1
|
Buitrago JC, Cruz-Barrera M, Dorsant-Ardón V, Medina C, Hernández-Mejía DG, Beltrán K, Flórez N, Camacho B, Gruber J, Salguero G. Large and small extracellular vesicles from Wharton's jelly MSCs: Biophysics, function, and strategies to improve immunomodulation. Mol Ther Methods Clin Dev 2024; 32:101353. [PMID: 39512906 PMCID: PMC11541841 DOI: 10.1016/j.omtm.2024.101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024]
Abstract
Extracellular vesicles (EVs) have emerged as mediators of immunosuppression and pro-regenerative processes, particularly through mesenchymal stromal cells (MSCs) across various disease models. Despite significant progress, there is still a need for a deeper understanding of EV content and functionality to fully harness their biomedical potential. Moreover, strategies to enhance EV production for clinical scalability are still under development. This study aimed to characterize two distinct types of EV-large EV (lgEV) and small EV (smEV)-secreted by Wharton's jelly MSCs (WJ-MSCs). Strategies were explored to augment both EV production and their immunoregulatory effects. Both lgEV and smEV displayed typical EV markers and demonstrated inhibition of human lymphocyte proliferation. Furthermore, analysis of IsomiR content revealed a pronounced immunomodulating signature within MSC-derived EVs, validated by a dual-fluorescence reporter system. MSC primed with pro-inflammatory cytokines yielded increased production of lgEV and smEV, enhancing their immunomodulatory potency. Finally, genetically engineering WJ-MSC to express CD9 resulted in lgEV and smEV with heightened efficacy in suppressing lymphocyte proliferation. This study successfully isolated, characterized, and demonstrated the potent immunosuppressive effect of WJ-MSC-derived lgEV and smEV. We propose cytokine preconditioning and genetic manipulation as viable strategies to enhance the therapeutic potential of WJ-MSC-derived EV in inflammatory conditions.
Collapse
Affiliation(s)
- July Constanza Buitrago
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
- Curexsys GmbH, Göttingen, Germany
- PhD Biomedical and Biological Sciences Program, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Mónica Cruz-Barrera
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| | - Valerie Dorsant-Ardón
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| | - Carlos Medina
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| | - David G. Hernández-Mejía
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| | - Karl Beltrán
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| | - Natalia Flórez
- Faculty of Medicine, Universidad EAN, Medellín, Colombia
| | - Bernardo Camacho
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| | | | - Gustavo Salguero
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| |
Collapse
|
2
|
Krueger A, Łyszkiewicz M, Heissmeyer V. Post-transcriptional control of T-cell development in the thymus. Immunol Lett 2022; 247:1-12. [DOI: 10.1016/j.imlet.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 11/05/2022]
|
3
|
Deng Z, Zhang Y, Li L, Xie X, Huang J, Zhang M, Ni X, Li X. A dual-luciferase reporter system for characterization of small RNA target genes in both mammalian and insect cells. INSECT SCIENCE 2022; 29:631-644. [PMID: 34232550 DOI: 10.1111/1744-7917.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
MicroRNAs (miRNAs) are regulatory RNA molecules that bind to target messenger RNAs (mRNAs) and affect the stability or translational efficiency of the bound mRNAs. Single or dual-luciferase reporter systems have been successfully used to identify miRNA target genes in mammalian cells. These reporter systems, however, are not sensitive enough to verify miRNA-target gene relationships in insect cell lines because the promoters of the target luciferase (usually Renilla) used in these reporter systems are too weak to drive sufficient expression of the target luciferase in insect cells. In this study, we replaced the SV40 promoter in the psiCHECK-2 reporter vector, which is widely used with mammalian cell lines, with the HSV-TK or AC5.1 promoter to yield two new dual-luciferase reporter vectors, designated psiCHECK-2-TK and psiCHECK-2-AC5.1, respectively. Only psiCHECK-2 and psiCHECK-2-AC5.1 had suitable target (Renilla)/reference (firefly) luciferase activity ratios in mammalian (HeLa and HEK293) and insect (Sf9, S2, Helicoverpa zea fat body and ovary) cell lines, while psiCHECK-2-TK had suitable Renilla/firefly luciferase activity ratios regardless of the cell line. Moreover, psiCHECK-2-TK successfully detected the interaction between Helicoverpa armigera miRNA9a and its target, the 3'-untranslated region of heat shock protein 90, in both mammalian and H. zea cell lines, but psiCHECK-2 failed to do so in H. zea cell lines. Furthermore, psiCHECK-2-TK with the target sequence, HzMasc (H. zea Masculinizer), accurately differentiated between H. zea cell lines with or without the negative regulation factor (miRNA or piRNA) of HzMasc. These data demonstrate that psiCHECK-2-TK can be used to functionally characterize small RNA target genes in both mammalian and insect cells.
Collapse
Affiliation(s)
- Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuting Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Leyao Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xingcheng Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Min Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinzhi Ni
- USDA-ARS, Crop Genetics and Breeding Research Unit, University of Georgia-Tifton Campus, Tifton, Georgia, USA
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
4
|
Gordino G, Costa‐Pereira S, Corredeira P, Alves P, Costa L, Gomes AQ, Silva‐Santos B, Ribot JC. MicroRNA-181a restricts human γδ T cell differentiation by targeting Map3k2 and Notch2. EMBO Rep 2022; 23:e52234. [PMID: 34821000 PMCID: PMC8728617 DOI: 10.15252/embr.202052234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
γδ T cells are a conserved population of lymphocytes that contributes to anti-tumor responses through its overt type 1 inflammatory and cytotoxic properties. We have previously shown that human γδ T cells acquire this profile upon stimulation with IL-2 or IL-15, in a differentiation process dependent on MAPK/ERK signaling. Here, we identify microRNA-181a as a key modulator of human γδ T cell differentiation. We observe that miR-181a is highly expressed in patients with prostate cancer and that this pattern associates with lower expression of NKG2D, a critical mediator of cancer surveillance. Interestingly, miR-181a expression negatively correlates with an activated type 1 effector profile obtained from in vitro differentiated γδ T cells and miR-181a overexpression restricts their levels of NKG2D and TNF-α. Upon in silico analysis, we identify two miR-181a candidate targets, Map3k2 and Notch2, which we validate via overexpression coupled with luciferase assays. These results reveal a novel role for miR-181a as critical regulator of human γδ T cell differentiation and highlight its potential for manipulation of γδ T cells in next-generation immunotherapies.
Collapse
Affiliation(s)
- Gisela Gordino
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Sara Costa‐Pereira
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Patrícia Corredeira
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Patrícia Alves
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Luís Costa
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
- Medical Oncology DivisionHospital de Santa MariaCentro Hospitalar Universitário Lisboa NorteLisbonPortugal
| | - Anita Q Gomes
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
- Escola Superior de Tecnologia da Saúde de LisboaLisbonPortugal
| | - Bruno Silva‐Santos
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Julie C Ribot
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| |
Collapse
|
5
|
Popławski P, Bogusławska J, Hanusek K, Piekiełko-Witkowska A. Nucleolar Proteins and Non-Coding RNAs: Roles in Renal Cancer. Int J Mol Sci 2021; 22:ijms222313126. [PMID: 34884928 PMCID: PMC8658237 DOI: 10.3390/ijms222313126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
Renal cell cancer is the most frequent kidney malignancy. Most RCC cases are classified as clear cell renal cell carcinoma (ccRCC), characterized by high aggressiveness and poor prognosis for patients. ccRCC aggressiveness is defined by classification systems based on changes in morphology of nucleoli, the membraneless substructures of nuclei. The latter act as the sites of ribosome biogenesis as well as the hubs that trap and immobilize proteins, preventing their action in other cellular compartments. Thereby, nucleoli control cellular functioning and homeostasis. Nucleoli are also the sites of activity of multiple noncoding RNAs, including snoRNAs, IGS RNA, and miRNAs. Recent years have brought several remarkable discoveries regarding the role of nucleolar non-coding RNAs, in particular snoRNAs, in ccRCC. The expression of snoRNAs is largely dysregulated in ccRCC tumors. snoRNAs, such as SNHG1, SNHG4 and SNHG12, act as miRNA sponges, leading to aberrant expression of oncogenes and tumor suppressors, and directly contributing to ccRCC development and progression. snoRNAs can also act without affecting miRNA functioning, by altering the expression of key oncogenic proteins such as HIF1A. snoRNAs are also potentially useful biomarkers of ccRCC progression. Here, we comprehensively discuss the role of nucleolar proteins and non-coding RNAs in ccRCC.
Collapse
|
6
|
Thu CT, Chung JY, Dhawan D, Vaiana CA, Mahal LK. High-Throughput miRFluR Platform Identifies miRNA Regulating B3GLCT That Predict Peters' Plus Syndrome Phenotype, Supporting the miRNA Proxy Hypothesis. ACS Chem Biol 2021; 16:1900-1907. [PMID: 34085516 PMCID: PMC10124106 DOI: 10.1021/acschembio.1c00247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs, miRs) finely tune protein expression and target networks of hundreds to thousands of genes that control specific biological processes. They are critical regulators of glycosylation, one of the most diverse and abundant post-translational modifications. In recent work, miRs have been shown to predict the biological functions of glycosylation enzymes, leading to the "miRNA proxy hypothesis" which states, "if a miR drives a specific biological phenotype..., the targets of that miR will drive the same biological phenotype." Testing of this powerful hypothesis is hampered by our lack of knowledge about miR targets. Target prediction suffers from low accuracy and a high false prediction rate. Herein, we develop a high-throughput experimental platform to analyze miR-target interactions, miRFluR. We utilize this system to analyze the interactions of the entire human miRome with beta-3-glucosyltransferase (B3GLCT), a glycosylation enzyme whose loss underpins the congenital disorder Peters' Plus Syndrome. Although this enzyme is predicted by multiple algorithms to be highly targeted by miRs, we identify only 27 miRs that downregulate B3GLCT, a >96% false positive rate for prediction. Functional enrichment analysis of these validated miRs predicts phenotypes associated with Peters' Plus Syndrome, although B3GLCT is not in their known target network. Thus, biological phenotypes driven by B3GLCT may be driven by the target networks of miRs that regulate this enzyme, providing additional evidence for the miRNA proxy hypothesis.
Collapse
Affiliation(s)
- Chu T. Thu
- Department of Chemistry, University of Alberta, Edmonton, AB, CANADA, T6G 2G2
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York 10003
| | - Jonathan Y. Chung
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York 10003
| | - Deepika Dhawan
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York 10003
| | - Christopher A. Vaiana
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York 10003
| | - Lara K. Mahal
- Department of Chemistry, University of Alberta, Edmonton, AB, CANADA, T6G 2G2
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York 10003
| |
Collapse
|
7
|
Hall MS, Decker JT, Shea LD. Towards systems tissue engineering: Elucidating the dynamics, spatial coordination, and individual cells driving emergent behaviors. Biomaterials 2020; 255:120189. [PMID: 32569865 PMCID: PMC7396312 DOI: 10.1016/j.biomaterials.2020.120189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/20/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
Abstract
Biomaterial systems have enabled the in vitro production of complex, emergent tissue behaviors that were not possible with conventional two-dimensional culture systems, allowing for analysis of both normal development and disease processes. We propose that the path towards developing the design parameters for biomaterial systems lies with identifying the molecular drivers of emergent behavior through leveraging technological advances in systems biology, including single cell omics, genetic engineering, and high content imaging. This growing research opportunity at the intersection of the fields of tissue engineering and systems biology - systems tissue engineering - can uniquely interrogate the mechanisms by which complex tissue behaviors emerge with the potential to capture the contribution of i) dynamic regulation of tissue development and dysregulation, ii) single cell heterogeneity and the function of rare cell types, and iii) the spatial distribution and structure of individual cells and cell types within a tissue. By leveraging advances in both biological and materials data science, systems tissue engineering can facilitate the identification of biomaterial design parameters that will accelerate basic science discovery and translation.
Collapse
Affiliation(s)
- Matthew S Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Joseph T Decker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Lemus-Diaz N, Ferreira RR, Bohnsack KE, Gruber J, Bohnsack MT. The human box C/D snoRNA U3 is a miRNA source and miR-U3 regulates expression of sortin nexin 27. Nucleic Acids Res 2020; 48:8074-8089. [PMID: 32609813 PMCID: PMC7430653 DOI: 10.1093/nar/gkaa549] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 05/29/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are important regulators of eukaryotic gene expression and their dysfunction is often associated with cancer. Alongside the canonical miRNA biogenesis pathway involving stepwise processing and export of pri- and pre-miRNA transcripts by the microprocessor complex, Exportin 5 and Dicer, several alternative mechanisms of miRNA production have been described. Here, we reveal that the atypical box C/D snoRNA U3, which functions as a scaffold during early ribosome assembly, is a miRNA source. We show that a unique stem-loop structure in the 5' domain of U3 is processed to form short RNA fragments that associate with Argonaute. miR-U3 production is independent of Drosha, and an increased amount of U3 in the cytoplasm in the absence of Dicer suggests that a portion of the full length snoRNA is exported to the cytoplasm where it is efficiently processed into miRNAs. Using reporter assays, we demonstrate that miR-U3 can act as a low proficiency miRNA in vivo and our data support the 3' UTR of the sortin nexin SNX27 mRNA as an endogenous U3-derived miRNA target. We further reveal that perturbation of U3 snoRNP assembly induces miR-U3 production, highlighting potential cross-regulation of target mRNA expression and ribosome production.
Collapse
Affiliation(s)
- Nicolas Lemus-Diaz
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
- Junior Research Group Medical RNA Biology, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Rafael Rinaldi Ferreira
- Junior Research Group Medical RNA Biology, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Jens Gruber
- Junior Research Group Medical RNA Biology, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
- Göttingen Center for Molecular Biosciences, Georg-August University, Göttingen, Justus-von-Liebig-Weg 11, 37077 Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)
| |
Collapse
|
9
|
Lemus-Diaz N, Tamon L, Gruber J. Dual Fluorescence Reporter Based Analytical Flow Cytometry for miRNA Induced Regulation in Mammalian Cells. Bio Protoc 2018; 8:e3000. [PMID: 34395794 DOI: 10.21769/bioprotoc.3000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022] Open
Abstract
MicroRNA-induced gene regulation is a growing field in basic and translational research. Examining this regulation directly in cells is necessary to validate high-throughput data originated from RNA sequencing technologies. For this several studies employ luciferase-based reporters that usually measure the whole cell population, which comes with low resolution for the complexity of the miRNA-induced regulation. Here, we provide a protocol using a dual-fluorescence reporter and flow cytometry reaching single cell resolution; the protocol contains a simplified workflow that includes: vector generation, data acquisition, processing, and analysis using the R environment. Our protocol enables high-resolution measurements of miRNA induced post-transcriptional gene regulation and combined with system biology it can be used to estimate miRNAs proficiency.
Collapse
Affiliation(s)
- Nicolas Lemus-Diaz
- Junior Research Group Medical RNA Biology, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen, Germany
| | - Liezel Tamon
- Junior Research Group Medical RNA Biology, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen, Germany
| | - Jens Gruber
- Junior Research Group Medical RNA Biology, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen, Germany
| |
Collapse
|
10
|
O'Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne) 2018; 9:402. [PMID: 30123182 PMCID: PMC6085463 DOI: 10.3389/fendo.2018.00402] [Citation(s) in RCA: 3244] [Impact Index Per Article: 463.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs that play important roles in regulating gene expression. The majority of miRNAs are transcribed from DNA sequences into primary miRNAs and processed into precursor miRNAs, and finally mature miRNAs. In most cases, miRNAs interact with the 3' untranslated region (3' UTR) of target mRNAs to induce mRNA degradation and translational repression. However, interaction of miRNAs with other regions, including the 5' UTR, coding sequence, and gene promoters, have also been reported. Under certain conditions, miRNAs can also activate translation or regulate transcription. The interaction of miRNAs with their target genes is dynamic and dependent on many factors, such as subcellular location of miRNAs, the abundancy of miRNAs and target mRNAs, and the affinity of miRNA-mRNA interactions. miRNAs can be secreted into extracellular fluids and transported to target cells via vesicles, such as exosomes, or by binding to proteins, including Argonautes. Extracellular miRNAs function as chemical messengers to mediate cell-cell communication. In this review, we provide an update on canonical and non-canonical miRNA biogenesis pathways and various mechanisms underlying miRNA-mediated gene regulations. We also summarize the current knowledge of the dynamics of miRNA action and of the secretion, transfer, and uptake of extracellular miRNAs.
Collapse
|
11
|
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs that play important roles in regulating gene expression. The majority of miRNAs are transcribed from DNA sequences into primary miRNAs and processed into precursor miRNAs, and finally mature miRNAs. In most cases, miRNAs interact with the 3' untranslated region (3' UTR) of target mRNAs to induce mRNA degradation and translational repression. However, interaction of miRNAs with other regions, including the 5' UTR, coding sequence, and gene promoters, have also been reported. Under certain conditions, miRNAs can also activate translation or regulate transcription. The interaction of miRNAs with their target genes is dynamic and dependent on many factors, such as subcellular location of miRNAs, the abundancy of miRNAs and target mRNAs, and the affinity of miRNA-mRNA interactions. miRNAs can be secreted into extracellular fluids and transported to target cells via vesicles, such as exosomes, or by binding to proteins, including Argonautes. Extracellular miRNAs function as chemical messengers to mediate cell-cell communication. In this review, we provide an update on canonical and non-canonical miRNA biogenesis pathways and various mechanisms underlying miRNA-mediated gene regulations. We also summarize the current knowledge of the dynamics of miRNA action and of the secretion, transfer, and uptake of extracellular miRNAs.
Collapse
Affiliation(s)
- Jacob O'Brien
- Department of Biology, York University, Toronto, ON, Canada
| | - Heyam Hayder
- Department of Biology, York University, Toronto, ON, Canada
| | - Yara Zayed
- Department of Biology, York University, Toronto, ON, Canada
| | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|