1
|
Umviligihozo G, Cobarrubias KD, Chandrarathna S, Jin SW, Reddy N, Byakwaga H, Muzoora C, Bwana MB, Lee GQ, Hunt PW, Martin JN, Brumme CJ, Bangsberg DR, Karita E, Allen S, Hunter E, Ndung'u T, Brumme ZL, Brockman MA. Differential Vpu-Mediated CD4 and Tetherin Downregulation Functions among Major HIV-1 Group M Subtypes. J Virol 2020; 94:e00293-20. [PMID: 32376625 PMCID: PMC7343213 DOI: 10.1128/jvi.00293-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022] Open
Abstract
Downregulation of BST-2/tetherin and CD4 by HIV-1 viral protein U (Vpu) promotes viral egress and allows infected cells to evade host immunity. Little is known however about the natural variability in these Vpu functions among the genetically diverse viral subtypes that contribute to the HIV-1 pandemic. We collected Vpu isolates from 332 treatment-naive individuals living with chronic HIV-1 infection in Uganda, Rwanda, South Africa, and Canada. Together, these Vpu isolates represent four major HIV-1 group M subtypes (A [n = 63], B [n = 84], C [n = 94], and D [n = 59]) plus intersubtype recombinants and uncommon strains (n = 32). The ability of each Vpu clone to downregulate endogenous CD4 and tetherin was quantified using flow cytometry following transfection into an immortalized T-cell line and compared to that of a reference Vpu clone derived from HIV-1 subtype B NL4.3. Overall, the median CD4 downregulation function of natural Vpu isolates was similar to that of NL4.3 (1.01 [interquartile range {IQR}, 0.86 to 1.18]), while the median tetherin downregulation function was moderately lower than that of NL4.3 (0.90 [0.79 to 0.97]). Both Vpu functions varied significantly among HIV-1 subtypes (Kruskal-Wallis P < 0.0001). Specifically, subtype C clones exhibited the lowest CD4 and tetherin downregulation activities, while subtype D and B clones were most functional for both activities. We also identified Vpu polymorphisms associated with CD4 or tetherin downregulation function and validated six of these using site-directed mutagenesis. Our results highlight the marked extent to which Vpu function varies among global HIV-1 strains, raising the possibility that natural variation in this accessory protein may contribute to viral pathogenesis and/or spread.IMPORTANCE The HIV-1 accessory protein Vpu enhances viral spread by downregulating CD4 and BST-2/tetherin on the surface of infected cells. Natural variability in these Vpu functions may contribute to HIV-1 pathogenesis, but this has not been investigated among the diverse viral subtypes that contribute to the HIV-1 pandemic. In this study, we found that Vpu function differs significantly among HIV-1 subtypes A, B, C, and D. On average, subtype C clones displayed the lowest ability to downregulate both CD4 and tetherin, while subtype B and D clones were more functional. We also identified Vpu polymorphisms that associate with functional differences among HIV-1 isolates and subtypes. Our study suggests that genetic diversity in Vpu may play an important role in the differential pathogenesis and/or spread of HIV-1.
Collapse
Affiliation(s)
- Gisele Umviligihozo
- Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Kyle D Cobarrubias
- Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Sandali Chandrarathna
- Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Steven W Jin
- Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Nicole Reddy
- University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Durban, South Africa
| | - Helen Byakwaga
- Mbarara University of Science and Technology, Mbarara, Uganda
- University of California, San Francisco, California, USA
| | - Conrad Muzoora
- Mbarara University of Science and Technology, Mbarara, Uganda
| | - Mwebesa B Bwana
- Mbarara University of Science and Technology, Mbarara, Uganda
| | - Guinevere Q Lee
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Peter W Hunt
- University of California, San Francisco, California, USA
| | - Jeff N Martin
- University of California, San Francisco, California, USA
| | - Chanson J Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- University of British Columbia, Vancouver, British Columbia, Canada
| | - David R Bangsberg
- Oregon Health and Science University-Portland State University School of Public Health, Portland, Oregon, USA
| | - Etienne Karita
- Rwanda Zambia HIV Research Group-Projet San Francisco, Kigali, Rwanda
| | - Susan Allen
- Rwanda Zambia HIV Research Group-Projet San Francisco, Kigali, Rwanda
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Eric Hunter
- Rwanda Zambia HIV Research Group-Projet San Francisco, Kigali, Rwanda
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Thumbi Ndung'u
- University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Bachtel ND, Umviligihozo G, Pickering S, Mota TM, Liang H, Del Prete GQ, Chatterjee P, Lee GQ, Thomas R, Brockman MA, Neil S, Carrington M, Bwana B, Bangsberg DR, Martin JN, Kallas EG, Donini CS, Cerqueira NB, O’Doherty UT, Hahn BH, Jones RB, Brumme ZL, Nixon DF, Apps R. HLA-C downregulation by HIV-1 adapts to host HLA genotype. PLoS Pathog 2018; 14:e1007257. [PMID: 30180214 PMCID: PMC6138419 DOI: 10.1371/journal.ppat.1007257] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/14/2018] [Accepted: 08/02/2018] [Indexed: 01/09/2023] Open
Abstract
HIV-1 can downregulate HLA-C on infected cells, using the viral protein Vpu, and the magnitude of this downregulation varies widely between primary HIV-1 variants. The selection pressures that result in viral downregulation of HLA-C in some individuals, but preservation of surface HLA-C in others are not clear. To better understand viral immune evasion targeting HLA-C, we have characterized HLA-C downregulation by a range of primary HIV-1 viruses. 128 replication competent viral isolates from 19 individuals with effective anti-retroviral therapy, show that a substantial minority of individuals harbor latent reservoir virus which strongly downregulates HLA-C. Untreated infections display no change in HLA-C downregulation during the first 6 months of infection, but variation between viral quasispecies can be detected in chronic infection. Vpu molecules cloned from plasma of 195 treatment naïve individuals in chronic infection demonstrate that downregulation of HLA-C adapts to host HLA genotype. HLA-C alleles differ in the pressure they exert for downregulation, and individuals with higher levels of HLA-C expression favor greater viral downregulation of HLA-C. Studies of primary and mutant molecules identify 5 residues in the transmembrane region of Vpu, and 4 residues in the transmembrane domain of HLA-C, which determine interactions between Vpu and HLA. The observed adaptation of Vpu-mediated downregulation to host genotype indicates that HLA-C alleles differ in likelihood of mediating a CTL response that is subverted by viral downregulation, and that preservation of HLA-C expression is favored in the absence of these responses. Finding that latent reservoir viruses can downregulate HLA-C could have implications for HIV-1 cure therapy approaches in some individuals.
Collapse
Affiliation(s)
- Nathaniel D. Bachtel
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington DC, United States of America
| | | | - Suzanne Pickering
- Department of Infectious Disease, King’s College London School of Medicine, Guy’s Hospital, London, United Kingdom
| | - Talia M. Mota
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington DC, United States of America
| | - Hua Liang
- Department of Statistics and Biostatistics, George Washington University, Washington DC, United States of America
| | - Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, United States of America
| | - Pramita Chatterjee
- Cancer and Inflammation Program, HLA Immunogenetics Section, Basic Science Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, United States of America
| | - Guinevere Q. Lee
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
| | - Rasmi Thomas
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Mark A. Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Stuart Neil
- Department of Infectious Disease, King’s College London School of Medicine, Guy’s Hospital, London, United Kingdom
| | - Mary Carrington
- Cancer and Inflammation Program, HLA Immunogenetics Section, Basic Science Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
| | - Bosco Bwana
- Mbarara University of Science and Technology, Mbarara, Uganda
| | - David R. Bangsberg
- Mbarara University of Science and Technology, Mbarara, Uganda
- Oregon Health & Science University, Portland State University School of Public Health, Portland, Oregon, United States of America
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, United States of America
| | | | | | | | - Una T. O’Doherty
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - R. Brad Jones
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington DC, United States of America
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Douglas F. Nixon
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington DC, United States of America
| | - Richard Apps
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington DC, United States of America
| |
Collapse
|