1
|
Barrenechea Angeles I, Nguyen NL, Greco M, Tan KS, Pawlowski J. Assigning the unassigned: A signature-based classification of rDNA metabarcodes reveals new deep-sea diversity. PLoS One 2024; 19:e0298440. [PMID: 38422100 PMCID: PMC10903905 DOI: 10.1371/journal.pone.0298440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Environmental DNA metabarcoding reveals a vast genetic diversity of marine eukaryotes. Yet, most of the metabarcoding data remain unassigned due to the paucity of reference databases. This is particularly true for the deep-sea meiofauna and eukaryotic microbiota, whose hidden diversity is largely unexplored. Here, we tackle this issue by using unique DNA signatures to classify unknown metabarcodes assigned to deep-sea foraminifera. We analyzed metabarcoding data obtained from 311 deep-sea sediment samples collected in the Clarion-Clipperton Fracture Zone, an area of potential polymetallic nodule exploitation in the Eastern Pacific Ocean. Using the signatures designed in the 37F hypervariable region of the 18S rRNA gene, we were able to classify 802 unassigned metabarcodes into 61 novel lineages, which have been placed in 27 phylogenetic clades. The comparison of new lineages with other foraminiferal datasets shows that most novel lineages are widely distributed in the deep sea. Five lineages are also present in the shallow-water datasets; however, phylogenetic analysis of these lineages separates deep-sea and shallow-water metabarcodes except in one case. While the signature-based classification does not solve the problem of gaps in reference databases, this taxonomy-free approach provides insight into the distribution and ecology of deep-sea species represented by unassigned metabarcodes, which could be useful in future applications of metabarcoding for environmental monitoring.
Collapse
Affiliation(s)
- Inès Barrenechea Angeles
- Department of Earth Sciences, University of Geneva, Geneva, Switzerland
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- Department of Geosciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ngoc-Loi Nguyen
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Mattia Greco
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
- Institute of Marine Sciences, Spanish National Research Council, Barcelona, Spain
| | - Koh Siang Tan
- Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
| | - Jan Pawlowski
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
- ID-Gene Ecodiagnostics Ltd., Plan-les-Ouates, Switzerland
| |
Collapse
|
2
|
Le JT, Levin LA, Lejzerowicz F, Cordier T, Gooday AJ, Pawlowski J. Scientific and budgetary trade-offs between morphological and molecular methods for deep-sea biodiversity assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:655-663. [PMID: 34019727 DOI: 10.1002/ieam.4466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/22/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Deep-sea biodiversity, a source of critical ecological functions and ecosystem services, is increasingly subject to the threat of disturbance from existing practices (e.g., fishing, waste disposal, oil and gas extraction) as well as emerging industries such as deep-seabed mining. Current scientific tools may not be adequate for monitoring and assessing subsequent changes to biodiversity. In this paper, we evaluate the scientific and budgetary trade-offs associated with morphology-based taxonomy and metabarcoding approaches to biodiversity surveys in the context of nascent deep-seabed mining for polymetallic nodules in the Clarion-Clipperton Zone, the area of most intense interest. For the dominant taxa of benthic meiofauna, we discuss the types of information produced by these methods and use cost-effectiveness analysis to compare their abilities to yield biological and ecological data for use in environmental assessment and management. On the basis of our evaluation, morphology-based taxonomy is less cost-effective than metabarcoding but offers scientific advantages, such as the generation of density, biomass, and size structure data. Approaches that combine the two methods during the environmental assessment phase of commercial activities may facilitate future biodiversity monitoring and assessment for deep-seabed mining and for other activities in remote deep-sea habitats, for which taxonomic data and expertise are limited. Integr Environ Assess Manag 2022;18:655-663. © 2021 SETAC.
Collapse
Affiliation(s)
- Jennifer T Le
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Lisa A Levin
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Franck Lejzerowicz
- Jacobs School of Engineering, University of California San Diego, La Jolla, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, USA
- Department of Pediatrics, University of California San Diego, La Jolla, USA
| | - Tristan Cordier
- Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
- NORCE Climate, NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Bergen, Norway
| | - Andrew J Gooday
- National Oceanography Centre, Southampton, UK
- Life Sciences Department, Natural History Museum, London, UK
| | - Jan Pawlowski
- Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
- ID-Gene Ecodiagnostics, Campus Biotech Innovation Park, Geneva, Switzerland
| |
Collapse
|
3
|
Gollner S, Haeckel M, Janssen F, Lefaible N, Molari M, Papadopoulou S, Reichart G, Trabucho Alexandre J, Vink A, Vanreusel A. Restoration experiments in polymetallic nodule areas. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:682-696. [PMID: 34677903 PMCID: PMC9299087 DOI: 10.1002/ieam.4541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 05/14/2023]
Abstract
Deep-seabed polymetallic nodule mining can have multiple adverse effects on benthic communities, such as permanent loss of habitat by removal of nodules and habitat modification of sediments. One tool to manage biodiversity risks is the mitigation hierarchy, including avoidance, minimization of impacts, rehabilitation and/or restoration, and offset. We initiated long-term restoration experiments at sites in polymetallic nodule exploration contract areas in the Clarion-Clipperton Zone that were (i) cleared of nodules by a preprototype mining vehicle, (ii) disturbed by dredge or sledge, (iii) undisturbed, and (iv) naturally devoid of nodules. To accommodate for habitat loss, we deployed >2000 artificial ceramic nodules to study the possible effect of substrate provision on the recovery of biota and its impact on sediment biogeochemistry. Seventy-five nodules were recovered after eight weeks and had not been colonized by any sessile epifauna. All other nodules will remain on the seafloor for several years before recovery. Furthermore, to account for habitat modification of the top sediment layer, sediment in an epibenthic sledge track was loosened by a metal rake to test the feasibility of sediment decompaction to facilitate soft-sediment recovery. Analyses of granulometry and nutrients one month after sediment decompaction revealed that sand fractions are proportionally lower within the decompacted samples, whereas total organic carbon values are higher. Considering the slow natural recovery rates of deep-sea communities, these experiments represent the beginning of a ~30-year study during which we expect to gain insights into the nature and timing of the development of hard-substrate communities and the influence of nodules on the recovery of disturbed sediment communities. Results will help us understand adverse long-term effects of nodule removal, providing an evidence base for setting criteria for the definition of "serious harm" to the environment. Furthermore, accompanying research is needed to define a robust ecosystem baseline in order to effectively identify restoration success. Integr Environ Assess Manag 2022;18:682-696. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Sabine Gollner
- Department of Ocean SystemsRoyal Netherlands Institute for Sea Research (NIOZ)Den Burgthe Netherlands
| | | | - Felix Janssen
- HGF MPG Joint Research Group for Deep Sea Ecology and TechnologyAlfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI)BremerhavenGermany
- HGF MPG Joint Research Group for Deep Sea Ecology and TechnologyMax Planck Institute for Marine Microbiology (MPI)BremenGermany
| | - Nene Lefaible
- Marine Biology Research GroupGhent UniversityGhentBelgium
| | - Massimiliano Molari
- HGF MPG Joint Research Group for Deep Sea Ecology and TechnologyMax Planck Institute for Marine Microbiology (MPI)BremenGermany
| | | | - Gert‐Jan Reichart
- Department of Ocean SystemsRoyal Netherlands Institute for Sea Research (NIOZ)Den Burgthe Netherlands
| | | | - Annemiek Vink
- Federal Institute for Geosciences and Natural Resources (BGR)HannoverGermany
| | - Ann Vanreusel
- Marine Biology Research GroupGhent UniversityGhentBelgium
| |
Collapse
|
4
|
Thakur R, Collens A, Greco M, Sleith RS, Grattepanche JD, Katz LA. Newly designed foraminifera primers identify habitat-specific lineages through metabarcoding analyses. J Eukaryot Microbiol 2022; 69:e12913. [PMID: 35332619 DOI: 10.1111/jeu.12913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Foraminifera include diverse shell-building lineages found in a wide array of aquatic habitats from the deep-sea to intertidal zones to brackish and freshwater ecosystems. Recent estimates of morphological and molecular foraminifera diversity have increased the knowledge of foraminiferal diversity, which is critical as these lineages are used as bioindicators of past and present environmental perturbation. However, a comparative analysis of foraminiferal biodiversity between their major habitats (freshwater, brackish, intertidal, and marine) is underexplored, particularly using molecular tools. Here, we present metabarcoding survey of foraminiferal diversity across different ecosystems using newly designed foraminifera-specific primers that target the hypervariable regions of the foraminifera SSU-rRNA gene (~250-300bp long). We tested these primer sets on four foraminifera species and then across several environments: the intertidal zone, coastal ecosystems, and freshwater vernal pools. We retrieved 655 operational taxonomic units (OTUs); the majority are undetermined taxa that have no closely-matching sequences in the database. Furthermore, we identified 163 OTUs with distinct habitat preferences. Most of the observed OTUs belonged to lineages of single-chambered foraminifera, including poorly explored freshwater foraminifera which encompass a clade of Reticulomyxa-like forms. Our pilot study provides the community with an additional set of newly designed and taxon-specific primers to elucidate foraminiferal diversity across different habitats.
Collapse
Affiliation(s)
- Rabindra Thakur
- Smith College, Department of Biological Science, Northampton, Massachusetts, USA.,University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| | - Adena Collens
- Smith College, Department of Biological Science, Northampton, Massachusetts, USA
| | - Mattia Greco
- Smith College, Department of Biological Science, Northampton, Massachusetts, USA.,Temple University, Department of Biology, Philadelphia, Pennsylvania, USA
| | - Robin S Sleith
- Smith College, Department of Biological Science, Northampton, Massachusetts, USA
| | - Jean-David Grattepanche
- Smith College, Department of Biological Science, Northampton, Massachusetts, USA.,Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Laura A Katz
- Smith College, Department of Biological Science, Northampton, Massachusetts, USA.,University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| |
Collapse
|
5
|
Gooday AJ, Schoenle A, Dolan JR, Arndt H. Protist diversity and function in the dark ocean - Challenging the paradigms of deep-sea ecology with special emphasis on foraminiferans and naked protists. Eur J Protistol 2020; 75:125721. [PMID: 32575029 DOI: 10.1016/j.ejop.2020.125721] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 11/27/2022]
Abstract
The dark ocean and the underlying deep seafloor together represent the largest environment on this planet, comprising about 80% of the oceanic volume and covering more than two-thirds of the Earth's surface, as well as hosting a major part of the total biosphere. Emerging evidence suggests that these vast pelagic and benthic habitats play a major role in ocean biogeochemistry and represent an "untapped reservoir" of high genetic and metabolic microbial diversity. Due to its huge volume, the water column of the dark ocean is the largest reservoir of organic carbon in the biosphere and likely plays a major role in the global carbon budget. The dark ocean and the seafloor beneath it are also home to a largely enigmatic food web comprising little-known and sometimes spectacular organisms, mainly prokaryotes and protists. This review considers the globally important role of pelagic and benthic protists across all protistan size classes in the deep-sea realm, with a focus on their taxonomy, diversity, and physiological properties, including their role in deep microbial food webs. We argue that, given the important contribution that protists must make to deep-sea biodiversity and ecosystem processes, they should not be overlooked in biological studies of the deep ocean.
Collapse
Affiliation(s)
- Andrew J Gooday
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK; Life Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Alexandra Schoenle
- University of Cologne, Institute of Zoology, General Ecology, 50674 Cologne, Germany
| | - John R Dolan
- Sorbonne Université, CNRS UMR 7093, Laboratoroire d'Océanographie de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | - Hartmut Arndt
- University of Cologne, Institute of Zoology, General Ecology, 50674 Cologne, Germany.
| |
Collapse
|
6
|
Kersten O, Vetter EW, Jungbluth MJ, Smith CR, Goetze E. Larval assemblages over the abyssal plain in the Pacific are highly diverse and spatially patchy. PeerJ 2019; 7:e7691. [PMID: 31579593 PMCID: PMC6766376 DOI: 10.7717/peerj.7691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/19/2019] [Indexed: 11/20/2022] Open
Abstract
Abyssal plains are among the most biodiverse yet least explored marine ecosystems on our planet, and they are increasingly threatened by human impacts, including future deep seafloor mining. Recovery of abyssal populations from the impacts of polymetallic nodule mining will be partially determined by the availability and dispersal of pelagic larvae leading to benthic recolonization of disturbed areas of the seafloor. Here we use a tree-of-life (TOL) metabarcoding approach to investigate the species richness, diversity, and spatial variability of the larval assemblage at mesoscales across the abyssal seafloor in two mining-claim areas in the eastern Clarion Clipperton Fracture Zone (CCZ; abyssal Pacific). Our approach revealed a previously unknown taxonomic richness within the meroplankton assemblage, detecting larvae from 12 phyla, 23 Classes, 46 Orders, and 65 Families, including a number of taxa not previously reported at abyssal depths or within the Pacific Ocean. A novel suite of parasitic copepods and worms were sampled, from families that are known to associate with other benthic invertebrates or demersal fishes as hosts. Larval assemblages were patchily distributed at the mesoscale, with little similarity in OTUs detected among deployments even within the same 30 × 30 km study area. Our results provide baseline observations on larval diversity prior to polymetallic nodule mining in this region, and emphasize our overwhelming lack of knowledge regarding larvae of the benthic boundary layer in abyssal plain ecosystems.
Collapse
Affiliation(s)
- Oliver Kersten
- Hawaii Pacific University, Kaneohe, HI, United States of America
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Eric W. Vetter
- Hawaii Pacific University, Kaneohe, HI, United States of America
| | - Michelle J. Jungbluth
- Hawaii Pacific University, Kaneohe, HI, United States of America
- Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Craig R. Smith
- Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Erica Goetze
- Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, United States of America
| |
Collapse
|
7
|
Gooday AJ, Holzmann M, Goineau A, Kamenskaya O, Melnik VF, Pearce RB, Weber AAT, Pawlowski J. Xenophyophores (Rhizaria, Foraminifera) from the Eastern Clarion-Clipperton Zone (equatorial Pacific): the Genus Psammina. Protist 2018; 169:926-957. [DOI: 10.1016/j.protis.2018.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/10/2018] [Accepted: 09/24/2018] [Indexed: 11/30/2022]
|
8
|
Danovaro R, Corinaldesi C, Dell'Anno A, Rastelli E. Potential impact of global climate change on benthic deep-sea microbes. FEMS Microbiol Lett 2018; 364:4553516. [PMID: 29045616 DOI: 10.1093/femsle/fnx214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/12/2017] [Indexed: 11/12/2022] Open
Abstract
Benthic deep-sea environments are the largest ecosystem on Earth, covering ∼65% of the Earth surface. Microbes inhabiting this huge biome at all water depths represent the most abundant biological components and a relevant portion of the biomass of the biosphere, and play a crucial role in global biogeochemical cycles. Increasing evidence suggests that global climate changes are affecting also deep-sea ecosystems, both directly (causing shifts in bottom-water temperature, oxygen concentration and pH) and indirectly (through changes in surface oceans' productivity and in the consequent export of organic matter to the seafloor). However, the responses of the benthic deep-sea biota to such shifts remain largely unknown. This applies particularly to deep-sea microbes, which include bacteria, archaea, microeukaryotes and their viruses. Understanding the potential impacts of global change on the benthic deep-sea microbial assemblages and the consequences on the functioning of the ocean interior is a priority to better forecast the potential consequences at global scale. Here we explore the potential changes in the benthic deep-sea microbiology expected in the coming decades using case studies on specific systems used as test models.
Collapse
Affiliation(s)
- Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.,Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Cinzia Corinaldesi
- Department of Sciences and Engineering of Materials, Environment and Urbanistics, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Eugenio Rastelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.,Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|