is necessary to better define the molecular interactions and the temporal and causal relationship between these changes and the relevant phenotypes seen during the aging process. Antioxid. Redox Signal. 36, 824-843.
Collapse
Affiliation(s)
- Caio M P F Batalha
- Lab. Genética Mitocondrial, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Anibal Eugênio Vercesi
- Departamento de Patologia Clínica, Faculdade de Medicina, Universidade de Campinas, Campinas, Brazil
| | - Nadja C Souza-Pinto
- Lab. Genética Mitocondrial, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Yang L, Zheng W, Xin S, Lv X, Sun Y, Xu T. microRNA-122 regulates NF-κB signaling pathway by targeting IκBα in miiuy croaker, Miichthys miiuy. FISH & SHELLFISH IMMUNOLOGY 2022; 122:345-351. [PMID: 35182723 DOI: 10.1016/j.fsi.2022.02.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
The inhibitory protein IκBα plays a key role in the inflammatory process and immune response by regulating the activity of the transcription factor NF-κB. microRNA (miR) is a small non-coding RNA that can regulate many biochemical processes, such as cell growth, proliferation, and immune response. In this study, it was first predicted that IκBα is the target of miR-122 through bioinformatics, and it was confirmed by dual fluorescence experiments. Then we found that miR-122 can inhibit the expression of IκBα at the mRNA and protein levels, thereby promoting the p65-activated NF-κB pathway. It is speculated that miR-122 plays an important role in the innate immunity of teleost fish. This study will help to further understand miRNAs regulatory mechanism in teleost fish.
Collapse
Affiliation(s)
- Liyuan Yang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shiying Xin
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xing Lv
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China.
| |
Collapse
|
10
|
Zhao L, Deng X, Li Y, Hu J, Xie L, Shi F, Tang M, Bode AM, Zhang X, Liao W, Cao Y. Conformational change of adenine nucleotide translocase-1 mediates cisplatin resistance induced by EBV-LMP1. EMBO Mol Med 2021; 13:e14072. [PMID: 34755470 PMCID: PMC8649884 DOI: 10.15252/emmm.202114072] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 12/02/2022] Open
Abstract
Adenine nucleotide translocase-1 (ANT1) is an ADP/ATP transporter protein located in the inner mitochondrial membrane. ANT1 is involved not only in the processes of ADP/ATP exchange but also in the composition of the mitochondrial membrane permeability transition pore (mPTP); and the function of ANT1 is closely related to its own conformational changes. Notably, various viral proteins can interact directly with ANT1 to influence mitochondrial membrane potential by regulating the opening of mPTP, thereby affecting tumor cell fate. The Epstein-Barr virus (EBV) encodes the key tumorigenic protein, latent membrane protein 1 (LMP1), which plays a pivotal role in promoting therapeutic resistance in related tumors. In our study, we identified a novel mechanism for EBV-LMP1-induced alteration of ANT1 conformation in cisplatin resistance in nasopharyngeal carcinoma. Here, we found that EBV-LMP1 localizes to the inner mitochondrial membrane and inhibits the opening of mPTP by binding to ANT1, thereby favoring tumor cell survival and drug resistance. The ANT1 conformational inhibitor carboxyatractyloside (CATR) in combination with cisplatin improved the chemosensitivity of EBV-LMP1-positive cells. This finding confirms that ANT1 is a novel therapeutic target for overcoming cisplatin resistance in the future.
Collapse
Affiliation(s)
- Lin Zhao
- Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of Education, Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of CarcinogenesisChinese Ministry of HealthChangshaChina
| | - Xiangying Deng
- Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of Education, Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of CarcinogenesisChinese Ministry of HealthChangshaChina
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of Education, Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of CarcinogenesisChinese Ministry of HealthChangshaChina
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of Education, Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of CarcinogenesisChinese Ministry of HealthChangshaChina
| | - Longlong Xie
- Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of Education, Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of CarcinogenesisChinese Ministry of HealthChangshaChina
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of Education, Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of CarcinogenesisChinese Ministry of HealthChangshaChina
| | - Min Tang
- Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of Education, Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of CarcinogenesisChinese Ministry of HealthChangshaChina
| | - Ann M Bode
- The Hormel InstituteUniversity of MinnesotaAustinMNUSA
| | - Xin Zhang
- Department of Otolaryngology Head and Neck SurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Weihua Liao
- Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of Education, Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of CarcinogenesisChinese Ministry of HealthChangshaChina
- Molecular Imaging Research Center of CentralSouth UniversityChangshaChina
- Research Center for Technologies of Nucleic Acid‐Based Diagnostics and Therapeutics Hunan ProvinceChangshaChina
- National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and CancerChangshaChina
| |
Collapse
|
11
|
Szabo TM, Frigy A, Nagy EE. Targeting Mediators of Inflammation in Heart Failure: A Short Synthesis of Experimental and Clinical Results. Int J Mol Sci 2021; 22:13053. [PMID: 34884857 PMCID: PMC8657742 DOI: 10.3390/ijms222313053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 01/22/2023] Open
Abstract
Inflammation has emerged as an important contributor to heart failure (HF) development and progression. Current research data highlight the diversity of immune cells, proteins, and signaling pathways involved in the pathogenesis and perpetuation of heart failure. Chronic inflammation is a major cardiovascular risk factor. Proinflammatory signaling molecules in HF initiate vicious cycles altering mitochondrial function and perturbing calcium homeostasis, therefore affecting myocardial contractility. Specific anti-inflammatory treatment represents a novel approach to prevent and slow HF progression. This review provides an update on the putative roles of inflammatory mediators involved in heart failure (tumor necrosis factor-alpha; interleukin 1, 6, 17, 18, 33) and currently available biological and non-biological therapy options targeting the aforementioned mediators and signaling pathways. We also highlight new treatment approaches based on the latest clinical and experimental research.
Collapse
Affiliation(s)
- Timea Magdolna Szabo
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Department of Cardiology, Clinical County Hospital Mures, 540103 Targu Mures, Romania;
| | - Attila Frigy
- Department of Cardiology, Clinical County Hospital Mures, 540103 Targu Mures, Romania;
- Department of Internal Medicine IV, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540103 Targu Mures, Romania
| | - Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Laboratory of Medical Analysis, Clinical County Hospital Mures, 540394 Targu Mures, Romania
| |
Collapse
|
12
|
Yergöz F, Friebel J, Kränkel N, Rauch-Kroehnert U, Schultheiss HP, Landmesser U, Dörner A. Adenine Nucleotide Translocase 1 Expression Modulates the Immune Response in Ischemic Hearts. Cells 2021; 10:cells10082130. [PMID: 34440901 PMCID: PMC8393693 DOI: 10.3390/cells10082130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Adenine nucleotide translocase 1 (ANT1) transfers ATP and ADP over the mitochondrial inner membrane and thus supplies the cell with energy. This study analyzed the role of ANT1 in the immune response of ischemic heart tissue. Ischemic ANT1 overexpressing hearts experienced a shift toward an anti-inflammatory immune response. The shift was characterized by low interleukin (IL)-1β expression and M1 macrophage infiltration, whereas M2 macrophage infiltration and levels of IL-10, IL-4, and transforming growth factor (TGFβ) were increased. The modulated immune response correlated with high mitochondrial integrity, reduced oxidative stress, low left ventricular end-diastolic heart pressure, and a high survival rate. Isolated ANT1-transgenic (ANT1-TG) cardiomyocytes expressed low levels of pro-inflammatory cytokines such as IL-1α, tumor necrosis factor α, and TGFβ. However, they showed increased expression and cellular release of anti-inflammatory immunomodulators such as vascular endothelial growth factor. The secretome from ANT1-TG cardiomyocytes initiated stress resistance when applied to ischemic wild-type cardiomyocytes and endothelial cells. It additionally prevented macrophages from expressing pro-inflammatory cytokines. Additionally, ANT1 expression correlated with genes that are related to cytokine and growth factor pathways in hearts of patients with ischemic cardiomyopathy. In conclusion, ANT1-TG cardiomyocytes secrete soluble factors that influence ischemic cardiac cells and initiate an anti-inflammatory immune response in ischemic hearts.
Collapse
Affiliation(s)
- Fatih Yergöz
- Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12200 Berlin, Germany; (F.Y.); (J.F.); (N.K.); (U.R.-K.); (U.L.)
- Institute of Health Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Julian Friebel
- Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12200 Berlin, Germany; (F.Y.); (J.F.); (N.K.); (U.R.-K.); (U.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Nicolle Kränkel
- Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12200 Berlin, Germany; (F.Y.); (J.F.); (N.K.); (U.R.-K.); (U.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Ursula Rauch-Kroehnert
- Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12200 Berlin, Germany; (F.Y.); (J.F.); (N.K.); (U.R.-K.); (U.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | | | - Ulf Landmesser
- Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12200 Berlin, Germany; (F.Y.); (J.F.); (N.K.); (U.R.-K.); (U.L.)
- Institute of Health Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Andrea Dörner
- Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12200 Berlin, Germany; (F.Y.); (J.F.); (N.K.); (U.R.-K.); (U.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-513-727
| |
Collapse
|
13
|
Mekkawy MH, Fahmy HA, Nada AS, Ali OS. Study of the Radiosensitizing and Radioprotective Efficacy of Bromelain (a Pineapple Extract): In Vitro and In Vivo. Integr Cancer Ther 2021; 19:1534735420950468. [PMID: 32783540 PMCID: PMC7425266 DOI: 10.1177/1534735420950468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study hypothesizes that, bromelain (BL) acts as radiosensitizer of tumor cells and that it protects normal cells from radiation effects. In vitro and in vivo studies have been carried out to prove that assumption. In vitro MTT cell proliferation assay has shown that the irradiated Ehrlich ascites carcinoma (EAC) cell line could be sensitized by BL pretreatment. In vivo: animals were randomly divided into 5 groups, Group 1: control (PBS i.p for 10 days), Group 2: Ehrlich solid tumor (EST) bearing mice, Group 3: EST + γ-radiation (fractionated dose, 1 Gy × 5), Group 4: EST + BL (6 mg/kg, i.p), daily for 10 days, Group 5: EST + BL for 10 days followed by γ-irradiation (1 Gy × 5). The size and weight of tumors in gamma-irradiated EST bearing mice treated with BL decreased significantly with a significant amelioration in the histopathological examination. Besides, BL mitigated the effect of γ-irradiation on the liver relative gene expression of poly ADP ribose polymerase-1 (PARP1), nuclear factor kappa activated B cells (NF-κB), and peroxisome proliferator-activated receptor α (PPAR-α), and it restored liver function via amelioration of paraoxonase1 (PON1) activity, reactive oxygen species (ROS) content, lipid peroxidation (LPO) and serum aspartate transaminase (AST), alanine transaminase (ALT), and albumin (ALB). It is concluded that BL can be considered as a radio-sensitizer and radio-protector, suggesting a possible role in reducing radiation exposure dose during radiotherapy.
Collapse
Affiliation(s)
- Mai H Mekkawy
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian, Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Hanan A Fahmy
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian, Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Ahmed S Nada
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian, Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Ola S Ali
- Biochemistry Department, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
14
|
Li S, Liu S, Dai Z, Zhang Q, Xu Y, Chen Y, Jiang Z, Huang W, Sun H. The UL16 protein of HSV-1 promotes the metabolism of cell mitochondria by binding to ANT2 protein. Sci Rep 2021; 11:14001. [PMID: 34234233 PMCID: PMC8263751 DOI: 10.1038/s41598-021-93430-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/15/2021] [Indexed: 11/09/2022] Open
Abstract
Long-term studies have shown that virus infection affects the energy metabolism of host cells, which mainly affects the function of mitochondria and leads to the hydrolysis of ATP in host cells, but it is not clear how virus infection participates in mitochondrial energy metabolism in host cells. In our study, HUVEC cells were infected with HSV-1, and the differentially expressed genes were obtained by microarray analysis and data analysis. The viral gene encoding protein UL16 was identified to interact with host protein ANT2 by immunoprecipitation and mass spectrometry. We also reported that UL16 transfection promoted oxidative phosphorylation of glucose and significantly increased intracellular ATP content. Furthermore, UL16 was transfected into the HUVEC cell model with mitochondrial dysfunction induced by d-Gal, and it was found that UL16 could restore the mitochondrial function of cells. It was first discovered that viral protein UL16 could enhance mitochondrial function in mammalian cells by promoting mitochondrial metabolism. This study provides a theoretical basis for the prevention and treatment of mitochondrial dysfunction or the pathological process related to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Shiyu Li
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuting Liu
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhenning Dai
- Department of Stomatology, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, 510095, China
| | - Qian Zhang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yichao Xu
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Youyu Chen
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhenyou Jiang
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou, 510632, China.
| | - Wenhua Huang
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Hanxiao Sun
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
15
|
Zhao L, Tang M, Bode AM, Liao W, Cao Y. ANTs and cancer: Emerging pathogenesis, mechanisms, and perspectives. Biochim Biophys Acta Rev Cancer 2020; 1875:188485. [PMID: 33309965 DOI: 10.1016/j.bbcan.2020.188485] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/03/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022]
Abstract
Adenine nucleotide translocases (ANTs) are a class of transporters located in the inner mitochondrial membrane that not only couple processes of cellular productivity and energy expenditure, but are also involved in the composition of the mitochondrial membrane permeability transition pore (mPTP). The function of ANTs has been found to be most closely related to their own conformational changes. Notably, as multifunctional proteins, ANTs play a key role in oncogenesis, which provides building blocks for tumor anabolism, control oxidative phosphorylation and glycolysis homeostasis, and govern cell death. Thus, ANTs constitute promising targets for the development of novel anticancer agents. Here, we review the recent findings regarding ANTs and their important mechanisms in cancer, with a focus on the therapeutic potential of targeting ANTs for cancer therapy.
Collapse
Affiliation(s)
- Lin Zhao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Min Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, China; Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, Changsha 410078, China; National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha 410078, China.
| |
Collapse
|
16
|
Joodi Khanghah O, Nourazarian A, Khaki-Khatibi F, Nikanfar M, Laghousi D, Vatankhah AM, Moharami S. Evaluation of the Diagnostic and Predictive Value of Serum Levels of ANT1, ATG5, and Parkin in Multiple Sclerosis. Clin Neurol Neurosurg 2020; 197:106197. [PMID: 32890892 DOI: 10.1016/j.clineuro.2020.106197] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Multiple Sclerosis (MS) is a disease of the central nervous system, which ultimately may lead to various disabilities in patients. No definitive cure has yet been developed for the disease. MRI is the method of choice for imaging MS plaques, which would be useful in disease diagnosis as it becomes progressive. Therefore, this study aimed to investigate the serum levels of ANT1 (adenine nucleotide translocase 1), ATG5 (autophagy-related protein 5), and Parkin in patients with MS, all of which play essential roles in MS pathophysiology, as novel serum biomarkers for early diagnosis of the disease. DESIGN AND METHODS Forty patients in the early stages of the disease, and 40 healthy individuals were selected as the case and control groups. Upon sampling, the serum levels of the biomarkers were measured. RESULTS The results indicated that autophagy, mitophagy, and mitochondrial apoptosis were different in the case and control groups. The oxidative stress level evaluation revealed low concertation of total antioxidant status (TAS) in the MS patients, while a partial increase accompanied the malondialdehyde (MDA). No significant correlation was observed between oxidative stress and autophagy or mitophagy factors. CONCLUSION According to the results obtained from this study, the evaluation of serum levels of ANT1, ATG5, and Parkin could be applied in the diagnosis and follow-up of MS patients.
Collapse
Affiliation(s)
- Omid Joodi Khanghah
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Fatemeh Khaki-Khatibi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Nikanfar
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Delara Laghousi
- Social Determinants of Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sepideh Moharami
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Pellegrino-Coppola D. Regulation of the mitochondrial permeability transition pore and its effects on aging. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 7:222-233. [PMID: 32904375 PMCID: PMC7453641 DOI: 10.15698/mic2020.09.728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 11/30/2022]
Abstract
Aging is an evolutionarily conserved process and is tightly connected to mitochondria. To uncover the aging molecular mechanisms related to mitochondria, different organisms have been extensively used as model systems. Among these, the budding yeast Saccharomyces cerevisiae has been reported multiple times as a model of choice when studying cellular aging. In particular, yeast provides a quick and trustworthy system to identify shared aging genes and pathway patterns. In this viewpoint on aging and mitochondria, I will focus on the mitochondrial permeability transition pore (mPTP), which has been reported and proposed as a main player in cellular aging. I will make several parallelisms with yeast to highlight how this unicellular organism can be used as a guidance system to understand conserved cellular and molecular events in multicellular organisms such as humans. Overall, a thread connecting the preservation of mitochondrial functionality with the activity of the mPTP emerges in the regulation of cell survival and cell death, which in turn could potentially affect aging and aging-related diseases.
Collapse
|
18
|
Minter BE, Lowes DA, Webster NR, Galley HF. Differential Effects of MitoVitE, α-Tocopherol and Trolox on Oxidative Stress, Mitochondrial Function and Inflammatory Signalling Pathways in Endothelial Cells Cultured under Conditions Mimicking Sepsis. Antioxidants (Basel) 2020; 9:E195. [PMID: 32110961 PMCID: PMC7139367 DOI: 10.3390/antiox9030195] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Sepsis is a life-threatening response to infection associated with inflammation, oxidative stress and mitochondrial dysfunction. We investigated differential effects of three forms of vitamin E, which accumulate in different cellular compartments, on oxidative stress, mitochondrial function, mRNA and protein expression profiles associated with the human Toll-like receptor (TLR) -2 and -4 pathways. Human endothelial cells were exposed to lipopolysaccharide (LPS)/peptidoglycan G (PepG) to mimic sepsis, MitoVitE, α-tocopherol, or Trolox. Oxidative stress, mitochondrial function, mitochondrial membrane potential and metabolic activity were measured. NFκB-P65, total and phosphorylated inhibitor of NFκB alpha (NFκBIA), and STAT-3 in nuclear extracts, interleukin (IL)-6 and IL-8 production in culture supernatants and cellular mRNA expression of 32 genes involved in Toll-like receptor-2 and -4 pathways were measured. Exposure to LPS/PepG caused increased total radical production (p = 0.022), decreased glutathione ratio (p = 0.016), reduced membrane potential and metabolic activity (both p < 0.0001), increased nuclear NFκB-P65 expression (p = 0.016) and increased IL-6/8 secretion (both p < 0.0001). MitoVitE, α- tocopherol and Trolox were similar in reducing oxidative stress, NFκB activation and interleukin secretion. MitoVitE had widespread downregulatory effects on gene expression. Despite differences in site of actions, all forms of vitamin E were protective under conditions mimicking sepsis. These results challenge the concept that protection inside mitochondria provides better protection.
Collapse
Affiliation(s)
| | | | | | - Helen F. Galley
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB41 8TJ, UK; (B.E.M.); (D.A.L.); (N.R.W.)
| |
Collapse
|
19
|
Adenine Nucleotide Translocase 1 Expression is Coupled to the HSP27-Mediated TLR4 Signaling in Cardiomyocytes. Cells 2019; 8:cells8121588. [PMID: 31817787 PMCID: PMC6952976 DOI: 10.3390/cells8121588] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022] Open
Abstract
The cardiac-specific overexpression of the adenine nucleotide translocase 1 (ANT1) has cardioprotective effects in various experimental heart disease models. Here, we analyzed the link between ANT1 expression and heat shock protein 27 (HSP27)-mediated toll-like receptor 4 (TLR4) signaling, which represents a novel communication pathway between mitochondria and the extracellular environment. The interaction between ANT1 and HSP27 was identified by co-immunoprecipitation from neonatal rat cardiomyocytes. ANT1 transgenic (ANT1-TG) cardiomyocytes demonstrated elevated HSP27 expression levels. Increased levels of HSP27 were released from the ANT1-TG cardiomyocytes under both normoxic and hypoxic conditions. Extracellular HSP27 stimulated TLR4 signaling via protein kinase B (AKT). The HSP27-mediated activation of the TLR4 pathway was more pronounced in ANT1-TG cardiomyocytes than in wild-type (WT) cardiomyocytes. HSP27-specific antibodies inhibited TLR4 activation and the expression of HSP27. Inhibition of the HSP27-mediated TLR4 signaling pathway with the TLR4 inhibitor oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) reduced the mitochondrial membrane potential (∆ψm) and increased caspase 3/7 activity, which are both markers for cell stress. Conversely, treating cardiomyocytes with recombinant HSP27 protein stimulated TLR4 signaling, induced HSP27 and ANT1 expression, and stabilized the mitochondrial membrane potential. The activation of HSP27 signaling was verified in ischemic ANT1-TG heart tissue, where it correlated with ANT1 expression and the tightness of the inner mitochondrial membrane. Our study shows a new mechanism by which ANT1 is part of the cardioprotective HSP27-mediated TLR4 signaling.
Collapse
|
20
|
Nisr RB, Shah DS, Ganley IG, Hundal HS. Proinflammatory NFkB signalling promotes mitochondrial dysfunction in skeletal muscle in response to cellular fuel overloading. Cell Mol Life Sci 2019; 76:4887-4904. [PMID: 31101940 PMCID: PMC6881256 DOI: 10.1007/s00018-019-03148-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 11/29/2022]
Abstract
Sustained nutrient (fuel) excess, as occurs during obesity and diabetes, has been linked to increased inflammation, impaired mitochondrial homeostasis, lipotoxicity, and insulin resistance in skeletal muscle. Precisely how mitochondrial dysfunction is initiated and whether it contributes to insulin resistance in this tissue remains a poorly resolved issue. Herein, we examine the contribution that an increase in proinflammatory NFkB signalling makes towards regulation of mitochondrial bioenergetics, morphology, and dynamics and its impact upon insulin action in skeletal muscle cells subject to chronic fuel (glucose and palmitate) overloading. We show sustained nutrient excess of L6 myotubes promotes activation of the IKKβ-NFkB pathway (as judged by a six-fold increase in IL-6 mRNA expression; an NFkB target gene) and that this was associated with a marked reduction in mitochondrial respiratory capacity (>50%), a three-fold increase in mitochondrial fragmentation and 2.5-fold increase in mitophagy. Under these circumstances, we also noted a reduction in the mRNA and protein abundance of PGC1α and that of key mitochondrial components (SDHA, ANT-1, UCP3, and MFN2) as well as an increase in cellular ROS and impaired insulin action in myotubes. Strikingly, pharmacological or genetic repression of NFkB activity ameliorated disturbances in mitochondrial respiratory function/morphology, attenuated loss of SDHA, ANT-1, UCP3, and MFN2 and mitigated the increase in ROS and the associated reduction in myotube insulin sensitivity. Our findings indicate that sustained oversupply of metabolic fuel to skeletal muscle cells induces heightened NFkB signalling and that this serves as a critical driver for disturbances in mitochondrial function and morphology, redox status, and insulin signalling.
Collapse
Affiliation(s)
- Raid B Nisr
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Dinesh S Shah
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Ian G Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
21
|
Mitochondrial Uncoupling: A Key Controller of Biological Processes in Physiology and Diseases. Cells 2019; 8:cells8080795. [PMID: 31366145 PMCID: PMC6721602 DOI: 10.3390/cells8080795] [Citation(s) in RCA: 293] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial uncoupling can be defined as a dissociation between mitochondrial membrane potential generation and its use for mitochondria-dependent ATP synthesis. Although this process was originally considered a mitochondrial dysfunction, the identification of UCP-1 as an endogenous physiological uncoupling protein suggests that the process could be involved in many other biological processes. In this review, we first compare the mitochondrial uncoupling agents available in term of mechanistic and non-specific effects. Proteins regulating mitochondrial uncoupling, as well as chemical compounds with uncoupling properties are discussed. Second, we summarize the most recent findings linking mitochondrial uncoupling and other cellular or biological processes, such as bulk and specific autophagy, reactive oxygen species production, protein secretion, cell death, physical exercise, metabolic adaptations in adipose tissue, and cell signaling. Finally, we show how mitochondrial uncoupling could be used to treat several human diseases, such as obesity, cardiovascular diseases, or neurological disorders.
Collapse
|
22
|
Zhao X, Ma X, Guo J, Mi M, Wang K, Zhang C, Tang X, Chang L, Huang Y, Tong D. Circular RNA CircEZH2 Suppresses Transmissible Gastroenteritis Coronavirus-induced Opening of Mitochondrial Permeability Transition Pore via Targeting MiR-22 in IPEC-J2. Int J Biol Sci 2019; 15:2051-2064. [PMID: 31592229 PMCID: PMC6775298 DOI: 10.7150/ijbs.36532] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/22/2019] [Indexed: 12/18/2022] Open
Abstract
Transmissible gastroenteritis (TGE) is a contagious and infectious disease that is characterized by severe vomiting and diarrhea of swine , especially piglet, and caused by transmissible gastroenteritis coronavirus (TGEV) . TGEV infection provokes mitochondrial damage of porcine intestinal epthelial cell (IPEC), which is responsible for inflammation and cell death. In our previous study, we have demonstrated that circular RNA circEZH2 was down-regulated during TGEV infection and promoted the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) via targeting miR-22 in porcine intestinal epithelial cell line (IPEC-J2). Activation of NF-κB is an important factor for mitochondrial damage. Mitochondrial permeability transition pore (mPTP) opening is a key reason for mitochondrial damage. So, we speculate that circEZH2 may regulate TGEV-induced mPTP opening via NF-kB pathway. In the present study, we found that mPTP opening of IPEC-J2 was occured during TGEV infection and suppressed by circEZH2 via attaching miR-22. Hexokinase 2 (HK2) and interleukin 6 (IL-6) were identified as the targets of miR-22. Silencing HK2 enhanced TGEV-induced mPTP opening, while no effect on NF-κB pathway. Silencing IL-6 promoted TGEV-induced mPTP opening and inhibited NF-κB pathway. Inhibitor of NF-κB increased TGEV-induced mPTP opening. The data revealed that TGEV-induced mPTP opening was regulated via two pathways: circEZH2/miR-22/HK2 axis and circEZH2/miR-22/IL-6/NF-κB axis.
Collapse
Affiliation(s)
- Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xuelian Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Jianxiong Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Mi Mi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Kaili Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Chuyi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xiaoyi Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Lingling Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
23
|
Heckmann MB, Doroudgar S, Katus HA, Lehmann LH. Cardiovascular adverse events in multiple myeloma patients. J Thorac Dis 2018; 10:S4296-S4305. [PMID: 30701098 PMCID: PMC6328391 DOI: 10.21037/jtd.2018.09.87] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
Multiple myeloma is a malignant disease, caused by an uncontrolled clonal proliferation of a specific group of white blood cells, the plasma cells. Clinical manifestations include bone pain due to osteolysis, hypercalcemia, anemia, and renal insufficiency. Proteasome inhibitors have substantially improved survival of patients suffering from multiple myeloma, providing an efficient treatment option mainly for relapsed and refractory multiple myeloma. Although constituting one substance class, bortezomib, carfilzomib, and ixazomib differ greatly regarding their non-hematologic side effects. This article reviews the clinical and preclinical data on approved proteasome inhibitors in an attempt to decipher the underlying pathomechanisms related to cardiovascular adverse events seen in clinical trials.
Collapse
Affiliation(s)
- Markus B. Heckmann
- Department of Cardiology, Angiology, and Pneumology, Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Shirin Doroudgar
- Department of Cardiology, Angiology, and Pneumology, Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Hugo A. Katus
- Department of Cardiology, Angiology, and Pneumology, Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Lorenz H. Lehmann
- Department of Cardiology, Angiology, and Pneumology, Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| |
Collapse
|
24
|
Pawar HN, Balivada S, Kenney MJ. Does acute heat stress differentially-modulate expression of ionotropic neurotransmitter receptors in the RVLM of young and aged F344 rats? Neurosci Lett 2018; 687:223-233. [PMID: 30287307 DOI: 10.1016/j.neulet.2018.09.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/08/2018] [Accepted: 09/28/2018] [Indexed: 12/26/2022]
Abstract
The rostral ventral lateral medulla (RVLM) is a brainstem area that plays a role in regulating numerous physiological systems, especially their responsiveness to acute stress. Aging affects the responsiveness of RVLM neural circuits to acute stress. Based on the relationship between ionotropic neurotransmitter receptors in the RVLM and the physiological functions mediated via activation of these receptors, we hypothesized that in response to acute heat stress the expression of ionotropic neurotransmitter receptors in the RVLM of aged rats would be characterized by upregulation of inhibitory subunits and downregulation of excitatory subunits. The goal of the present study was to determine the effect of acute heating on the gene expression profile of RVLM inhibitory (GABAA and Glycine) and excitatory (NMDA and AMPA) ionotropic neurotransmitter receptor subunits in young and aged F344 rats. RVLM tissue punches from young and aged F344 rats were analyzed using TaqMan qPCR and immunoblotting. When compared to age-matched controls, heat stress increased the gene expression of RVLM inhibitory receptor subunits in aged (Gabra1, Gabra2, Gabra5, Glra1) and young (Gabra1) F344 rats at mRNA level, with little change in the expression of RVLM excitatory receptor subunits. Significant age x heat interaction effects were observed with increased expression of Gabra2 and Gabrb1 inhibitory receptor subunits and decreased expression of Gria1 and Gria2 excitatory receptor subunits in the RVLM of aged F344 rats, with the most marked change observed with the Gabra2 subunit, which was validated by immunoblotting. These findings demonstrate that in response to acute heat stress there is enhanced expression of inhibitory ionotropic receptor subunits in aged compared to young rats, supporting the idea that advanced age may alter RVLM responsivity by affecting the molecular substrate of ionotropic receptors.
Collapse
Affiliation(s)
- Hitesh N Pawar
- Department of Biological Sciences, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA.
| | - Sivasai Balivada
- Department of Biological Sciences, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Michael J Kenney
- Department of Biological Sciences, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
25
|
Lu C, Chen X, Wang Q, Xu X, Xu B. TNFα promotes glioblastoma A172 cell mitochondrial apoptosis via augmenting mitochondrial fission and repression of MAPK-ERK-YAP signaling pathways. Onco Targets Ther 2018; 11:7213-7227. [PMID: 30425514 PMCID: PMC6203110 DOI: 10.2147/ott.s184337] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND OBJECTIVE The present study was designed to explore the roles of mitochondrial fission and MAPK-ERK-YAP signaling pathways and to determine their mutual relationship in TNFα-mediated glioblastoma mitochondrial apoptosis. MATERIALS AND METHODS Cellular viability was measured via TUNEL staining, MTT assays, and Western blot. Immunofluorescence was performed to observe mitochondrial fission. YAP overexpression assays were conducted to observe the regulatory mechanisms of MAPK-ERK-YAP signaling pathways in mitochondrial fission and glioblastoma mitochondrial apoptosis. RESULTS The results in our present study indicated that TNFα treatment dose dependently increased the apoptotic rate of glioblastoma cells. Functional studies confirmed that TNFα-induced glioblastoma apoptosis was attributable to increased mitochondrial fission. Excessive mitochondrial fission promoted mitochondrial dysfunction, as evidenced by decreased mitochondrial potential, repressed ATP metabolism, elevated ROS synthesis, and downregulated antioxidant factors. In addition, the fragmented mitochondria liberated cyt-c into the cytoplasm/nucleus where it activated a caspase-9-involved mitochondrial apoptosis pathway. Furthermore, our data identified MAPK-ERK-YAP signaling pathways as the primary molecular mechanisms by which TNFα modulated mitochondrial fission and glioblastoma apoptosis. Reactivation of MAPK-ERK-YAP signaling pathways via overexpression of YAP neutralized the cytotoxicity of TNFα, attenuated mitochondrial fission, and favored glioblastoma cell survival. CONCLUSION Overall, our data highlight that TNFα-mediated glioblastoma apoptosis stems from increased mitochondrial fission and inactive MAPK-ERK-YAP signaling pathways, which provide potential targets for new therapies against glioblastoma.
Collapse
Affiliation(s)
- Changyu Lu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China,
| | - Xiaolei Chen
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China,
| | - Qun Wang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China,
| | - Xinghua Xu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China,
| | - Bainan Xu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China,
| |
Collapse
|
26
|
Nakahara K, Tanaka T, Okuda H, Isonishi A, Morita-Takemura S, Tatsumi K, Wanaka A. The inner mitochondrial membrane protein ANT1 modulates IL-6 expression via the JNK pathway in macrophages. FEBS Lett 2018; 592:3750-3758. [PMID: 30311946 DOI: 10.1002/1873-3468.13269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/07/2018] [Accepted: 09/20/2018] [Indexed: 11/06/2022]
Abstract
Mitochondria are increasingly associated with inflammation. Here, we focus on the relationship between inflammation and adenine nucleotide translocator type 1 (ANT1), which is localized in the mitochondrial inner membrane. ANT1 plays an important role in oxidative phosphorylation, and mutations in the ANT1 gene are responsible for mitochondrial diseases. Ample studies have demonstrated that ANT1 has a critical role in cardiomyocytes and neurons, but little has been reported on its functions in immune cells. We knocked down ANT1 expression in macrophages and examined inflammatory cytokine expression after lipopolysaccharide stimulation. ANT1 knockdown reduces the expression of IL-6. JNK, upstream of IL-6, is downregulated, but other MAP kinases and the NF-κB signaling remain unchanged. These results suggest that ANT1 modulates IL-6 expression through JNK in macrophages.
Collapse
Affiliation(s)
- Kazuki Nakahara
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Japan
| | - Tatsuhide Tanaka
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Japan
| | - Hiroaki Okuda
- Department of Functional Anatomy, Graduate School of Medical Science, Kanazawa University, Japan
| | - Ayami Isonishi
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Japan
| | | | - Kouko Tatsumi
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Japan
| | - Akio Wanaka
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Japan
| |
Collapse
|
27
|
Abstract
Reactive oxygen species (ROS) are well known for their role in mediating both physiological and pathophysiological signal transduction. Enzymes and subcellular compartments that typically produce ROS are associated with metabolic regulation, and diseases associated with metabolic dysfunction may be influenced by changes in redox balance. In this review, we summarize the current literature surrounding ROS and their role in metabolic and inflammatory regulation, focusing on ROS signal transduction and its relationship to disease progression. In particular, we examine ROS production in compartments such as the cytoplasm, mitochondria, peroxisome, and endoplasmic reticulum and discuss how ROS influence metabolic processes such as proteasome function, autophagy, and general inflammatory signaling. We also summarize and highlight the role of ROS in the regulation metabolic/inflammatory diseases including atherosclerosis, diabetes mellitus, and stroke. In order to develop therapies that target oxidative signaling, it is vital to understand the balance ROS signaling plays in both physiology and pathophysiology, and how manipulation of this balance and the identity of the ROS may influence cellular and tissue homeostasis. An increased understanding of specific sources of ROS production and an appreciation for how ROS influence cellular metabolism may help guide us in the effort to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA
| | - Daniel S Kikuchi
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA
| | - Marina S Hernandes
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA
| | - Qian Xu
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA
| | - Kathy K Griendling
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA.
| |
Collapse
|