1
|
Matsuya Y, Yoshii Y, Kusumoto T, Ogawa T, Ohnishi S, Hirata Y, Sato T, Kai T. Development of a chemical code applicable to ions based on the PHITS code for efficient and visual radiolysis simulations. Phys Chem Chem Phys 2025; 27:6887-6898. [PMID: 40116002 DOI: 10.1039/d4cp04216f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Water radiolysis plays an important role in elucidating radiation-induced biological effects such as early DNA damage induction, chromosome aberrations, and carcinogenesis. Several Monte Carlo simulation codes for water radiolysis, commonly referred to as chemical simulation codes, have been developed worldwide. However, these codes typically require substantial computational time to calculate the time-dependent G values of water radiolysis species (e.g., ˙OH, e-aq, H2, and H2O2), and their application is often limited to specific ion beam types. In the Particle and Heavy Ion Transport code System (PHITS), the track-structure mode that allows the simulation of each atomic interaction in liquid water for any charged particles and the subsequent chemical code (named PHITS-Chem code) dedicated to electrons was developed previously. In this study, we developed the PHITS-Chem code to support a broader range of ion beam species. To reduce computational time, we introduced new features including a space partitioning method to increase the detection efficiency of reactions between chemical species and a radical scavenger model that reduces the lifetime of OH radicals. We benchmarked the updated PHITS-Chem code by comparing its predicted time-dependent G values for protons, α particles, and carbon ions with those reported in the literature (i.e., other simulation and measured data). The inclusion of a space partitioning method and the modified OH radical scavenger model reduced the time required by the PHITS-Chem code to calculate G values (by approximately 28-fold during radiolysis simulations under 1-MeV electron exposure) while maintaining calculation accuracy. A key advantage of the PHITS-Chem code is the four-dimensional visualization capability, integrated with PHITS' native visualization software, PHIG-3D. Considering the ability of the PHITS-Chem code to handle OH radical scavengers (i.e., tris(hydroxymethyl)aminomethane and dimethyl sulfoxide), it is anticipated to offer precise and intuitive insights into the radiation-induced biological effects of chemical species in ion-beam radiotherapy.
Collapse
Affiliation(s)
- Yusuke Matsuya
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195, Japan
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| | - Yuji Yoshii
- Department of Radiological Technology, Faculty of Health Sciences, Hokkaido University of Science, Maeda 7-15, Teine-ku, Sapporo, Hokkaido 006-8585, Japan
| | - Tamon Kusumoto
- National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tatsuhiko Ogawa
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195, Japan
| | - Seiki Ohnishi
- National Maritime Research Institute, 6-38-1, Shinkawa, Mitaka-shi, Tokyo 181-0004, Japan
| | - Yuho Hirata
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195, Japan
| | - Tatsuhiko Sato
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195, Japan
- Research Center for Nuclear Physics, Osaka University, Mihogaoka 10-1, Ibaraki, Osaka 567-0047, Japan
| | - Takeshi Kai
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195, Japan
| |
Collapse
|
2
|
Sciuto A, Fattori S, Abubaker F, Arjmand S, Catalano R, Chatzipapas K, Cuttone G, Farokhi F, Guarrera M, Hassan A, Incerti S, Kurmanova A, Oliva D, Pappalardo AD, Petringa G, Sakata D, Tran HN, Cirrone GAP. GANDALF: Generative ANsatz for DNA damage evALuation and Forecast. A neural network-based regression for estimating early DNA damage across micro-nano scales. Phys Med 2025; 133:104953. [PMID: 40117723 DOI: 10.1016/j.ejmp.2025.104953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025] Open
Abstract
PURPOSE This study aims to develop a comprehensive simulation framework to connect radiation effects from the microscopic to the nanoscopic scale. METHOD The process begins with a Geant4-DNA simulation based on the example "molecularDNA", producing a dataset of twelve different types of early DNA damages within an Escherichia coli (E. coli) bacterium, generated by proton irradiation at different kinetic energies, giving a nano-scale view of the particle-matter interaction. Then we pass to the micro-scale with a Geant4 simulation, based on the example "radiobiology", providing a microscopic view of proton interactions with matter through the Linear Energy Transfer (LET). Then GANDALF (Generative ANsatz for DNA damage evALuation and Forecast) Machine Learning (ML) toolkit, a Neural Network (NN)-based regression system, is employed to correlate the micro-scale LET data with the nano-scale occurrences of DNA damages in the E. coli bacterium. RESULTS The trained ML algorithm provides a practical tool to convert LET curves versus depth in a water phantom into DNA damage curves for twelve distinct types of DNA damage. To assess the performance, we evaluated the choice and optimization of the regression system based on its interpolation and extrapolation capabilities, ensuring the model could reliably predict DNA damage under various conditions. CONCLUSIONS Through the synergistic integration of Geant4, Geant4-DNA and ML, the study provides a tool to easily convert the results at the micro-scale of Geant4 to those at the nano-scale of Geant4-DNA without having to deal with the high CPU time requirements of the latter.
Collapse
Affiliation(s)
- Alberto Sciuto
- INFN Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania, Italy
| | - Serena Fattori
- INFN Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania, Italy.
| | - Farmesk Abubaker
- INFN Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania, Italy; Charmo University, 46023, Chamchamal, Sulaymaniyah, Iraq
| | - Sahar Arjmand
- INFN Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania, Italy
| | - Roberto Catalano
- INFN Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania, Italy
| | | | - Giacomo Cuttone
- INFN Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania, Italy
| | - Fateme Farokhi
- INFN Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania, Italy
| | | | - Ali Hassan
- INFN Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania, Italy
| | | | - Alma Kurmanova
- INFN Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania, Italy; Dipartimento di Fisica e Astronomia "Ettore Majorana", Università di Catania, via S.Sofia 64, Catania, Italy
| | - Demetrio Oliva
- INFN Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania, Italy
| | | | - Giada Petringa
- INFN Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania, Italy
| | - Dousatsu Sakata
- Division of Health Sciences, Osaka University, Osaka 565-0871, Japan; School of Physics, University of Bristol, Bristol, UK; Centre For Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Hoang N Tran
- Univ. Bordeaux, CNRS, LP2I, UMR 5797, F-33170 Gradignan, France
| | - G A Pablo Cirrone
- INFN Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania, Italy; Centro Siciliano di Fisica Nucleare e Struttura della Materia, via S. Sofia 64 Catania 95123, Italy
| |
Collapse
|
3
|
Mentana A, Quaresima V, Kundrát P, Guardamagna I, Lonati L, Iaria O, Previtali A, Amantini GS, Lunati L, Boretti V, Narici L, Di Fino L, Bocchini L, Cipriani C, Baiocco G. Mapping neutron biological effectiveness for DNA damage induction as a function of incident energy and depth in a human sized phantom. Sci Rep 2025; 15:2209. [PMID: 39820036 PMCID: PMC11739508 DOI: 10.1038/s41598-025-85879-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
We present new developments for an ab-initio model of the neutron relative biological effectiveness (RBE) in inducing specific classes of DNA damage. RBE is evaluated as a function of the incident neutron energy and of the depth inside a human-sized reference spherical phantom. The adopted mechanistic approach traces neutron RBE back to its origin, i.e. neutron physical interactions with biological tissues. To this aim, we combined the simulation of radiation transport through biological matter, performed with the Monte Carlo code PHITS, and the prediction of DNA damage using analytical formulas, which ground on a large database of biophysical radiation track structure simulations performed with the code PARTRAC. In particular, two classes of DNA damage were considered: sites and clusters of double-strand breaks (DSBs), which are known to be correlated with cell fate following radiation exposure. Within a coherent modelling framework, this approach tackles the variation of neutron RBE in a wide energy range, from thermal neutrons to neutrons of hundreds of GeV, and reproduces effects related to depth in the human-sized receptor, as well as to the receptor size itself. Besides providing a better mechanistic understanding of neutron biological effectiveness, the new model can support better-informed decisions for radiation protection: indeed, current neutron weighting (ICRP)/quality (U.S. NRC) factors might be insufficient for use in some radiation protection applications, because they do not account for depth. RBE predictions obtained with the reported model were successfully compared to the currently adopted radiation protection standards when the depth information is not relevant (at the shallowest depth in the phantom or for very high energy neutrons). However, our results demonstrate that great care is needed when applying weighting factors as a function of incident neutron energy only, not explicitly considering RBE variation in the target. Finally, to facilitate the use of our results, we propose look-up RBE tables, explicitly considering the depth variable, and an analytical representation of the maximal RBE vs. neutron energy.
Collapse
Affiliation(s)
- Alice Mentana
- Radiation Biophysics and Radiobiology Laboratory, Physics Department, University of Pavia, Pavia, Italy
| | - Virgilio Quaresima
- Radiation Biophysics and Radiobiology Laboratory, Physics Department, University of Pavia, Pavia, Italy
| | - Pavel Kundrát
- Department of Radiation Dosimetry, Nuclear Physics Institute, Czech Academy of Sciences, Prague, Czechia
| | - Isabella Guardamagna
- Radiation Biophysics and Radiobiology Laboratory, Physics Department, University of Pavia, Pavia, Italy
| | - Leonardo Lonati
- Radiation Biophysics and Radiobiology Laboratory, Physics Department, University of Pavia, Pavia, Italy
| | - Ombretta Iaria
- Radiation Biophysics and Radiobiology Laboratory, Physics Department, University of Pavia, Pavia, Italy
| | - Andrea Previtali
- Radiation Biophysics and Radiobiology Laboratory, Physics Department, University of Pavia, Pavia, Italy
| | | | - Luca Lunati
- Physics Department, University of Roma Tor Vergata, Rome, Italy
| | | | - Livio Narici
- Physics Department, University of Roma Tor Vergata, Rome, Italy
| | | | | | | | - Giorgio Baiocco
- Radiation Biophysics and Radiobiology Laboratory, Physics Department, University of Pavia, Pavia, Italy.
| |
Collapse
|
4
|
Buvinic L, Galvez S, Valenzuela MP, Maldonado SS, Russomando A. Comparison of in vitro cell survival predictions using Monte Carlo methods for proton irradiation. Phys Med 2025; 129:104867. [PMID: 39693764 DOI: 10.1016/j.ejmp.2024.104867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/03/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024] Open
Abstract
PURPOSE It is possible to combine theoretical models with Monte Carlo simulations to investigate the relationship between radiation-induced initial DNA damage and cell survival. Several combinations of models have been proposed in recent years, sparking interest in comparing their predictions in view of future clinical applications. METHODS Two in silico methods for calculating cell survival fractions were optimized for proton irradiation of the Chinese hamster V79 cell line, for LET values ranging from 3.40 and 100 keV/μm. These methods, based on different Monte Carlo codes and theoretical models, were benchmarked against published V79 cell survival data to identify the sources of discrepancies. RESULTS The predictive capacities of the methods were evaluated for several proton LET values using an external dataset. After recalibrating model parameters, multiple methods were assessed. This approach helped identify sources of variation, the main one being the simulated number of DSBs, which differed by a factor up to 3 between the two Monte Carlo codes. In this process a new method was defined, that, in all but one case, allows for a reduction in prediction error of up to 56%. Additionally, a freely available GUI for computing cell survival was refined, to facilitate further comparison of diverse theoretical models. CONCLUSION The systematic comparison of two predictive chains, characterized by distinct applicability ranges and features, was conducted. Optimization and analysis of various combinations were undertaken to elucidate differences. Addressing and minimizing such discrepancies will be crucial for further enhancing the reliability of predictive models of cell survival, aiming for biologically informed treatment planning.
Collapse
Affiliation(s)
- Lucas Buvinic
- Instituto de Fisica, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Sophia Galvez
- Instituto de Fisica, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | | | | | - Andrea Russomando
- Instituto de Fisica, Pontificia Universidad Catolica de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Zareen S, Bashir S, Shahzad A, Kashif M, Ren G. Direct and Indirect Effects for Radiosensitization of Gold Nanoparticles in Proton Therapy. Radiat Res 2024; 202:795-806. [PMID: 39405484 DOI: 10.1667/rade-23-00199.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/04/2024] [Indexed: 11/09/2024]
Abstract
The radiosensitization characteristics of gold nanoparticles (GNPs) have been investigated in a single cell irradiated with monoenergetic beams of protons of various energies using TOPAS-nBio, an advanced toolkit of TOPAS. Both direct and indirect effects against single-strand breaks (SSBs) are investigated and their double-strand breaks (DSBs) have been calculated. A single spherical cell interaction with a detailed DNA structure has been modeled and simulated under different conditions such as particle sizes and concentrations of GNPs, their biodistributions and associated proton energies. The physical interaction among protons, suspension water and GNPs has been simulated using a dual physics approach, while the interaction between water radiolysis and OH radicals was considered in the chemical process to save computational time. The present simulations involve irradiating the cell geometry with a dose of 1 Gy. The range of DSBs (Gy-1 Gbp-1) obtained was 2.1 ± 0.09 to 21.74 ± 0.4 for all GNPs of sizes 6-50 nm the proton energies in the range of 5-50 MeV. Regardless of proton energy and GNP size, the calculations showed that the contribution of indirect and hybrid DSBs remains higher in all simulation types than that of direct DSBs. New simulation outcomes of the indirect DSBs illustrate a percentage increase, while we cannot get an increase in the direct and hybrid DSBs in most cases when compared with no GNPs cases. The indirect DSBs provide the highest enhancement factor of 1.89 at 30 nm GNPs in size for 30 MeV protons energy, and the direct and hybrid DSBs indicate a slight increase in enhancement. The work indicates that the use of GNPs increased indirect DNA DSBs, while hybrid DSBs show only a slight increase in enhancement, and no enhancement is shown in direct DNA DSBs. It is significant to consider other mechanisms such as DNA damage repair when investigating DNA damage.
Collapse
Affiliation(s)
- Sobia Zareen
- Modeling and Simulation Laboratory, Department of Physics, Government College University, Faisalabad (GCUF), Faisalabad 38040, Pakistan
| | - Sajid Bashir
- Department of Medical Physics, Punjab Institute of Nuclear Medicine (PINUM) Cancer Hospital, Faisalabad, Pakistan
| | - Aamir Shahzad
- Modeling and Simulation Laboratory, Department of Physics, Government College University Faisalabad (GCUF), Faisalabad 38040, Pakistan
| | - Muhammad Kashif
- Department of Physics, Government College University Faisalabad (GCUF), Faisalabad 38040, Pakistan
| | - Guogang Ren
- School of Physics, Engineering and Computer Sciences, University of Hertfordshire, Hatfield AL10 9AB, United Kingdom
| |
Collapse
|
6
|
Tabbakh F. Significance of the proton energy loss mechanism to gold nanoparticles in proton therapy: a Geant4 simulation. Sci Rep 2024; 14:24978. [PMID: 39443616 PMCID: PMC11499847 DOI: 10.1038/s41598-024-76244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
The biological effectiveness in proton therapy is only slightly greater than of the treatment by X-ray and hence, many researches have suggested the use of gold nanoparticles for increasing the ionization interactions to produce more secondary electrons and elevate the yield of DNA damage. But the ionization interactions also lead to protons energy loss inside the nanoparticles. The present study shows that, the protons slowed-down by High-Z nanoparticles are responsible for dose enhancement rather than the produced secondary electrons. To this purpose, using Geant4 Monte Carlo tool, one million nanoparticles distributed in a proton irradiated volume and variation of the proton's spectra and the dose related to this variation has been demonstrated. It was found that, the elevation in proton's LET values when passing through the gold nanoparticles will lead to a more significant dose enhancement than the increased dose due to the extra secondary electrons. Also, it was found that, the mechanism of protons slowing-down by gold nanoparticles has another useful aspect in proton therapy in which, the dose leakage to surrounding healthy tissues will be reduced which must be considered in future investigations more precisely.
Collapse
Affiliation(s)
- Farshid Tabbakh
- Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, Tehran, Iran, 14155-1339.
| |
Collapse
|
7
|
Mokari M, Moeini H, Eslamifar M. Monte Carlo investigation of the nucleus size effect and cell's oxygen content on the damage efficiency of protons. Biomed Phys Eng Express 2024; 10:065007. [PMID: 39255034 DOI: 10.1088/2057-1976/ad7598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024]
Abstract
Living tissues could suffer different types of DNA damage as a result of being exposed to ionizing radiations. Monte Carlo simulations of the underlying interactions have been instrumental in predicting the damage types and the processes involved. In this work, we employed Geant4-DNA and MCDS for extracting the initial DNA damage and investigating the dependence of damage efficiency on the cell's oxygen content. The frequency-mean lineal (y¯F) and specific (z¯F) energies were derived for a spherical volume of water of various diameters between 2 and 11.1 μm. This sphere would serve as the nucleus of a cell of 100 μm diameter, engulfed by a homogeneous beam of protons. These microdosimetric quantities were calculated assuming spherical samples of 1 μm diameter in MCDS. The simulation results showed that for 230 MeV protons, an increase in the oxygen content from 0 by 10% raised the frequency of single- and double-strand breaks and lowered the base damage frequency. The resulting damage frequencies appeared to be independent of nucleus diameter. For proton energies between 2 and 230 MeV,y¯Fshowed no dependence on the cell diameter and an increase of the cell size resulted in a decrease inz¯F.An increase in the proton energy slowed down the decreasing rate ofz¯Fas a function of nucleus diameter. However, the ratio ofy¯Fvalues corresponding to two proton energies of choice showed no dependence on the nucleus size and were equal to the ratio of the correspondingz¯Fvalues. Furthermore, the oxygen content of the cell did not affect these microdosimetric quantities. Contrary to damage frequencies, these quantities appeared to depend only on direct interactions due to deposited energies. Our calculations showed the near independence of DNA damages on the nucleus size of the human cells. The probabilities of different types of single and double-strand breaks increase with the oxygen content.
Collapse
Affiliation(s)
- Mojtaba Mokari
- Department of Physics, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Behbahan 6361663973, Iran
| | - Hossein Moeini
- Department of Physics, Faculty of Science, Shiraz University, Shiraz 7194684795, Iran
| | - Mina Eslamifar
- Department of Physics, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Behbahan 6361663973, Iran
| |
Collapse
|
8
|
Gardner LL, Thompson SJ, O'Connor JD, McMahon SJ. Modelling radiobiology. Phys Med Biol 2024; 69:18TR01. [PMID: 39159658 DOI: 10.1088/1361-6560/ad70f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
Radiotherapy has played an essential role in cancer treatment for over a century, and remains one of the best-studied methods of cancer treatment. Because of its close links with the physical sciences, it has been the subject of extensive quantitative mathematical modelling, but a complete understanding of the mechanisms of radiotherapy has remained elusive. In part this is because of the complexity and range of scales involved in radiotherapy-from physical radiation interactions occurring over nanometres to evolution of patient responses over months and years. This review presents the current status and ongoing research in modelling radiotherapy responses across these scales, including basic physical mechanisms of DNA damage, the immediate biological responses this triggers, and genetic- and patient-level determinants of response. Finally, some of the major challenges in this field and potential avenues for future improvements are also discussed.
Collapse
Affiliation(s)
- Lydia L Gardner
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - Shannon J Thompson
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - John D O'Connor
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
- Ulster University School of Engineering, York Street, Belfast BT15 1AP, United Kingdom
| | - Stephen J McMahon
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| |
Collapse
|
9
|
Beaudier P, Zein SA, Chatzipapas K, Ngoc Tran H, Devès G, Plawinski L, Liénard R, Dupuy D, Barberet P, Incerti S, Gobet F, Seznec H. Quantitative analysis of dose dependent DNA fragmentation in dry pBR322 plasmid using long read sequencing and Monte Carlo simulations. Sci Rep 2024; 14:18650. [PMID: 39134627 PMCID: PMC11319478 DOI: 10.1038/s41598-024-69406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Exposure to ionizing radiation can induce genetic aberrations via unrepaired DNA strand breaks. To investigate quantitatively the dose-effect relationship at the molecular level, we irradiated dry pBR322 plasmid DNA with 3 MeV protons and assessed fragmentation yields at different radiation doses using long-read sequencing from Oxford Nanopore Technologies. This technology applied to a reference DNA model revealed dose-dependent fragmentation, as evidenced by read length distributions, showing no discernible radiation sensitivity in specific genetic sequences. In addition, we propose a method for directly measuring the single-strand break (SSB) yield. Furthermore, through a comparative study with a collection of previous works on dry DNA irradiation, we show that the irradiation protocol leads to biases in the definition of ionizing sources. We support this scenario by discussing the size distributions of nanopore sequencing reads in the light of Geant4 and Geant4-DNA simulation toolkit predictions. We show that integrating long-read sequencing technologies with advanced Monte Carlo simulations paves a promising path toward advancing our comprehension and prediction of radiation-induced DNA fragmentation.
Collapse
Affiliation(s)
- Pierre Beaudier
- CNRS, LP2iB, UMR 5797, Univ. Bordeaux, 33170, Gradignan, France
- CNRS, INSERM, ARNA, UMR5320, U1212, Univ. Bordeaux, 33000, Bordeaux, France
| | - Sara A Zein
- CNRS, LP2iB, UMR 5797, Univ. Bordeaux, 33170, Gradignan, France
| | | | - Hoang Ngoc Tran
- CNRS, LP2iB, UMR 5797, Univ. Bordeaux, 33170, Gradignan, France
| | - Guillaume Devès
- CNRS, LP2iB, UMR 5797, Univ. Bordeaux, 33170, Gradignan, France
| | | | - Rémy Liénard
- CNRS, LP2iB, UMR 5797, Univ. Bordeaux, 33170, Gradignan, France
| | - Denis Dupuy
- CNRS, INSERM, ARNA, UMR5320, U1212, Univ. Bordeaux, 33000, Bordeaux, France
| | | | | | - Franck Gobet
- CNRS, LP2iB, UMR 5797, Univ. Bordeaux, 33170, Gradignan, France
| | - Hervé Seznec
- CNRS, LP2iB, UMR 5797, Univ. Bordeaux, 33170, Gradignan, France.
| |
Collapse
|
10
|
Goodhead DT, Weinfeld M. Clustered DNA Damage and its Complexity: Tracking the History. Radiat Res 2024; 202:385-407. [PMID: 38954537 DOI: 10.1667/rade-24-00017.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/21/2024] [Indexed: 07/04/2024]
Abstract
The concept of radiation-induced clustered damage in DNA has grown over the past several decades to become a topic of considerable interest across the scientific disciplines involved in studies of the biological effects of ionizing radiation. This paper, prepared for the 70th anniversary issue of Radiation Research, traces historical development of the three main threads of physics, chemistry, and biochemical/cellular responses that led to the hypothesis and demonstration that a key component of the biological effectiveness of ionizing radiation is its characteristic of producing clustered DNA damage of varying complexities. The physics thread has roots that started as early as the 1920s, grew to identify critical nanometre-scale clusterings of ionizations relevant to biological effectiveness, and then, by the turn of the century, had produced an extensive array of quantitative predictions on the complexity of clustered DNA damage from different radiations. Monte Carlo track structure simulation techniques played a key role through these developments, and they are now incorporated into many recent and ongoing studies modelling the effects of radiation. The chemistry thread was seeded by water-radiolysis descriptions of events in water as radical-containing "spurs," demonstration of the important role of the hydroxyl radical in radiation-inactivation of cells and the difficulty of protection by radical scavengers. This led to the concept and description of locally multiply damaged sites (LMDS) for DNA double-strand breaks and other combinations of DNA base damage and strand breakage that could arise from a spur overlapping, or created in very close proximity to, the DNA. In these ways, both the physics and the chemistry threads, largely in parallel, put out the challenge to the experimental research community to verify these predictions of clustered DNA damage from ionizing radiations and to investigate their relevance to DNA repair and subsequent cellular effects. The third thread, biochemical and cell-based research, responded strongly to the challenge by demonstrating the existence and biological importance of clustered DNA damage. Investigations have included repair of a wide variety of defined constructs of clustered damage, evaluation of mutagenic consequences, identification of clustered base-damage within irradiated cells, and identification of co-localization of repair complexes indicative of complex clustered damage after high-LET irradiation, as well as extensive studies of the repair pathways involved in repair of simple double-strand breaks. There remains, however, a great deal more to be learned because of the diversity of clustered DNA damage and of the biological responses.
Collapse
|
11
|
D-Kondo N, Ortiz R, Faddegon B, Incerti S, Tran HN, Francis Z, Barbosa EM, Schuemann J, Ramos-Méndez J. Lithium inelastic cross-sections and their impact on micro and nano dosimetry of boron neutron capture. Phys Med Biol 2024; 69:10.1088/1361-6560/ad5f72. [PMID: 38964312 PMCID: PMC11271803 DOI: 10.1088/1361-6560/ad5f72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Objective.To present a new set of lithium-ion cross-sections for (i) ionization and excitation processes down to 700 eV, and (ii) charge-exchange processes down to 1 keV u-1. To evaluate the impact of the use of these cross-sections on micro a nano dosimetric quantities in the context of boron neutron capture (BNC) applications/techniques.Approach.The Classical Trajectory Monte Carlo method was used to calculate Li ion charge-exchange cross sections in the energy range of 1 keV u-1to 10 MeV u-1. Partial Li ion charge states ionization and excitation cross-sections were calculated using a detailed charge screening factor. The cross-sections were implemented in Geant4-DNA v10.07 and simulations and verified using TOPAS-nBio by calculating stopping power and continuous slowing down approximation (CSDA) range against data from ICRU and SRIM. Further microdosimetric and nanodosimetric calculations were performed to quantify differences against other simulation approaches for low energy Li ions. These calculations were: lineal energy spectra (yf(y) andyd(y)), frequency mean lineal energyyF-, dose mean lineal energyyD-and ionization cluster size distribution analysis. Microdosimetric calculations were compared against a previous MC study that neglected charge-exchange and excitation processes. Nanodosimetric results were compared against pure ionization scaled cross-sections calculations.Main results.Calculated stopping power differences between ICRU and Geant4-DNA decreased from 33.78% to 6.9%. The CSDA range difference decreased from 621% to 34% when compared against SRIM calculations. Geant4-DNA/TOPAS calculated dose mean lineal energy differed by 128% from the previous Monte Carlo. Ionization cluster size frequency distributions for Li ions differed by 76%-344.11% for 21 keV and 2 MeV respectively. With a decrease in theN1within 9% at 10 keV and agreeing after the 100 keV. With the new set of cross-sections being able to better simulate low energy behaviors of Li ions.Significance.This work shows an increase in detail gained from the use of a more complete set of low energy cross-sections which include charge exchange processes. Significant differences to previous simulation results were found at the microdosimetric and nanodosimetric scales that suggest that Li ions cause less ionizations per path length traveled but with more energy deposits. Microdosimetry results suggest that the BNC's contribution to cellular death may be mainly due to alpha particle production when boron-based drugs are distributed in the cellular membrane and beyond and by Li when it is at the cell cytoplasm regions.
Collapse
Affiliation(s)
- Naoki D-Kondo
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, United States of America
| | - Ramon Ortiz
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, United States of America
| | - Bruce Faddegon
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, United States of America
| | - Sebastien Incerti
- University of Bordeaux, CNRS, LP2I, CENBG, UMR 5797, F-33170 Gradignan, France
| | - H. N. Tran
- University of Bordeaux, CNRS, LP2I, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Z. Francis
- Department of Physics, Faculty of Sciences, Université Saint Joseph, Beirut, Lebanon
| | - Eduardo Moreno Barbosa
- Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla Mexico
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - José Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
12
|
Shamsabadi R, Baghani HR. DNA-damage RBE assessment for combined boron and gadolinium neutron capture therapy. J Appl Clin Med Phys 2024; 25:e14399. [PMID: 38767333 PMCID: PMC11244684 DOI: 10.1002/acm2.14399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
PURPOSE Neutron capture therapy (NCT) by 10B and 157Gd agents is a unique irradiation-based method which can be used to treat brain tumors. Current study aims to quantitatively evaluate the relative biological effectiveness (RBE) and dose distributions during the combined BNCT and GdNCT modalities through a hybrid Monte Carlo (MC) simulation approach. METHODS Snyder head phantom as well as a cubic hypothetical tumor was at first modeled by Geant4 MC Code. Then, the energy spectra and dose distribution relevant to the released secondary particles during the combined Gd/BNCT were scored for different concentrations of 157Gd and 10B inside tumor volume. Finally, the scored energy spectra were imported to the MCDS code to estimate both RBESSB and RBEDSB values for different 157Gd concentrations. RESULTS The results showed that combined Gd/BNCT increases the fluence-averaged RBESSB values by about 1.7 times when 157Gd concentration increments from 0 to 2000 µg/g for both considered cell oxygen levels (pO2 = 10% and 100%). Besides, a reduction of about 26% was found for fluence-averaged RBEDSB values with an increment of 157Gd concentration in tumor volume. CONCLUSION From the results, it can be concluded that combined Gd/BNCT technique can improve tumor coverage with higher dose levels but in the expense of RBEDSB reduction which can affect the clinical efficacy of the NCT technique.
Collapse
Affiliation(s)
- Reza Shamsabadi
- Physics Department, Hakim Sabzevari University, Sabzevar, Iran
| | | |
Collapse
|
13
|
Chattaraj A, Selvam TP. Radiation-induced DNA damage by proton, helium and carbon ions in human fibroblast cell: Geant4-DNA and MCDS-based study. Biomed Phys Eng Express 2024; 10:045059. [PMID: 38870909 DOI: 10.1088/2057-1976/ad57ce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Background. Radiation-induced DNA damages such as Single Strand Break (SSB), Double Strand Break (DSB) and Complex DSB (cDSB) are critical aspects of radiobiology with implications in radiotherapy and radiation protection applications.Materials and Methods. This study presents a thorough investigation into the effects of protons (0.1-100 MeV/u), helium ions (0.13-100 MeV/u) and carbon ions (0.5-480 MeV/u) on DNA of human fibroblast cells using Geant4-DNA track structure code coupled with DBSCAN algorithm and Monte Carlo Damage Simulations (MCDS) code. Geant4-DNA-based simulations consider 1μm × 1μm × 0.5μm water box as the target to calculate energy deposition on event-by-event basis and the three-dimensional coordinates of the interaction location, and then DBSCAN algorithm is used to calculate yields of SSB, DSB and cDSB in human fibroblast cell. The study investigated the influence of Linear Energy Transfer (LET) of protons, helium ions and carbon ions on the yields of DNA damages. Influence of cellular oxygenation on DNA damage patterns is investigated using MCDS code.Results. The study shows that DSB and SSB yields are influenced by the LET of the particles, with distinct trends observed for different particles. The cellular oxygenation is a key factor, with anoxic cells exhibiting reduced SSB and DSB yields, underscoring the intricate relationship between cellular oxygen levels and DNA damage. The study introduced DSB/SSB ratio as an informative metric for evaluating the severity of radiation-induced DNA damage, particularly in higher LET regions.Conclusions. The study highlights the importance of considering particle type, LET, and cellular oxygenation in assessing the biological effects of ionizing radiation.
Collapse
Affiliation(s)
- Arghya Chattaraj
- Radiological Physics and Advisory Division, Health, Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - T Palani Selvam
- Radiological Physics and Advisory Division, Health, Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
14
|
Plante I, West DW, Weeks J, Risca VI. Simulation of Radiation-Induced DNA Damage and Protection by Histones Using the Code RITRACKS. BIOTECH 2024; 13:17. [PMID: 38921049 PMCID: PMC11201919 DOI: 10.3390/biotech13020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
(1) Background: DNA damage is of great importance in the understanding of the effects of ionizing radiation. Various types of DNA damage can result from exposure to ionizing radiation, with clustered types considered the most important for radiobiological effects. (2) Methods: The code RITRACKS (Relativistic Ion Tracks), a program that simulates stochastic radiation track structures, was used to simulate DNA damage by photons and ions spanning a broad range of linear energy transfer (LET) values. To perform these simulations, the transport code was modified to include cross sections for the interactions of ions or electrons with DNA and amino acids for ionizations, dissociative electron attachment, and elastic collisions. The radiochemistry simulations were performed using a step-by-step algorithm that follows the evolution of all particles in time, including reactions between radicals and DNA structures and amino acids. Furthermore, detailed DNA damage events, such as base pair positions, DNA fragment lengths, and fragment yields, were recorded. (3) Results: We report simulation results using photons and the ions 1H+, 4He2+, 12C6+, 16O8+, and 56Fe26+ at various energies, covering LET values from 0.3 to 164 keV/µm, and performed a comparison with other codes and experimental results. The results show evidence of DNA protection from damage at its points of contacts with histone proteins. (4) Conclusions: RITRACKS can provide a framework for studying DNA damage from a variety of ionizing radiation sources with detailed representations of DNA at the atomic scale, DNA-associated proteins, and resulting DNA damage events and statistics, enabling a broader range of future comparisons with experiments such as those based on DNA sequencing.
Collapse
Affiliation(s)
| | - Devany W. West
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY 10065, USA; (D.W.W.); (V.I.R.)
| | - Jason Weeks
- NASA Johnson Space Center, Houston, TX 77058, USA;
| | - Viviana I. Risca
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY 10065, USA; (D.W.W.); (V.I.R.)
| |
Collapse
|
15
|
Radstake WE, Parisi A, Miranda S, Gautam K, Vermeesen R, Rehnberg E, Tabury K, Coppes R, van Goethem MJ, Brandenburg S, Weber U, Fournier C, Durante M, Baselet B, Baatout S. Radiation-induced DNA double-strand breaks in cortisol exposed fibroblasts as quantified with the novel foci-integrated damage complexity score (FIDCS). Sci Rep 2024; 14:10400. [PMID: 38710823 DOI: 10.1038/s41598-024-60912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
Without the protective shielding of Earth's atmosphere, astronauts face higher doses of ionizing radiation in space, causing serious health concerns. Highly charged and high energy (HZE) particles are particularly effective in causing complex and difficult-to-repair DNA double-strand breaks compared to low linear energy transfer. Additionally, chronic cortisol exposure during spaceflight raises further concerns, although its specific impact on DNA damage and repair remains unknown. This study explorers the effect of different radiation qualities (photons, protons, carbon, and iron ions) on the DNA damage and repair of cortisol-conditioned primary human dermal fibroblasts. Besides, we introduce a new measure, the Foci-Integrated Damage Complexity Score (FIDCS), to assess DNA damage complexity by analyzing focus area and fluorescent intensity. Our results show that the FIDCS captured the DNA damage induced by different radiation qualities better than counting the number of foci, as traditionally done. Besides, using this measure, we were able to identify differences in DNA damage between cortisol-exposed cells and controls. This suggests that, besides measuring the total number of foci, considering the complexity of the DNA damage by means of the FIDCS can provide additional and, in our case, improved information when comparing different radiation qualities.
Collapse
Affiliation(s)
- Wilhelmina E Radstake
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Alessio Parisi
- Radiation Protection Dosimetry and Calibration Expert Group, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Silvana Miranda
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kiran Gautam
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Randy Vermeesen
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Emil Rehnberg
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Biomedical Engineering, University of South Carolina, Columbia, USA
| | - Rob Coppes
- Department of Biomedical Sciences of Cells and Systems, Section of Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9713, Groningen, The Netherlands
- Department of Radiation Oncology and Particle Therapy Research Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marc-Jan van Goethem
- Department of Radiation Oncology and Particle Therapy Research Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sytze Brandenburg
- Department of Radiation Oncology and Particle Therapy Research Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ulrich Weber
- Biophysics Division, GSI Helmholtzzentrum Für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Claudia Fournier
- Biophysics Division, GSI Helmholtzzentrum Für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Marco Durante
- Biophysics Division, GSI Helmholtzzentrum Für Schwerionenforschung GmbH, Darmstadt, Germany
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Zanni V, Papakonstantinou D, Kalospyros SA, Karaoulanis D, Biz GM, Manti L, Adamopoulos A, Pavlopoulou A, Georgakilas AG. RadPhysBio: A Radiobiological Database for the Prediction of Cell Survival upon Exposure to Ionizing Radiation. Int J Mol Sci 2024; 25:4729. [PMID: 38731948 PMCID: PMC11083482 DOI: 10.3390/ijms25094729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Based on the need for radiobiological databases, in this work, we mined experimental ionizing radiation data of human cells treated with X-rays, γ-rays, carbon ions, protons and α-particles, by manually searching the relevant literature in PubMed from 1980 until 2024. In order to calculate normal and tumor cell survival α and β coefficients of the linear quadratic (LQ) established model, as well as the initial values of the double-strand breaks (DSBs) in DNA, we used WebPlotDigitizer and Python programming language. We also produced complex DNA damage results through the fast Monte Carlo code MCDS in order to complete any missing data. The calculated α/β values are in good agreement with those valued reported in the literature, where α shows a relatively good association with linear energy transfer (LET), but not β. In general, a positive correlation between DSBs and LET was observed as far as the experimental values are concerned. Furthermore, we developed a biophysical prediction model by using machine learning, which showed a good performance for α, while it underscored LET as the most important feature for its prediction. In this study, we designed and developed the novel radiobiological 'RadPhysBio' database for the prediction of irradiated cell survival (α and β coefficients of the LQ model). The incorporation of machine learning and repair models increases the applicability of our results and the spectrum of potential users.
Collapse
Affiliation(s)
- Vassiliki Zanni
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campous, 15780 Athens, Greece; (V.Z.); (S.A.K.); (G.M.B.)
| | | | - Spyridon A. Kalospyros
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campous, 15780 Athens, Greece; (V.Z.); (S.A.K.); (G.M.B.)
| | - Dimitris Karaoulanis
- School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece;
| | - Gökay Mehmet Biz
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campous, 15780 Athens, Greece; (V.Z.); (S.A.K.); (G.M.B.)
| | - Lorenzo Manti
- Naples Italy and Radiation Biophysics Laboratory, National Institute of Nuclear Physics (INFN), Section of Naples, Department of Physics “E. Pancini”, University of Naples Federico II, 80138 Naples, Italy;
| | - Adam Adamopoulos
- Department of Medicine, Medical Physics Laboratory, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova, Izmir, Turkey;
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balcova, Izmir, Turkey
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campous, 15780 Athens, Greece; (V.Z.); (S.A.K.); (G.M.B.)
| |
Collapse
|
17
|
Taheri A, Khandaker MU, Moradi F, Bradley DA. A simulation study on the radiosensitization properties of gold nanorods. Phys Med Biol 2024; 69:045029. [PMID: 38286017 DOI: 10.1088/1361-6560/ad2380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
Objective. Gold nanorods (GNRs) have emerged as versatile nanoparticles with unique properties, holding promise in various modalities of cancer treatment through drug delivery and photothermal therapy. In the rapidly evolving field of nanoparticle radiosensitization (NPRS) for cancer therapy, this study assessed the potential of gold nanorods as radiosensitizing agents by quantifying the key features of NPRS, such as secondary electron emission and dose enhancement, using Monte Carlo simulations.Approach. Employing the TOPAS track structure code, we conducted a comprehensive evaluation of the radiosensitization behavior of spherical gold nanoparticles and gold nanorods. We systematically explored the impact of nanorod geometry (in particular size and aspect ratio) and orientation on secondary electron emission and deposited energy ratio, providing validated results against previously published simulations.Main results. Our findings demonstrate that gold nanorods exhibit comparable secondary electron emission to their spherical counterparts. Notably, nanorods with smaller surface-area-to-volume ratios (SA:V) and alignment with the incident photon beam proved to be more efficient radiosensitizing agents, showing superiority in emitted electron fluence. However, in the microscale, the deposited energy ratio (DER) was not markedly influenced by the SA:V of the nanorod. Additionally, our findings revealed that the geometry of gold nanoparticles has a more significant impact on the emission of M-shell Auger electrons (with energies below 3.5 keV) than on higher-energy electrons.Significance. This research investigated the radiosensitization properties of gold nanorods, positioning them as promising alternatives to the more conventionally studied spherical gold nanoparticles in the context of cancer research. With increasing interest in multimodal cancer therapy, our findings have the potential to contribute valuable insights into the perspective of gold nanorods as effective multipurpose agents for synergistic photothermal therapy and radiotherapy. Future directions may involve exploring alternative metallic nanorods as well as further optimizing the geometry and coating materials, opening new possibilities for more effective cancer treatments.
Collapse
Affiliation(s)
- Ali Taheri
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
| | - Mayeen Uddin Khandaker
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
- Faculty of Graduate Studies, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Farhad Moradi
- Fibre Optics Research Centre, Faculty of Engineering, Multimedia University, Jalan Multimedia 63100, Cyberjaya, Malaysia
| | - David Andrew Bradley
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
- School of Mathematics and Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom
| |
Collapse
|
18
|
Mortazavi SMJ, Rafiepour P, Mortazavi SAR, Razavi Toosi SMT, Shomal PR, Sihver L. Radium deposition in human brain tissue: A Geant4-DNA Monte Carlo toolkit study. Z Med Phys 2024; 34:166-174. [PMID: 38420703 PMCID: PMC10919964 DOI: 10.1016/j.zemedi.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/09/2023] [Accepted: 09/28/2023] [Indexed: 03/02/2024]
Abstract
NASA has encouraged studies on 226Ra deposition in the human brain to investigate the effects of exposure to alpha particles with high linear energy transfer, which could mimic some of the exposure astronauts face during space travel. However, this approach was criticized, noting that radium is a bone-seeker and accumulates in the skull, which means that the radiation dose from alpha particles emitted by 226Ra would be heavily concentrated in areas close to cranial bones rather than uniformly distributed throughout the brain. In the high background radiation areas of Ramsar, Iran, extremely high levels of 226Ra in soil contribute to a large proportion of the inhabitants' radiation exposure. A prospective study on Ramsar residents with a calcium-rich diet was conducted to improve the dose uniformity due to 226Ra throughout the cerebral and cerebellar parenchyma. The study found that exposure of the human brain to alpha particles did not significantly affect working memory but was significantly associated with increased reaction times. This finding is crucial because astronauts on deep space missions may face similar cognitive impairments due to exposure to high charge and energy particles. The current study was aimed to evaluate the validity of the terrestrial model using the Geant4 Monte Carlo toolkit to simulate the interactions of alpha particles and representative cosmic ray particles, acknowledging that these radiation types are only a subset of the complete space radiation environment.
Collapse
Affiliation(s)
- S M J Mortazavi
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Payman Rafiepour
- Department of Nuclear Engineering, School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - S A R Mortazavi
- MVLS College, The University of Glasgow, Glasgow Scotland, UK
| | - S M T Razavi Toosi
- Physiology Department, School of Medicine, Guilan University of Medical Sciences, Guilan, Iran
| | - Parya Roshan Shomal
- Physiology Department, School of Medicine, Guilan University of Medical Sciences, Guilan, Iran
| | - Lembit Sihver
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Prague, Czechia; Technische Universität Wien, Atominstitut, Vienna, Austria.
| |
Collapse
|
19
|
Feng H, Li W, Zhang Y, Chang C, Hua L, Feng Y, Lai Y, Geng L. Mechanistic modelling of relative biological effectiveness of carbon ion beams and comparison with experiments. Phys Med Biol 2024; 69:035020. [PMID: 38157549 DOI: 10.1088/1361-6560/ad1998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Objective.Relative biological effectiveness (RBE) plays a vital role in carbon ion radiotherapy, which is a promising treatment method for reducing toxic effects on normal tissues and improving treatment efficacy. It is important to have an effective and precise way of obtaining RBE values to support clinical decisions. A method of calculating RBE from a mechanistic perspective is reported.Approach.Ratio of dose to obtain the same number of double strand breaks (DSBs) between different radiation types was used to evaluate RBE. Package gMicroMC was used to simulate DSB yields. The DSB inductions were then analyzed to calculate RBE. The RBE values were compared with experimental results.Main results.Furusawa's experiment yielded RBE values of 1.27, 2.22, 3.00 and 3.37 for carbon ion beam with dose-averaged LET of 30.3 keVμm-1, 54.5 keVμm-1, 88 keVμm-1and 137 keVμm-1, respectively. RBE values computed from gMicroMC simulations were 1.75, 2.22, 2.87 and 2.97. When it came to a more sophisticated carbon ion beam with 6 cm spread-out Bragg peak, RBE values were 1.61, 1.63, 2.19 and 2.36 for proximal, middle, distal and distal end part, respectively. Values simulated by gMicroMC were 1.50, 1.87, 2.19 and 2.34. The simulated results were in reasonable agreement with the experimental data.Significance.As a mechanistic way for the evaluation of RBE for carbon ion radiotherapy by combining the macroscopic simulation of energy spectrum and microscopic simulation of DNA damages, this work provides a promising tool for RBE calculation supporting clinical applications such as treatment planning.
Collapse
Affiliation(s)
- Haonan Feng
- School of Physics, Beihang University, Beijing 102206, People's Republic of China
- Department of Medical Management, Chinese Academy of Science Heavy Ion Medicine (CASHIM) Co. Ltd, Beijing 100083, People's Republic of China
| | - Weiguang Li
- School of Physics, Beihang University, Beijing 102206, People's Republic of China
- Department of Medical Management, Chinese Academy of Science Heavy Ion Medicine (CASHIM) Co. Ltd, Beijing 100083, People's Republic of China
| | - Yibao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Cheng Chang
- Department of Medical Management, Chinese Academy of Science Heavy Ion Medicine (CASHIM) Co. Ltd, Beijing 100083, People's Republic of China
| | - Ling Hua
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Yiwen Feng
- Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Youfang Lai
- Department of Medical Management, Chinese Academy of Science Heavy Ion Medicine (CASHIM) Co. Ltd, Beijing 100083, People's Republic of China
| | - LiSheng Geng
- School of Physics, Beihang University, Beijing 102206, People's Republic of China
- Peng Huanwu Collaborative Center for Research and Education, Beihang University, Beijing 100191, People's Republic of China
- Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 102206, People's Republic of China
- Southern Center for Nuclear-Science Theory (SCNT), Institute of Modern Physics, Chinese Academy of Sciences, Huizhou 516000, Guangdong Province, People's Republic of China
| |
Collapse
|
20
|
Warmenhoven JW, Henthorn NT, McNamara AL, Ingram SP, Merchant MJ, Kirkby KJ, Schuemann J, Paganetti H, Prise KM, McMahon SJ. Effects of Differing Underlying Assumptions in In Silico Models on Predictions of DNA Damage and Repair. Radiat Res 2023; 200:509-522. [PMID: 38014593 PMCID: PMC11590750 DOI: 10.1667/rade-21-00147.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/05/2023] [Indexed: 11/29/2023]
Abstract
The induction and repair of DNA double-strand breaks (DSBs) are critical factors in the treatment of cancer by radiotherapy. To investigate the relationship between incident radiation and cell death through DSB induction many in silico models have been developed. These models produce and use custom formats of data, specific to the investigative aims of the researchers, and often focus on particular pairings of damage and repair models. In this work we use a standard format for reporting DNA damage to evaluate combinations of different, independently developed, models. We demonstrate the capacity of such inter-comparison to determine the sensitivity of models to both known and implicit assumptions. Specifically, we report on the impact of differences in assumptions regarding patterns of DNA damage induction on predicted initial DSB yield, and the subsequent effects this has on derived DNA repair models. The observed differences highlight the importance of considering initial DNA damage on the scale of nanometres rather than micrometres. We show that the differences in DNA damage models result in subsequent repair models assuming significantly different rates of random DSB end diffusion to compensate. This in turn leads to disagreement on the mechanisms responsible for different biological endpoints, particularly when different damage and repair models are combined, demonstrating the importance of inter-model comparisons to explore underlying model assumptions.
Collapse
Affiliation(s)
- John W. Warmenhoven
- Division of Cancer Sciences, University of Manchester,
Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester Academic
Health Science Centre, Manchester, United Kingdom
| | - Nicholas T. Henthorn
- Division of Cancer Sciences, University of Manchester,
Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester Academic
Health Science Centre, Manchester, United Kingdom
| | - Aimee L. McNamara
- Physics Division, Department of Radiation Oncology,
Massachusetts General Hospital and Harvard Medical School, Massachusetts
| | - Samuel P. Ingram
- Division of Cancer Sciences, University of Manchester,
Manchester, United Kingdom
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Manchester, United Kingdom
| | - Michael J. Merchant
- Division of Cancer Sciences, University of Manchester,
Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester Academic
Health Science Centre, Manchester, United Kingdom
| | - Karen J. Kirkby
- Division of Cancer Sciences, University of Manchester,
Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester Academic
Health Science Centre, Manchester, United Kingdom
| | - Jan Schuemann
- Physics Division, Department of Radiation Oncology,
Massachusetts General Hospital and Harvard Medical School, Massachusetts
| | - Harald Paganetti
- Physics Division, Department of Radiation Oncology,
Massachusetts General Hospital and Harvard Medical School, Massachusetts
| | - Kevin M. Prise
- Patrick G Johnston Centre for Cancer Research,
Queen’s University Belfast, Belfast, United Kingdom
| | - Stephen J. McMahon
- Patrick G Johnston Centre for Cancer Research,
Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
21
|
Manalad J, Montgomery L, Kildea J. A Monte Carlo study on the impact of indirect action on neutron relative biological effectiveness. RADIATION PROTECTION DOSIMETRY 2023; 199:1917-1921. [PMID: 37819307 DOI: 10.1093/rpd/ncad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/10/2023] [Accepted: 04/12/2023] [Indexed: 10/13/2023]
Abstract
Recent Monte Carlo studies have linked the energy-dependent risk of neutron-induced stochastic effects to the relative biological effectiveness (RBE) of neutrons in inflicting difficult-to-repair clusters of lesions in nuclear deoxyribonucleic acid (DNA). However, an investigation on the damaging effects of indirect radiation action is missing from such studies. In this work, we extended our group's existing simulation pipeline by incorporating and validating a model for indirect action. Our updated simulation pipeline was used to study the impact of indirect action and estimate neutron RBE for inflicting clustered lesions in DNA. In our results, although indirect action significantly increased the average yield of DNA damage clusters, our neutron RBE values are lower in magnitude than previous estimates due to model limitations and the greater relative impact of indirect action in lower-linear energy transfer (LET) radiation than in higher-LET radiation.
Collapse
Affiliation(s)
- James Manalad
- Medical Physics Unit, McGill University, Montreal, QC H4A 3J1, Canada
| | - Logan Montgomery
- Cancer Centre of Southeastern Ontario, Kingston Health Sciences Centre, Kingston, ON K7L 5P9, Canada
| | - John Kildea
- Medical Physics Unit, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
22
|
Liang Y, Wu J, Ding Z, Liu C, Fu Q. Evaluation of the Yield of DNA Double-Strand Breaks for Carbon Ions Using Monte Carlo Simulation and DNA Fragment Distribution. Int J Radiat Oncol Biol Phys 2023; 117:252-261. [PMID: 36966847 DOI: 10.1016/j.ijrobp.2023.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023]
Abstract
PURPOSE The aim of this work was to provide a method to evaluate the yield of DNA double-strand breaks (DSBs) for carbon ions, overcoming the bias in existing methods due to the nonrandom distribution of DSBs. METHODS AND MATERIALS A previously established biophysical program based on the radiation track structure and a multilevel chromosome model was used to simulate DNA damage induced by x-rays and carbon ions. The fraction of activity retained (FAR) as a function of absorbed dose or particle fluence was obtained by counting the fraction of DNA fragments larger than 6 Mbp. Simulated FAR curves for the 250 kV x-rays and carbon ions at various energies were compared with measurements using constant-field gel electrophoresis. The doses or fluences at the FAR of 0.7 based on linear interpolation were used to estimate the simulation error for the production of DSBs. RESULTS The relative difference of doses at the FAR of 0.7 between simulation and experiment was -8.5% for the 250 kV x-rays. The relative differences of fluences at the FAR of 0.7 between simulations and experiments were -17.5%, -42.2%, -18.2%, -3.1%, 10.8%, and -14.5% for the 34, 65, 130, 217, 2232, and 3132 MeV carbon ions, respectively. In comparison, the measurement uncertainty was about 20%. Carbon ions produced remarkably more DSBs and DSB clusters per unit dose than x-rays. The yield of DSBs for carbon ions, ranging from 10 to 16 Gbp-1Gy-1, increased with linear energy transfer (LET) but plateaued in the high-LET end. The yield of DSB clusters first increased and then decreased with LET. This pattern was similar to the relative biological effectiveness for cell survival for heavy ions. CONCLUSIONS The estimated yields of DSBs for carbon ions increased from 10 Gbp-1Gy-1 in the low-LET end to 16 Gbp-1Gy-1 in the high-LET end with 20% uncertainty.
Collapse
Affiliation(s)
- Ying Liang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.
| | - Jianan Wu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zhen Ding
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Chenbin Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Qibin Fu
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
23
|
Guerra Liberal FDC, Thompson SJ, Prise KM, McMahon SJ. High-LET radiation induces large amounts of rapidly-repaired sublethal damage. Sci Rep 2023; 13:11198. [PMID: 37433844 PMCID: PMC10336062 DOI: 10.1038/s41598-023-38295-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/06/2023] [Indexed: 07/13/2023] Open
Abstract
There is agreement that high-LET radiation has a high Relative Biological Effectiveness (RBE) when delivered as a single treatment, but how it interacts with radiations of different qualities, such as X-rays, is less clear. We sought to clarify these effects by quantifying and modelling responses to X-ray and alpha particle combinations. Cells were exposed to X-rays, alpha particles, or combinations, with different doses and temporal separations. DNA damage was assessed by 53BP1 immunofluorescence, and radiosensitivity assessed using the clonogenic assay. Mechanistic models were then applied to understand trends in repair and survival. 53BP1 foci yields were significantly reduced in alpha particle exposures compared to X-rays, but these foci were slow to repair. Although alpha particles alone showed no inter-track interactions, substantial interactions were seen between X-rays and alpha particles. Mechanistic modelling suggested that sublethal damage (SLD) repair was independent of radiation quality, but that alpha particles generated substantially more sublethal damage than a similar dose of X-rays, [Formula: see text]. This high RBE may lead to unexpected synergies for combinations of different radiation qualities which must be taken into account in treatment design, and the rapid repair of this damage may impact on mechanistic modelling of radiation responses to high LETs.
Collapse
Affiliation(s)
- Francisco D C Guerra Liberal
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Shannon J Thompson
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Kevin M Prise
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Stephen J McMahon
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK.
| |
Collapse
|
24
|
Margis S, Kyriakou I, Incerti S, Bordage MC, Emfietzoglou D. Sub-keV corrections to binary encounter cross section models for electron ionization of liquid water with application to the Geant4-DNA Monte Carlo code. Appl Radiat Isot 2023; 194:110693. [PMID: 36731390 DOI: 10.1016/j.apradiso.2023.110693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/13/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
INTRODUCTION The electron ionization cross section of water is one of the most important input in Monte Carlo studies of cellular radiobiological effects. Analytical cross section models of the binary-encounter type have the potential of reducing simulation time and facilitate application to a variety of biological materials (other than water). The Binary-Encounter-Bethe (BEB) and Binary-Encounter-Dipole (BED) models of NIST are perhaps the most popular of such models giving reliable results for atoms and molecules in the gas-phase over a wide energy range. However, the use of such models to sub-keV electron energies in liquid water raises concerns due to the neglect of condensed phase effects that leads to a significant overestimation when compared to medium-specific dielectric models. PURPOSE To modify the BEB and BED models towards better agreement with the recommended low-energy dielectric model of Geant4-DNA (Option 4). To implement the new modifications to the existing BEB model of the Option 6 physics constructor of Geant4-DNA and re-evaluate fundamental transport quantities for sub-keV electrons. METHODS In analogy to a Yukawa potential a simple, yet physically-motivated, modification of the Burgess correction term is proposed to account for the reduction of the Coulomb interaction due to the polarizability of the target. The magnitude of the correction is guided by the dielectric-based ionization cross section implemented in Option 4. RESULTS Differential, total and stopping ionization cross sections for low-energy electrons in liquid water are presented. When combined with the Vriens correction (which is not included in Option 6), the proposed modification to the BEB and BED models brings the ionization and stopping cross sections in much better agreement against those used in the Option 4 dielectric model of Geant4-DNA, with up to 30% and 10% deviation, respectively. Implementation of the new correction to the Option 6 constructor of Geant4-DNA and re-evaluation of fundamental transport quantities, such as electron penetration ranges and dose-point-kernels, reduced the discrepancies from Option 4 at sub-keV energies from 20 to 100% (or more) to well below 10% in most cases. CONCLUSIONS A simple modification to the BEB and BED analytic models was found to improve their performance for sub-keV electrons in liquid water medium. Implementation of the new modification to the Option 6 constructor of Geant4-DNA significantly improved the agreement with the recommended low-energy Option 4 constructor for a variety of fundamental quantities related to electron transport.
Collapse
Affiliation(s)
- Stefanos Margis
- Medical Physics Laboratory, University of Ioannina Medical School, 45110, Ioannina, Greece
| | - Ioanna Kyriakou
- Medical Physics Laboratory, University of Ioannina Medical School, 45110, Ioannina, Greece
| | - Sebastien Incerti
- Bordeaux University, CNRS/IN2P3, CENBG, UMR 5797, F-33170, Gradignan, France
| | | | - Dimitris Emfietzoglou
- Medical Physics Laboratory, University of Ioannina Medical School, 45110, Ioannina, Greece.
| |
Collapse
|
25
|
Mokari M, Moeini H, Farazmand S. Computational modeling and a Geant4-DNA study of the rejoining of direct and indirect DNA damage induced by low energy electrons and carbon ions. Int J Radiat Biol 2023; 99:1391-1404. [PMID: 36745857 DOI: 10.1080/09553002.2023.2173824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 02/08/2023]
Abstract
PURPOSE DNA double-strand breaks (DSBs) created by ionizing radiations are considered as the most detrimental lesion, which could result in the cell death or sterilization. As the empirical evidence gathered from the cellular and molecular radiation biology has demonstrated significant correlations between the initial and lasting levels of DSBs, gaining knowledge into the DSB repair mechanisms proves vital. Much effort has been invested into understanding the mechanisms triggering the repair and processes engaged after irradiation of cells. Given a mechanistic model, we performed - to our knowledge - the first Monte Carlo study of the expected repair kinetics of carbon ions and electrons using on the one hand Geant4-DNA simulations of electrons for benchmarking purposes and on the other hand quantifying the influence of direct and indirect damage. Our objective was to calculate the DSB repair rates using a repair mechanism for G1 and early S phases of the cell cycle in conjunction with simulations of the DNA damage. MATERIALS AND METHODS Based on Geant4-DNA simulations of DSB damage caused by electrons and carbon ions - using a B-DNA model and a water sphere of 3 μm radius resembling the mean size of human cells - we derived the kinetics of various biochemical repair processes. RESULTS The overall repair times of carbon ions increased with the DSB complexity. Comparison of the DSB complexity (DSBc) and repair times as a function of carbon-ion energy suggested that the repair time of no specific fraction of DSBs could solely be explained as a function of DSB complexity. CONCLUSION Analysis of the carbon-ion repair kinetics indicated that, given a fraction of DSBs, decreasing the energy would result in an increase of the repair time. The disagreements of the calculated and experimental repair kinetics for electrons could, among others, be due to larger damage complexity predicted by simulations or created actually by electrons of comparable energies to x-rays. They are also due to the employed repair mechanisms, which introduce no inherent dependence on the radiation type but make direct use of the simulated DSBs.
Collapse
Affiliation(s)
- Mojtaba Mokari
- Department of Physics, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Hossein Moeini
- Department of Physics, School of Science, Shiraz University, Shiraz, Iran
| | - Shahnaz Farazmand
- Department of Physics, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
26
|
Mentana A, Lamartinière Y, Orsière T, Malard V, Payet M, Slomberg D, Guardamagna I, Lonati L, Grisolia C, Jha A, Lebaron-Jacobs L, Rose J, Ottolenghi A, Baiocco G. Tritiated Steel Micro-Particles: Computational Dosimetry and Prediction of Radiation-Induced DNA Damage for In Vitro Cell Culture Exposures. Radiat Res 2023; 199:25-38. [PMID: 36442022 DOI: 10.1667/rade-22-00043.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022]
Abstract
Biological effects of radioactive particles can be experimentally investigated in vitro as a function of particle concentration, specific activity and exposure time. However, a careful dosimetric analysis is needed to elucidate the role of radiation emitted by radioactive products in inducing cyto- and geno-toxicity: the quantification of radiation dose is essential to eventually inform dose-risk correlations. This is even more fundamental when radioactive particles are short-range emitters and when they have a chemical speciation that might further concur to the heterogeneity of energy deposition at the cellular and sub-cellular level. To this aim, we need to use computational models. In this work, we made use of a Monte Carlo radiation transport code to perform a computational dosimetric reconstruction for in vitro exposure of cells to tritiated steel particles of micrometric size. Particles of this kind have been identified as worth of attention in nuclear power industry and research: tritium easily permeates in steel elements of nuclear reactor machinery, and mechanical operations on these elements (e.g., sawing) during decommissioning of old facilities can result in particle dispersion, leading to human exposure via inhalation. Considering the software replica of a representative in vitro setup to study the effect of such particles, we therefore modelled the radiation field due to the presence of particles in proximity of cells. We developed a computational approach to reconstruct the dose range to individual cell nuclei in contact with a particle, as well as the fraction of "hit" cells and the average dose for the whole cell population, as a function of particle concentration in the culture medium. The dosimetric analysis also provided the basis to make predictions on tritium-induced DNA damage: we estimated the dose-dependent expected yield of DNA double strand breaks due to tritiated steel particle radiation, as an indicator of their expected biological effectiveness.
Collapse
Affiliation(s)
- Alice Mentana
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| | | | - Thierry Orsière
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Véronique Malard
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | | | - Danielle Slomberg
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Isabella Guardamagna
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| | - Leonardo Lonati
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| | | | - Awadhesh Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | | | - Jerome Rose
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Andrea Ottolenghi
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| | - Giorgio Baiocco
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| |
Collapse
|
27
|
Sakata D, Hirayama R, Shin WG, Belli M, Tabocchini MA, Stewart RD, Belov O, Bernal MA, Bordage MC, Brown JMC, Dordevic M, Emfietzoglou D, Francis Z, Guatelli S, Inaniwa T, Ivanchenko V, Karamitros M, Kyriakou I, Lampe N, Li Z, Meylan S, Michelet C, Nieminen P, Perrot Y, Petrovic I, Ramos-Mendez J, Ristic-Fira A, Santin G, Schuemann J, Tran HN, Villagrasa C, Incerti S. Prediction of DNA rejoining kinetics and cell survival after proton irradiation for V79 cells using Geant4-DNA. Phys Med 2023; 105:102508. [PMID: 36549067 PMCID: PMC11221566 DOI: 10.1016/j.ejmp.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Track structure Monte Carlo (MC) codes have achieved successful outcomes in the quantitative investigation of radiation-induced initial DNA damage. The aim of the present study is to extend a Geant4-DNA radiobiological application by incorporating a feature allowing for the prediction of DNA rejoining kinetics and corresponding cell surviving fraction along time after irradiation, for a Chinese hamster V79 cell line, which is one of the most popular and widely investigated cell lines in radiobiology. METHODS We implemented the Two-Lesion Kinetics (TLK) model, originally proposed by Stewart, which allows for simulations to calculate residual DNA damage and surviving fraction along time via the number of initial DNA damage and its complexity as inputs. RESULTS By optimizing the model parameters of the TLK model in accordance to the experimental data on V79, we were able to predict both DNA rejoining kinetics at low linear energy transfers (LET) and cell surviving fraction. CONCLUSION This is the first study to demonstrate the implementation of both the cell surviving fraction and the DNA rejoining kinetics with the estimated initial DNA damage, in a realistic cell geometrical model simulated by full track structure MC simulations at DNA level and for various LET. These simulation and model make the link between mechanistic physical/chemical damage processes and these two specific biological endpoints.
Collapse
Affiliation(s)
- Dousatsu Sakata
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan; Division of Health Sciences, Osaka University, Osaka 565-0871, Japan.
| | - Ryoichi Hirayama
- Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Wook-Geun Shin
- Department of Radiation Oncology, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | | | | | - Robert D Stewart
- Department of Radiation Oncology, University of Washington, WA 98195-6043, USA
| | - Oleg Belov
- Veksler and Baldin Laboratory of High Energy Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia; Institute of System Analysis and Management, Dubna State University, 141980 Dubna, Russia
| | - Mario A Bernal
- Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marie-Claude Bordage
- INSERM, Université Paul Sabatier, UMR 1037, CRCT, Toulouse, France; Université Toulouse III-Paul Sabatier, UMR 1037, CRCT, Toulouse, France
| | - Jeremy M C Brown
- Department of Physics and Astronomy, Swinburne University of Technology, Hawthorn, Australia; Centre For Medical Radiation Physics, University of Wollongong, Wollongong, Australia; Department of Radiation Science and Technology, Delft University of Technology, The Netherlands
| | - Milos Dordevic
- Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dimitris Emfietzoglou
- Medical Physics Laboratory, Department of Medicine, University of Ioannina, GR 45110, Ioannina, Greece
| | - Ziad Francis
- Saint Joseph University of Beirut, UR Mathématiques et Modélisation, Beirut, Lebanon
| | - Susanna Guatelli
- Centre For Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Vladimir Ivanchenko
- Geant4 Associates International Ltd, Hebden Bridge, UK; Tomsk State University, Tomsk, Russia
| | | | - Ioanna Kyriakou
- Medical Physics Laboratory, Department of Medicine, University of Ioannina, GR 45110, Ioannina, Greece
| | | | - Zhuxin Li
- Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, F-33170 Gradignan, France
| | | | - Claire Michelet
- Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, F-33170 Gradignan, France
| | | | - Yann Perrot
- IRSN, Institut de Radioprotection et de Surete Nucleaire, 92262 Fontenay-aux-Roses, France
| | - Ivan Petrovic
- Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jose Ramos-Mendez
- Department of Radiation Oncology, University of California San Francisco, San Francisco 94143, CA, USA
| | - Aleksandra Ristic-Fira
- Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Jan Schuemann
- Physics Division, Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | - Hoang N Tran
- Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, F-33170 Gradignan, France
| | - Carmen Villagrasa
- IRSN, Institut de Radioprotection et de Surete Nucleaire, 92262 Fontenay-aux-Roses, France
| | - Sebastien Incerti
- Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, F-33170 Gradignan, France
| |
Collapse
|
28
|
Electron tracks simulation in water: Performance comparison between GPU CPU and the EUMED grid installation. Phys Med 2022; 104:56-66. [PMID: 36368091 DOI: 10.1016/j.ejmp.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 09/27/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE We explored different technologies to minimize simulation time of the Monte-Carlo method for track generation following the Geant4-DNA processes for electrons in water. METHODS A GPU software tool is developed for electron track simulations. A similar CPU version is also developed using the same collision models. CPU simulations were carried out on a single user desktop computer and on the computing grid France Grilles using 10 and 100 computing nodes. Computing time results for CPU, GPU, and grid simulations are compared with those using Geant4-DNA processes. RESULTS The CPU simulations better performs when the number of electrons is less than 104 with 100 eV initial energy, this number decreases as the energy increases. The GPU simulations gives better results when the number of electrons is more than 104 with initial energy of 100 eV, this number decreases to 103 for electrons with 10KeV and increases back with higher energy. The use of the grid introduces an additional queuing time which slows down the overall simulation performance. Thus, the Grid gives better performance when the number of electrons is over 105 with initial energy of 10KeV, and this number decreases as the energy increases. CONCLUSIONS The CPU is best suited for small numbers of primary incident electrons. The GPU is best suited when the number of primary incident particles occupies sufficient resources on GPU card in order to get an important computing power. The grid is best suited for simulations with high number of primary incident electrons with high initial energy.
Collapse
|
29
|
Track Structure-Based Simulations on DNA Damage Induced by Diverse Isotopes. Int J Mol Sci 2022; 23:ijms232213693. [PMID: 36430172 PMCID: PMC9690858 DOI: 10.3390/ijms232213693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Diverse isotopes such as 2H, 3He, 10Be, 11C and 14C occur in nuclear reactions in ion beam radiotherapy, in cosmic ray shielding, or are intentionally accelerated in dating techniques. However, only a few studies have specifically addressed the biological effects of diverse isotopes and were limited to energies of several MeV/u. A database of simulations with the PARTRAC biophysical tool is presented for H, He, Li, Be, B and C isotopes at energies from 0.5 GeV/u down to stopping. The doses deposited to a cell nucleus and also the yields per unit dose of single- and double-strand breaks and their clusters induced in cellular DNA are predicted to vary among diverse isotopes of the same element at energies < 1 MeV/u, especially for isotopes of H and He. The results may affect the risk estimates for astronauts in deep space missions or the models of biological effectiveness of ion beams and indicate that radiation protection in 14C or 10Be dating techniques may be based on knowledge gathered with 12C or 9Be.
Collapse
|
30
|
Matsuya Y, Kai T, Parisi A, Yoshii Y, Sato T. Application of a simple DNA damage model developed for electrons to proton irradiation. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac9a20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/13/2022] [Indexed: 01/18/2023]
Abstract
Abstract
Proton beam therapy allows irradiating tumor volumes with reduced side effects on normal tissues with respect to conventional x-ray radiotherapy. Biological effects such as cell killing after proton beam irradiations depend on the proton kinetic energy, which is intrinsically related to early DNA damage induction. As such, DNA damage estimation based on Monte Carlo simulations is a research topic of worldwide interest. Such simulation is a mean of investigating the mechanisms of DNA strand break formations. However, past modellings considering chemical processes and DNA structures require long calculation times. Particle and heavy ion transport system (PHITS) is one of the general-purpose Monte Carlo codes that can simulate track structure of protons, meanwhile cannot handle radical dynamics simulation in liquid water. It also includes a simple model enabling the efficient estimation of DNA damage yields only from the spatial distribution of ionizations and excitations without DNA geometry, which was originally developed for electron track-structure simulations. In this study, we investigated the potential application of the model to protons without any modification. The yields of single-strand breaks, double-strand breaks (DSBs) and the complex DSBs were assessed as functions of the proton kinetic energy. The PHITS-based estimation showed that the DSB yields increased as the linear energy transfer (LET) increased, and reproduced the experimental and simulated yields of various DNA damage types induced by protons with LET up to about 30 keV μm−1. These results suggest that the current DNA damage model implemented in PHITS is sufficient for estimating DNA lesion yields induced after protons irradiation except at very low energies (below 1 MeV). This model contributes to evaluating early biological impacts in radiation therapy.
Collapse
|
31
|
Baiocco G, Bartzsch S, Conte V, Friedrich T, Jakob B, Tartas A, Villagrasa C, Prise KM. A matter of space: how the spatial heterogeneity in energy deposition determines the biological outcome of radiation exposure. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:545-559. [PMID: 36220965 PMCID: PMC9630194 DOI: 10.1007/s00411-022-00989-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/03/2022] [Indexed: 05/10/2023]
Abstract
The outcome of the exposure of living organisms to ionizing radiation is determined by the distribution of the associated energy deposition at different spatial scales. Radiation proceeds through ionizations and excitations of hit molecules with an ~ nm spacing. Approaches such as nanodosimetry/microdosimetry and Monte Carlo track-structure simulations have been successfully adopted to investigate radiation quality effects: they allow to explore correlations between the spatial clustering of such energy depositions at the scales of DNA or chromosome domains and their biological consequences at the cellular level. Physical features alone, however, are not enough to assess the entity and complexity of radiation-induced DNA damage: this latter is the result of an interplay between radiation track structure and the spatial architecture of chromatin, and further depends on the chromatin dynamic response, affecting the activation and efficiency of the repair machinery. The heterogeneity of radiation energy depositions at the single-cell level affects the trade-off between cell inactivation and induction of viable mutations and hence influences radiation-induced carcinogenesis. In radiation therapy, where the goal is cancer cell inactivation, the delivery of a homogenous dose to the tumour has been the traditional approach in clinical practice. However, evidence is accumulating that introducing heterogeneity with spatially fractionated beams (mini- and microbeam therapy) can lead to significant advantages, particularly in sparing normal tissues. Such findings cannot be explained in merely physical terms, and their interpretation requires considering the scales at play in the underlying biological mechanisms, suggesting a systemic response to radiation.
Collapse
Affiliation(s)
- Giorgio Baiocco
- Radiation Biophysics and Radiobiology Group, Physics Department, University of Pavia, Pavia, Italy.
| | - Stefan Bartzsch
- Institute for Radiation Medicine, Helmholtz Centre Munich, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
| | - Valeria Conte
- Istituto Nazionale Di Fisica Nucleare INFN, Laboratori Nazionali Di Legnaro, Legnaro, Italy
| | - Thomas Friedrich
- Department of Biophysics, GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany
| | - Burkhard Jakob
- Department of Biophysics, GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany
| | - Adrianna Tartas
- Biomedical Physics Division, Institute of Experimental Physics, University of Warsaw, Warsaw, Poland
| | - Carmen Villagrasa
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay aux Roses, France
| | - Kevin M Prise
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| |
Collapse
|
32
|
Assessing the DNA Damaging Effectiveness of Ionizing Radiation Using Plasmid DNA. Int J Mol Sci 2022; 23:ijms232012459. [PMID: 36293322 PMCID: PMC9604049 DOI: 10.3390/ijms232012459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Plasmid DNA is useful for investigating the DNA damaging effects of ionizing radiation. In this study, we have explored the feasibility of plasmid DNA-based detectors to assess the DNA damaging effectiveness of two radiotherapy X-ray beam qualities after undergoing return shipment of ~8000 km between two institutions. The detectors consisted of 18 μL of pBR322 DNA enclosed with an aluminum seal in nine cylindrical cavities drilled into polycarbonate blocks. We shipped them to Toronto, Canada for irradiation with either 100 kVp or 6 MV X-ray beams to doses of 10, 20, and 30 Gy in triplicate before being shipped back to San Diego, USA. The Toronto return shipment also included non-irradiated controls and we kept a separate set of controls in San Diego. In San Diego, we quantified DNA single strand breaks (SSBs), double strand breaks (DSBs), and applied Nth and Fpg enzymes to quantify oxidized base damage. The rate of DSBs/Gy/plasmid was 2.8±0.7 greater for the 100 kVp than the 6 MV irradiation. The 100 kVp irradiation also resulted in 5±2 times more DSBs/SSB than the 6 MV beam, demonstrating that the detector is sensitive enough to quantify relative DNA damage effectiveness, even after shipment over thousands of kilometers.
Collapse
|
33
|
Lai Y, Chi Y, Jia X. Mechanistic modelling of oxygen enhancement ratio of radiation via Monte Carlo simulation-based DNA damage calculation. Phys Med Biol 2022; 67:10.1088/1361-6560/ac8853. [PMID: 35944522 PMCID: PMC10152552 DOI: 10.1088/1361-6560/ac8853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/09/2022] [Indexed: 11/12/2022]
Abstract
Objective.Oxygen plays an important role in affecting the cellular radio-sensitivity to ionizing radiation. The objective of this study is to build a mechanistic model to compute oxygen enhancement ratio (OER) using a GPU-based Monte Carlo (MC) simulation package gMicroMC for microscopic radiation transport simulation and DNA damage calculation.Approach.We first simulated the water radiolysis process in the presence of DNA and oxygen for 1 ns and recorded the produced DNA damages. In this process, chemical reactions among oxygen, water radiolysis free radicals and DNA molecules were considered. We then applied a probabilistic approach to model the reactions between oxygen and indirect DNA damages for a maximal reaction time oft0. Finally, we defined two parametersP0andP1, representing probabilities for DNA damages without and with oxygen fixation effect not being restored in the repair process, to compute the final DNA double strand breaks (DSBs). As cell survival fraction is mainly determined by the number of DSBs, we assumed that the same numbers of DSBs resulted in the same cell survival rates, which enabled us to compute the OER as the ratio of doses producing the same number of DSBs without and with oxygen. We determined the three parameters (t0,P0andP1) by fitting the OERs obtained in our computation to a set of published experimental data under x-ray irradiation. We then validated the model by performing OER studies under proton irradiation and studied model sensitivity to parameter values.Main results.We obtained the model parameters ast0= 3.8 ms,P0= 0.08, andP1= 0.28 with a mean difference of 3.8% between the OERs computed by our model and that obtained from experimental measurements under x-ray irradiation. Applying the established model to proton irradiation, we obtained OERs as functions of oxygen concentration, LET, and dose values, which generally agreed with published experimental data. The parameter sensitivity analysis revealed that the absolute magnitude of the OER curve relied on the values ofP0andP1, while the curve was subject to a horizontal shift when adjustingt0.Significance.This study developed a mechanistic model that fully relies on microscopic MC simulations to compute OER.
Collapse
Affiliation(s)
- Youfang Lai
- Innovative Technology of Radiotherapy Computations and Hardware (iTORCH) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75287, United States of America
- Department of Physics, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Yujie Chi
- Department of Physics, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Xun Jia
- Innovative Technology of Radiotherapy Computations and Hardware (iTORCH) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75287, United States of America
- Now at Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, MD, United States of America
| |
Collapse
|
34
|
Abu Shqair A, Lee US, Kim EH. Computational modelling of γ-H2AX foci formation in human cells induced by alpha particle exposure. Sci Rep 2022; 12:14360. [PMID: 35999233 PMCID: PMC9399106 DOI: 10.1038/s41598-022-17830-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022] Open
Abstract
In cellular experiments, radiation-induced DNA damage can be quantified by counting the number of γ-H2AX foci in cell nucleus by using an immunofluorescence microscope. Quantification of DNA damage carries uncertainty, not only due to lack of full understanding the biological processes but also limitations in measurement techniques. The causes of limited certainty include the possibility of expressing foci in varying sizes responding individual DSBs and the overlapping of foci on the two-dimensional (2D) immunofluorescence microscopy image of γ-H2AX foci, especially when produced due to high-LET radiation exposure. There have been discussions on those limitations, but no successful studies to overcome them. In this paper, a practical modelling has been developed to simulate the occurrences of double-strand breaks (DSBs) and the formations of γ-H2AX foci in response to individual DSB formations, in cell nucleus due to exposure to alpha particles. Cell irradiation and DSB production were simulated using a user-written code that utilizes Geant4-DNA physics models. A C + + code was used to simulate the formation γ-H2AX foci, which were spatially correlated to the loci of DBSs, and to calculate the number of individual foci from the observed 2D image of the cell nucleus containing the overlapping γ-H2AX foci. The average size of focal images was larger from alpha particle exposure than that from X-ray exposure, whereas the number of separate focal images were comparable except at doses up to 0.5 Gy. About 40% of separate focal images consisted of overlapping γ-H2AX foci at 1 Gy of alpha particle exposure. The foci overlapping ratios were obtained by simulation for individual size groups of focal images at varying doses. The size distributions of foci at varying doses were determined with experimentally obtained separate focal images. The correction factor for foci number was calculated using the foci overlapping ratio and foci size distribution, which are specific to dose from alpha particle exposure. The number of individual foci formations induced by applying the correction factor to the experimentally observed number of focal images better reflected the quality of alpha particles in causing DNA damage. Consequently, the conventional γ-H2AX assay can be better implemented by employing this computational modelling of γ-H2AX foci formation.
Collapse
Affiliation(s)
- Ali Abu Shqair
- Department of Nuclear Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ui-Seob Lee
- Department of Nuclear Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun-Hee Kim
- Department of Nuclear Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
35
|
Kundrát P, Pachnerová Brabcová K, Jelínek Michaelidesová A, Zahradníček O, Danilová I, Štěpán V, Jamborová Z, Davídková M. BORON-ENHANCED BIOLOGICAL EFFECTIVENESS OF PROTON IRRADIATION: STRATEGY TO ASSESS THE UNDERPINNING MECHANISM. RADIATION PROTECTION DOSIMETRY 2022; 198:527-531. [PMID: 36005957 DOI: 10.1093/rpd/ncac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Proton radiotherapy for the treatment of cancer offers an excellent dose distribution. Cellular experiments have shown that in terms of biological effects, the sharp dose distribution is further amplified, by as much as 75%, in the presence of boron. It is a matter of debate whether the underlying physical processes involve the nuclear reaction of 11B with protons or 10B with secondary neutrons, both producing densely ionizing short-ranged particles. Likewise, potential roles of intercellular communication or boron acting as a radiosensitizer are not clear. We present an ongoing research project based on a multiscale approach to elucidate the mechanism by which boron enhances the effectiveness of proton irradiation in the Bragg peak. It combines experimental with simulation tools to study the physics of proton-boron interactions, and to analyze intra- and inter-cellular boron biology upon proton irradiation.
Collapse
Affiliation(s)
- Pavel Kundrát
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
| | - Kateřina Pachnerová Brabcová
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
| | - Anna Jelínek Michaelidesová
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 110 00 Praha 1, Czech Republic
| | - Oldřich Zahradníček
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
| | - Irina Danilová
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 110 00 Praha 1, Czech Republic
| | - Václav Štěpán
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 110 00 Praha 1, Czech Republic
| | - Zuzana Jamborová
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 110 00 Praha 1, Czech Republic
| | - Marie Davídková
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
| |
Collapse
|
36
|
Mairani A, Mein S, Blakely E, Debus J, Durante M, Ferrari A, Fuchs H, Georg D, Grosshans DR, Guan F, Haberer T, Harrabi S, Horst F, Inaniwa T, Karger CP, Mohan R, Paganetti H, Parodi K, Sala P, Schuy C, Tessonnier T, Titt U, Weber U. Roadmap: helium ion therapy. Phys Med Biol 2022; 67. [PMID: 35395649 DOI: 10.1088/1361-6560/ac65d3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/08/2022] [Indexed: 12/16/2022]
Abstract
Helium ion beam therapy for the treatment of cancer was one of several developed and studied particle treatments in the 1950s, leading to clinical trials beginning in 1975 at the Lawrence Berkeley National Laboratory. The trial shutdown was followed by decades of research and clinical silence on the topic while proton and carbon ion therapy made debuts at research facilities and academic hospitals worldwide. The lack of progression in understanding the principle facets of helium ion beam therapy in terms of physics, biological and clinical findings persists today, mainly attributable to its highly limited availability. Despite this major setback, there is an increasing focus on evaluating and establishing clinical and research programs using helium ion beams, with both therapy and imaging initiatives to supplement the clinical palette of radiotherapy in the treatment of aggressive disease and sensitive clinical cases. Moreover, due its intermediate physical and radio-biological properties between proton and carbon ion beams, helium ions may provide a streamlined economic steppingstone towards an era of widespread use of different particle species in light and heavy ion therapy. With respect to the clinical proton beams, helium ions exhibit superior physical properties such as reduced lateral scattering and range straggling with higher relative biological effectiveness (RBE) and dose-weighted linear energy transfer (LETd) ranging from ∼4 keVμm-1to ∼40 keVμm-1. In the frame of heavy ion therapy using carbon, oxygen or neon ions, where LETdincreases beyond 100 keVμm-1, helium ions exhibit similar physical attributes such as a sharp lateral penumbra, however, with reduced radio-biological uncertainties and without potentially spoiling dose distributions due to excess fragmentation of heavier ion beams, particularly for higher penetration depths. This roadmap presents an overview of the current state-of-the-art and future directions of helium ion therapy: understanding physics and improving modeling, understanding biology and improving modeling, imaging techniques using helium ions and refining and establishing clinical approaches and aims from learned experience with protons. These topics are organized and presented into three main sections, outlining current and future tasks in establishing clinical and research programs using helium ion beams-A. Physics B. Biological and C. Clinical Perspectives.
Collapse
Affiliation(s)
- Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Stewart Mein
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eleanor Blakely
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Jürgen Debus
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany.,Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Alfredo Ferrari
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hermann Fuchs
- Division of Medical Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dietmar Georg
- Division of Medical Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - David R Grosshans
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Fada Guan
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America.,Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510, United States of America
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Semi Harrabi
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Felix Horst
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Christian P Karger
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Radhe Mohan
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, United States of America.,Harvard Medical School, Boston, United States of America
| | - Katia Parodi
- Ludwig-Maximilians-Universität München, Department of Experimental Physics-Medical Physics, Munich, Germany
| | - Paola Sala
- Ludwig-Maximilians-Universität München, Department of Experimental Physics-Medical Physics, Munich, Germany
| | - Christoph Schuy
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Uwe Titt
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Ulrich Weber
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| |
Collapse
|
37
|
Ramos-Méndez J, García-García O, Domínguez-Kondo J, LaVerne JA, Schuemann J, Moreno-Barbosa E, Faddegon B. TOPAS-nBio simulation of temperature-dependent indirect DNA strand break yields. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac79f9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/17/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Current Monte Carlo simulations of DNA damage have been reported only at ambient temperature. The aim of this work is to use TOPAS-nBio to simulate the yields of DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) produced in plasmids under low-LET irradiation incorporating the effect of the temperature changes in the environment. A new feature was implemented in TOPAS-nBio to incorporate reaction rates used in the simulation of the chemical stage of water radiolysis as a function of temperature. The implemented feature was verified by simulating temperature-dependent G-values of chemical species in liquid water from 20 °C to 90 °C. For radiobiology applications, temperature dependent SSB and DSB yields were calculated from 0 °C to 42 °C, the range of available published measured data. For that, supercoiled DNA plasmids dissolved in aerated solutions containing EDTA irradiated by Cobalt-60 gamma-rays were simulated. TOPAS-nBio well reproduced published temperature-dependent G-values in liquid water and the yields of SSB and DSB for the temperature range considered. For strand break simulations, the model shows that the yield of SSB and DSB increased linearly with the temperature at a rate of (2.94 ± 0.17) × 10−10 Gy–1 Da–1 °C–1 (R
2 = 0.99) and (0.13 ± 0.01) × 10−10 Gy–1 Da–1 °C–1 (R
2 = 0.99), respectively. The extended capability of TOPAS-nBio is a complementary tool to simulate realistic conditions for a large range of environmental temperatures, allowing refined investigations of the biological effects of radiation.
Collapse
|
38
|
Danforth JM, Provencher L, Goodarzi AA. Chromatin and the Cellular Response to Particle Radiation-Induced Oxidative and Clustered DNA Damage. Front Cell Dev Biol 2022; 10:910440. [PMID: 35912116 PMCID: PMC9326100 DOI: 10.3389/fcell.2022.910440] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/21/2022] [Indexed: 12/03/2022] Open
Abstract
Exposure to environmental ionizing radiation is prevalent, with greatest lifetime doses typically from high Linear Energy Transfer (high-LET) alpha particles via the radioactive decay of radon gas in indoor air. Particle radiation is highly genotoxic, inducing DNA damage including oxidative base lesions and DNA double strand breaks. Due to the ionization density of high-LET radiation, the consequent damage is highly clustered wherein ≥2 distinct DNA lesions occur within 1–2 helical turns of one another. These multiply-damaged sites are difficult for eukaryotic cells to resolve either quickly or accurately, resulting in the persistence of DNA damage and/or the accumulation of mutations at a greater rate per absorbed dose, relative to lower LET radiation types. The proximity of the same and different types of DNA lesions to one another is challenging for DNA repair processes, with diverse pathways often confounding or interplaying with one another in complex ways. In this context, understanding the state of the higher order chromatin compaction and arrangements is essential, as it influences the density of damage produced by high-LET radiation and regulates the recruitment and activity of DNA repair factors. This review will summarize the latest research exploring the processes by which clustered DNA damage sites are induced, detected, and repaired in the context of chromatin.
Collapse
|
39
|
New damage model for simulating radiation-induced direct damage to biomolecular systems and experimental validation using pBR322 plasmid. Sci Rep 2022; 12:11345. [PMID: 35790804 PMCID: PMC9256689 DOI: 10.1038/s41598-022-15521-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022] Open
Abstract
In this work, we proposed a new damage model for estimating radiation-induced direct damage to biomolecular systems and validated its the effectiveness for pBR322 plasmids. The proposed model estimates radiation-induced damage to biomolecular systems by: (1) simulation geometry modeling using the coarse-grained (CG) technique to replace the minimum repeating units of a molecule with a single bead, (2) approximation of the threshold energy for radiation damage through CG potential calculation, (3) calculation of cumulative absorption energy for each radiation event in microscopic regions of CG models using the Monte Carlo track structure (MCTS) code, and (4) estimation of direct radiation damage to biomolecular systems by comparing CG potentials and absorption energy. The proposed model replicated measured data with an average error of approximately 14.2% in the estimation of radiation damage to pBR322 plasmids using the common MCTS code Geant4-DNA. This is similar to the results of previous simulation studies. However, in existing damage models, parameters are adjusted based on experimental data to increase the reliability of simulation results, whereas in the proposed model, they can be determined without using empirical data. Because the proposed model proposed is applicable to DNA and various biomolecular systems with minimal experimental data, it provides a new method that is convenient and effective for predicting damage in living organisms caused by radiation exposure.
Collapse
|
40
|
Loan M, Bhat A. Effect of overdispersion of lethal lesions on cell survival curves. Biomed Phys Eng Express 2022; 8. [PMID: 35671734 DOI: 10.1088/2057-1976/ac7667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/07/2022] [Indexed: 01/03/2023]
Abstract
The linear-quadratic (LQ) model is the most commonly used mechanism to predict radiobiological outcomes. It has been used extensively to describe dose-responsein vitroandin vivo. There are, however, some questions about its applicability in terms of its capacity to represent some profound mechanistic behaviour. Specifically, empirical evidence suggests that the LQ model underestimates the survival of cells at low doses while overestimating cell death at higher doses. It is believed to be driven from the usual LQ model assumption that radiogenic lesions are Poisson distributed. In this context, we use a negative binomial (NB) distribution to study the effect of overdispersion on the shapes and the possibility of reducing dose-response curvature at higher doses. We develop an overdispersion model for cell survival using the non-homologous end-joining (NHEJ) pathway double-strand break (DSB) repair mechanism to investigate the effects of the overdispersion on probabilities of repair of DSBs. The error distribution is customised to ensure that the refined overdispersion parameter depends on the mean of the distribution. The predicted cell survival responses for V79, AG and HSG cells exposed to protons, helium and carbon ions are compared with the experimental data in low and high dose regions at various linear energy transfer (LET) values. The results indicate straightening of dose-response and approaching a log-linear behaviour at higher doses. The model predictions with the measured data show that the NB modelled survival curves agree with the data following medium and high doses. Model predictions are not validated at very tiny and very high doses; the approach presented provides an analysis of mechanisms at the microscopic level. This may help improve the understanding of radiobiological responses of survival curves and resolve discrepancies between experimental and theoretical predictions of cell survival models.
Collapse
Affiliation(s)
- M Loan
- ANU College, Australian National University, Canberra, 2600, Australia
| | - A Bhat
- Department of Oncology, East Tennessee State University, TN, 37614, United States of America
| |
Collapse
|
41
|
Zhu K, Wu C, Peng X, Ji X, Luo S, Liu Y, Wang X. Nanoscale Calculation of Proton-Induced DNA Damage Using a Chromatin Geometry Model with Geant4-DNA. Int J Mol Sci 2022; 23:ijms23116343. [PMID: 35683021 PMCID: PMC9181653 DOI: 10.3390/ijms23116343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Monte Carlo simulations can quantify various types of DNA damage to evaluate the biological effects of ionizing radiation at the nanometer scale. This work presents a study simulating the DNA target response after proton irradiation. A chromatin fiber model and new physics constructors with the ELastic Scattering of Electrons and Positrons by neutral Atoms (ELSEPA) model were used to describe the DNA geometry and the physical stage of water radiolysis with the Geant4-DNA toolkit, respectively. Three key parameters (the energy threshold model for strand breaks, the physics model and the maximum distance to distinguish DSB clusters) of scoring DNA damage were studied to investigate the impact on the uncertainties of DNA damage. On the basis of comparison of our results with experimental data and published findings, we were able to accurately predict the yield of various types of DNA damage. Our results indicated that the difference in physics constructor can cause up to 56.4% in the DNA double-strand break (DSB) yields. The DSB yields were quite sensitive to the energy threshold for strand breaks (SB) and the maximum distance to classify the DSB clusters, which were even more than 100 times and four times than the default configurations, respectively.
Collapse
Affiliation(s)
- Kun Zhu
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China; (K.Z.); (X.P.); (X.J.); (S.L.); (Y.L.)
| | - Chun Wu
- School of Nursing, University of South China, Hengyang 421001, China;
| | - Xiaoyu Peng
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China; (K.Z.); (X.P.); (X.J.); (S.L.); (Y.L.)
| | - Xuantao Ji
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China; (K.Z.); (X.P.); (X.J.); (S.L.); (Y.L.)
| | - Siyuan Luo
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China; (K.Z.); (X.P.); (X.J.); (S.L.); (Y.L.)
| | - Yuchen Liu
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China; (K.Z.); (X.P.); (X.J.); (S.L.); (Y.L.)
| | - Xiaodong Wang
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China; (K.Z.); (X.P.); (X.J.); (S.L.); (Y.L.)
- Correspondence:
| |
Collapse
|
42
|
Moeini H, Mokari M. DNA damage and microdosimetry for carbon ions: Track structure simulations as the key to quantitative modeling of radiation-induced damage. Med Phys 2022; 49:4823-4836. [PMID: 35596669 DOI: 10.1002/mp.15711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/29/2022] [Accepted: 05/04/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Dose distribution in carbon-ion irradiations is generally envisaged to have therapeutic advantages over protons, primarily due to the carbon-ion's comparatively higher relative biological effectiveness (RBE) in the tumor than in the encompassing healthy tissues. The objective of this work was to simulate the overall physical and chemical reactions of primary carbon ions impinging on liquid water and, as such, to investigate the DNA-damage yields in the form of strand breaks (SBs) and in connection with the expected microdosimetric quantities. MATERIALS AND METHODS Using a B-DNA model and Geant4-DNA, we simulated the primary and secondary interactions in a spherical medium of water. Subsequently, we categorized DNA damages based on their complexity utilizing the concept of μ-randomness. We assumed a threshold of 17.5 eV for a direct SB and a probability of 0.13 for an indirect SB triggered by chemical reactions of hydroxyl radicals. Microdosimetric quantities were extracted for three cylindrical volumes representing typical sub-cellular organisms. RESULTS For fully-ionized carbons of 8 to 256 MeV/u, the yield results appeared to be considerably influenced by the chemical reactions - indicating the important role of secondary electrons in inflicting damage. However, it was mostly the direct-damage spectrum that determined the overall shape of the damage spectrum. At all primary energies, it was more probable to break each DNA strand at one point - the two points being less than 10 bp apart - than to break only one strand at two random points. Unlike proton's mean-specific-energy results, which showed more sensitivity to the volume increase of the smallest cylinder than of the larger ones, carbon-ion results showed no such sensitivity. CONCLUSION The growth of the yield ratio of the single- and double-strand breaks (SSB and DSB) with the particle energy was estimated for protons to be about two times that of alphas and 92 times that of carbon ions. Unlike the proton results, which suggested significant correlations between the DSB yields and mean specific (and lineal) energies, carbon ions exhibited no such correlations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hossein Moeini
- Department of Physics, School of Science, Shiraz University, Shiraz, 71946-84795, Iran
| | - Mojtaba Mokari
- Department of Physics, Behbahan Khatam Alanbia University of Technology, Behbahan, 6361647189, Iran
| |
Collapse
|
43
|
Parisi A, Furutani KM, Beltran CJ. On the calculation of the relative biological effectiveness of ion radiation therapy using a biological weighting function, the microdosimetric kinetic model (MKM) and subsequent corrections (non-Poisson MKM and modified MKM). Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac5fdf] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/22/2022] [Indexed: 12/31/2022]
Abstract
Abstract
Objective. To investigate similarities and differences in the formalism, processing, and the results of relative biological effectiveness (RBE) calculations with a biological weighting function (BWF), the microdosimetric kinetic model (MKM) and subsequent modifications (non-Poisson MKM, modified MKM). This includes: (a) the extension of the V79-RBE10% BWF to model the RBE for other clonogenic survival levels; (b) a novel implementation of MKMs as weighting functions; (c) a benchmark against Chinese Hamster lung fibroblast (V79) in vitro data; (d) a study on the effect of pre- or post- processing the average biophysical quantities used for the RBE calculations; (e) a possible modification of the modified MKM parameters to improve the model accuracy at high linear energy transfer (LET). Methodology. Lineal energy spectra were simulated for two spherical targets (diameter = 0.464 or 1.0 μm) using PHITS for 1H, 4He, 12C, 20Ne, 40Ar, 56Fe and 132Xe ions. The results of the in silico calculations were compared with published in vitro data. Main results. All models appear to underestimate the RBE
α
of hydrogen ions. All MKMs generally overestimate the RBE50%, RBE10% and RBE1% for ions with an LET greater than ∼200 keV μm−1. This overestimation is greater for small surviving fractions and is likely due to the assumption of a radiation-independent quadratic term of clonogenic survival (ß). The overall RBE trends seem to be best described by the novel ‘post-processing average’ implementation of the non-Poisson MKM. In case of calculations with the non-Poisson MKM, pre- or post- processing the average biophysical quantities affects the computed RBE values significantly. Significance. This study presents a systematic analysis of the formalism and results of widely used microdosimetric models of clonogenic survival for ions relevant for cancer particle therapy and space radiation protection. Points for improvements were highlighted and will contribute to the development of upgraded biophysical models.
Collapse
|
44
|
Gu B, Muñoz-Santiburcio D, Da Pieve F, Cleri F, Artacho E, Kohanoff J. Bragg's additivity rule and core and bond model studied by real-time TDDFT electronic stopping simulations: The case of water vapor. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Reindl J, Kundrat P, Girst S, Sammer M, Schwarz B, Dollinger G. Dosimetry of heavy ion exposure to human cells using nanoscopic imaging of double strand break repair protein clusters. Sci Rep 2022; 12:1305. [PMID: 35079078 PMCID: PMC8789836 DOI: 10.1038/s41598-022-05413-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/06/2022] [Indexed: 12/17/2022] Open
Abstract
The human body is constantly exposed to ionizing radiation of different qualities. Especially the exposure to high-LET (linear energy transfer) particles increases due to new tumor therapy methods using e.g. carbon ions. Furthermore, upon radiation accidents, a mixture of radiation of different quality is adding up to human radiation exposure. Finally, long-term space missions such as the mission to mars pose great challenges to the dose assessment an astronaut was exposed to. Currently, DSB counting using γH2AX foci is used as an exact dosimetric measure for individuals. Due to the size of the γH2AX IRIF of ~ 0.6 µm, it is only possible to count DSB when they are separated by this distance. For high-LET particle exposure, the distance of the DSB is too small to be separated and the dose will be underestimated. In this study, we developed a method where it is possible to count DSB which are separated by a distance of ~ 140 nm. We counted the number of ionizing radiation-induced pDNA-PKcs (DNA-PKcs phosphorylated at T2609) foci (size = 140 nm ± 20 nm) in human HeLa cells using STED super-resolution microscopy that has an intrinsic resolution of 100 nm. Irradiation was performed at the ion microprobe SNAKE using high-LET 20 MeV lithium (LET = 116 keV/µm) and 27 MeV carbon ions (LET = 500 keV/µm). pDNA-PKcs foci label all DSB as proven by counterstaining with 53BP1 after low-LET γ-irradiation where separation of individual DSB is in most cases larger than the 53BP1 gross size of about 0.6 µm. Lithium ions produce (1.5 ± 0.1) IRIF/µm track length, for carbon ions (2.2 ± 0.2) IRIF/µm are counted. These values are enhanced by a factor of 2–3 compared to conventional foci counting of high-LET tracks. Comparison of the measurements to PARTRAC simulation data proof the consistency of results. We used these data to develop a measure for dosimetry of high-LET or mixed particle radiation exposure directly in the biological sample. We show that proper dosimetry for radiation up to a LET of 240 keV/µm is possible.
Collapse
Affiliation(s)
- Judith Reindl
- Institute for Applied Physics and Measurement Technology, Universität Der Bundeswehr München, Neubiberg, Germany.
| | - P Kundrat
- Institute for Applied Physics and Measurement Technology, Universität Der Bundeswehr München, Neubiberg, Germany.,Department of Radiation Dosimetry, Nuclear Physics Institute CAS, Prague, Czech Republic
| | - S Girst
- Institute for Applied Physics and Measurement Technology, Universität Der Bundeswehr München, Neubiberg, Germany
| | - M Sammer
- Institute for Applied Physics and Measurement Technology, Universität Der Bundeswehr München, Neubiberg, Germany
| | - B Schwarz
- Institute for Applied Physics and Measurement Technology, Universität Der Bundeswehr München, Neubiberg, Germany
| | - G Dollinger
- Institute for Applied Physics and Measurement Technology, Universität Der Bundeswehr München, Neubiberg, Germany
| |
Collapse
|
46
|
Thompson SJ, Rooney A, Prise KM, McMahon SJ. Evaluating Iodine-125 DNA Damage Benchmarks of Monte Carlo DNA Damage Models. Cancers (Basel) 2022; 14:463. [PMID: 35158731 PMCID: PMC8833774 DOI: 10.3390/cancers14030463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
A wide range of Monte Carlo models have been applied to predict yields of DNA damage based on nanoscale track structure calculations. While often similar on the macroscopic scale, these models frequently employ different assumptions which lead to significant differences in nanoscale dose deposition. However, the impact of these differences on key biological readouts remains unclear. A major challenge in this area is the lack of robust datasets which can be used to benchmark models, due to a lack of resolution at the base pair level required to deeply test nanoscale dose deposition. Studies investigating the distribution of strand breakage in short DNA strands following the decay of incorporated 125I offer one of the few benchmarks for model predictions on this scale. In this work, we have used TOPAS-nBio to evaluate the performance of three Geant4-DNA physics models at predicting the distribution and yield of strand breaks in this irradiation scenario. For each model, energy and OH radical distributions were simulated and used to generate predictions of strand breakage, varying energy thresholds for strand breakage and OH interaction rates to fit to the experimental data. All three models could fit well to the observed data, although the best-fitting strand break energy thresholds ranged from 29.5 to 32.5 eV, significantly higher than previous studies. However, despite well describing the resulting DNA fragment distribution, these fit models differed significantly with other endpoints, such as the total yield of breaks, which varied by 70%. Limitations in the underlying data due to inherent normalisation mean it is not possible to distinguish clearly between the models in terms of total yield. This suggests that, while these physics models can effectively fit some biological data, they may not always generalise in the same way to other endpoints, requiring caution in their extrapolation to new systems and the use of multiple different data sources for robust model benchmarking.
Collapse
Affiliation(s)
| | | | | | - Stephen J. McMahon
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK; (S.J.T.); (A.R.); (K.M.P.)
| |
Collapse
|
47
|
Review of the Geant4-DNA Simulation Toolkit for Radiobiological Applications at the Cellular and DNA Level. Cancers (Basel) 2021; 14:cancers14010035. [PMID: 35008196 PMCID: PMC8749997 DOI: 10.3390/cancers14010035] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary A brief description of the methodologies to simulate ionizing radiation transport in biologically relevant matter is presented. Emphasis is given to the physical, chemical, and biological models of Geant4-DNA that enable mechanistic radiobiological modeling at the cellular and DNA level, important to improve the efficacy of existing and novel radiotherapeutic modalities for the treatment of cancer. Abstract The Geant4-DNA low energy extension of the Geant4 Monte Carlo (MC) toolkit is a continuously evolving MC simulation code permitting mechanistic studies of cellular radiobiological effects. Geant4-DNA considers the physical, chemical, and biological stages of the action of ionizing radiation (in the form of x- and γ-ray photons, electrons and β±-rays, hadrons, α-particles, and a set of heavier ions) in living cells towards a variety of applications ranging from predicting radiotherapy outcomes to radiation protection both on earth and in space. In this work, we provide a brief, yet concise, overview of the progress that has been achieved so far concerning the different physical, physicochemical, chemical, and biological models implemented into Geant4-DNA, highlighting the latest developments. Specifically, the “dnadamage1” and “molecularDNA” applications which enable, for the first time within an open-source platform, quantitative predictions of early DNA damage in terms of single-strand-breaks (SSBs), double-strand-breaks (DSBs), and more complex clustered lesions for different DNA structures ranging from the nucleotide level to the entire genome. These developments are critically presented and discussed along with key benchmarking results. The Geant4-DNA toolkit, through its different set of models and functionalities, offers unique capabilities for elucidating the problem of radiation quality or the relative biological effectiveness (RBE) of different ionizing radiations which underlines nearly the whole spectrum of radiotherapeutic modalities, from external high-energy hadron beams to internal low-energy gamma and beta emitters that are used in brachytherapy sources and radiopharmaceuticals, respectively.
Collapse
|
48
|
Matsuya Y, Kai T, Sato T, Ogawa T, Hirata Y, Yoshii Y, Parisi A, Liamsuwan T. Track-structure modes in particle and heavy ion transport code system (PHITS): application to radiobiological research. Int J Radiat Biol 2021; 98:148-157. [PMID: 34930091 DOI: 10.1080/09553002.2022.2013572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE In radiation physics, Monte Carlo radiation transport simulations are powerful tools to evaluate the cellular responses after irradiation. When investigating such radiation-induced biological effects, it is essential to perform track structure simulations by explicitly considering each atomic interaction in liquid water at the sub-cellular and DNA scales. The Particle and Heavy-Ion Transport code System (PHITS) is a Monte Carlo code which enables to calculate track structure at DNA scale by employing the track-structure modes for electrons, protons and carbon ions. In this paper, we review the recent development status and future prospects of the track-structure modes in the PHITS code. CONCLUSIONS To date, the physical features of these modes have been verified using the available experimental data and Monte Carlo simulation results reported in literature. These track-structure modes can be used for calculating microdosimetric distributions to estimate cell survival and for estimating initial DNA damage yields. The use of PHITS track-structure mode is expected not only to clarify the underlying mechanisms of radiation effects but also to predict curative effects in radiation therapy. The results of PHITS simulations coupled with biophysical models will contribute to the radiobiological studies by precisely predicting radiation-induced biological effects based on the Monte Carlo approach.
Collapse
Affiliation(s)
- Yusuke Matsuya
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Japan
| | - Takeshi Kai
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Japan
| | - Tatsuhiko Sato
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Japan
| | - Tatsuhiko Ogawa
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Japan
| | - Yuho Hirata
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Japan
| | - Yuji Yoshii
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Alessio Parisi
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida
| | - Thiansin Liamsuwan
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
49
|
Rucinski A, Biernacka A, Schulte R. Applications of nanodosimetry in particle therapy planning and beyond. Phys Med Biol 2021; 66. [PMID: 34731854 DOI: 10.1088/1361-6560/ac35f1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/03/2021] [Indexed: 12/28/2022]
Abstract
This topical review summarizes underlying concepts of nanodosimetry. It describes the development and current status of nanodosimetric detector technology. It also gives an overview of Monte Carlo track structure simulations that can provide nanodosimetric parameters for treatment planning of proton and ion therapy. Classical and modern radiobiological assays that can be used to demonstrate the relationship between the frequency and complexity of DNA lesion clusters and nanodosimetric parameters are reviewed. At the end of the review, existing approaches of treatment planning based on relative biological effectiveness (RBE) models or dose-averaged linear energy transfer are contrasted with an RBE-independent approach based on nandosimetric parameters. Beyond treatment planning, nanodosimetry is also expected to have applications and give new insights into radiation protection dosimetry.
Collapse
Affiliation(s)
| | - Anna Biernacka
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | | |
Collapse
|
50
|
Sakata D, Suzuki M, Hirayama R, Abe Y, Muramatsu M, Sato S, Belov O, Kyriakou I, Emfietzoglou D, Guatelli S, Incerti S, Inaniwa T. Performance Evaluation for Repair of HSGc-C5 Carcinoma Cell Using Geant4-DNA. Cancers (Basel) 2021; 13:6046. [PMID: 34885155 PMCID: PMC8656964 DOI: 10.3390/cancers13236046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
Track-structure Monte Carlo simulations are useful tools to evaluate initial DNA damage induced by irradiation. In the previous study, we have developed a Gean4-DNA-based application to estimate the cell surviving fraction of V79 cells after irradiation, bridging the gap between the initial DNA damage and the DNA rejoining kinetics by means of the two-lesion kinetics (TLK) model. However, since the DNA repair performance depends on cell line, the same model parameters cannot be used for different cell lines. Thus, we extended the Geant4-DNA application with a TLK model for the evaluation of DNA damage repair performance in HSGc-C5 carcinoma cells which are typically used for evaluating proton/carbon radiation treatment effects. For this evaluation, we also performed experimental measurements for cell surviving fractions and DNA rejoining kinetics of the HSGc-C5 cells irradiated by 70 MeV protons at the cyclotron facility at the National Institutes for Quantum and Radiological Science and Technology (QST). Concerning fast- and slow-DNA rejoining, the TLK model parameters were adequately optimized with the simulated initial DNA damage. The optimized DNA rejoining speeds were reasonably agreed with the experimental DNA rejoining speeds. Using the optimized TLK model, the Geant4-DNA simulation is now able to predict cell survival and DNA-rejoining kinetics for HSGc-C5 cells.
Collapse
Affiliation(s)
- Dousatsu Sakata
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, Chiba 263-8555, Japan; (Y.A.); (M.M.); (S.S.); (T.I.)
| | - Masao Suzuki
- Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, QST, Chiba 263-8555, Japan; (M.S.); (R.H.)
| | - Ryoichi Hirayama
- Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, QST, Chiba 263-8555, Japan; (M.S.); (R.H.)
| | - Yasushi Abe
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, Chiba 263-8555, Japan; (Y.A.); (M.M.); (S.S.); (T.I.)
| | - Masayuki Muramatsu
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, Chiba 263-8555, Japan; (Y.A.); (M.M.); (S.S.); (T.I.)
| | - Shinji Sato
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, Chiba 263-8555, Japan; (Y.A.); (M.M.); (S.S.); (T.I.)
| | - Oleg Belov
- Veksler and Baldin Laboratory of High Energy Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia;
- Institute of System Analysis and Management, Dubna State University, 141980 Dubna, Russia
| | - Ioanna Kyriakou
- Medical Physics Laboratory, Medical School, University of Ioannina, 45110 Ioannina, Greece; (I.K.); (D.E.)
| | - Dimitris Emfietzoglou
- Medical Physics Laboratory, Medical School, University of Ioannina, 45110 Ioannina, Greece; (I.K.); (D.E.)
| | - Susanna Guatelli
- Centre For Medical Radiation Physics, University of Wollongong, Wollongong 2522, Australia;
| | - Sebastien Incerti
- Centre d’Études Nucléaires de Bordeaux Gradignan, CNRS/IN2P3, UMR5797, Université de Bordeaux, F-33170 Gradignan, France;
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, Chiba 263-8555, Japan; (Y.A.); (M.M.); (S.S.); (T.I.)
| |
Collapse
|