1
|
Meng Y, Sun J, Zhang G, Yu T, Piao H. Approaches for neutrophil imaging: an important step in personalized medicine. Bioengineered 2022; 13:14844-14855. [PMID: 36469646 PMCID: PMC9728467 DOI: 10.1080/21655979.2022.2096303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
Neutrophils are the most abundant circulating leukocytes and the first line of defense against invading pathogens. They are key components of the innate immune system. Neutrophils also cause tissue damage in various autoimmune and inflammatory diseases and play an important role in cancer progression. Due to the complex relationship between various diseases and neutrophils, these cells have become potentially important targets for therapeutic interventions. Monitoring neutrophils in the tumor microenvironment is critical for tumor treatment and prognostic analysis but remains challenging. Molecular imaging technology has made great progress as a valuable tool for noninvasively visualizing biological events and establishing effective cancer diagnoses and treatment methods. Molecular probes designed based on the characteristics of neutrophils, such as their flexible morphology, the abundance of surface receptors, and the absence of immunogenicity, have shown great potential. This has created an opportunity for novel ideas and research methods for the diagnosis and targeted therapy of inflammatory diseases and tumors, with the goal of integrated diagnosis and treatment. This review discusses the diverse tumor detection and diagnostic imaging strategies based on neutrophils. It is anticipated that neutrophil-based imaging will soon be gradually integrated into clinical applications.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Jing Sun
- Department of Biobank, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Tao Yu
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China,CONTACT Tao Yu Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Province Cancer Hospital, No. 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning110042, China
| | - Haozhe Piao
- Department of Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China,Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China,Haozhe Piao Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Province Cancer Hospital, No. 44, Xiaoheyan Road, Dadong District Shenyang, Liaoning 110042, China
| |
Collapse
|
2
|
Nishimiya K, Tearney G. Micro Optical Coherence Tomography for Coronary Imaging. Front Cardiovasc Med 2021; 8:613400. [PMID: 33842560 PMCID: PMC8032864 DOI: 10.3389/fcvm.2021.613400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/23/2021] [Indexed: 01/11/2023] Open
Abstract
Intravascular optical coherence tomography (IVOCT) that produces images with 10 μm resolution has emerged as a significant technology for evaluating coronary architectural morphology. Yet, many features that are relevant to coronary plaque pathogenesis can only be seen at the cellular level. This issue has motivated the development of a next-generation form of OCT imaging that offers higher resolution. One such technology that we review here is termed micro-OCT (μOCT) that enables the assessment of the cellular and subcellular morphology of human coronary atherosclerotic plaques. This chapter reviews recent advances and ongoing works regarding μOCT in the field of cardiology. This new technology has the potential to provide researchers and clinicians with a tool to better understand the natural history of coronary atherosclerosis, increase plaque progression prediction capabilities, and better assess the vessel healing process after revascularization therapy.
Collapse
Affiliation(s)
- Kensuke Nishimiya
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Guillermo Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Pathology, Massachusetts General Hospital, Boston, MA, United States.,Harvard-Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology Division, Cambridge, MA, United States
| |
Collapse
|
3
|
Yonker LM, Marand A, Muldur S, Hopke A, Leung HM, De La Flor D, Park G, Pinsky H, Guthrie LB, Tearney GJ, Irimia D, Hurley BP. Neutrophil dysfunction in cystic fibrosis. J Cyst Fibros 2021; 20:1062-1071. [PMID: 33589340 DOI: 10.1016/j.jcf.2021.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/15/2021] [Accepted: 01/28/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Excessive neutrophil inflammation is the hallmark of cystic fibrosis (CF) airway disease. Novel technologies for characterizing neutrophil dysfunction may provide insight into the nature of these abnormalities, revealing a greater mechanistic understanding and new avenues for CF therapies that target these mechanisms. METHODS Blood was collected from individuals with CF in the outpatient clinic, CF individuals hospitalized for a pulmonary exacerbation, and non-CF controls. Using microfluidic assays and advanced imaging technologies, we characterized 1) spontaneous neutrophil migration using microfluidic motility mazes, 2) neutrophil migration to and phagocytosis of Staphylococcal aureus particles in a microfluidic arena, 3) neutrophil swarming on Candida albicans clusters, and 4) Pseudomonas aeruginosa-induced neutrophil transepithelial migration using micro-optical coherence technology (µOCT). RESULTS Participants included 44 individuals: 16 Outpatient CF, 13 Hospitalized CF, and 15 Non-CF individuals. While no differences were seen with spontaneous migration, CF neutrophils migrated towards S. aureus particles more quickly than non-CF neutrophils (p < 0.05). CF neutrophils, especially Hospitalized CF neutrophils, generated significantly larger aggregates around S. aureus particles over time. Hospitalized CF neutrophils were more likely to have dysfunctional swarming (p < 0.01) and less efficient clearing of C. albicans (p < 0.0001). When comparing trans-epithelial migration towards Pseudomonas aeruginosa epithelial infection, Outpatient CF neutrophils displayed an increase in the magnitude of transmigration and adherence to the epithelium (p < 0.05). CONCLUSIONS Advanced technologies for characterizing CF neutrophil function reveal significantly altered migratory responses, cell-to-cell clustering, and microbe containment. Future investigations will probe mechanistic basis for abnormal responses in CF to identify potential avenues for novel anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Lael M Yonker
- Massachusetts General Hospital, Department of Pediatrics, Pulmonary Division, Boston, MA, United States; Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, United States; Harvard Medical School, Department of Pediatrics, Boston, MA, United States.
| | - Anika Marand
- Massachusetts General Hospital, Center for Engineering in Medicine, Boston, MA, United States; Shriners Hospital for Children, Boston, MA, United States
| | - Sinan Muldur
- Massachusetts General Hospital, Center for Engineering in Medicine, Boston, MA, United States; Harvard Medical School, Department of Surgery, Boston, MA, United States; Shriners Hospital for Children, Boston, MA, United States
| | - Alex Hopke
- Massachusetts General Hospital, Center for Engineering in Medicine, Boston, MA, United States; Harvard Medical School, Department of Surgery, Boston, MA, United States; Shriners Hospital for Children, Boston, MA, United States
| | - Hui Min Leung
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, MA, United States; Harvard Medical School, Department of Dermatology, Boston, MA, United States
| | - Denis De La Flor
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, United States
| | - Grace Park
- Massachusetts General Hospital, Department of Pediatrics, Pulmonary Division, Boston, MA, United States
| | - Hanna Pinsky
- Massachusetts General Hospital, Department of Pediatrics, Pulmonary Division, Boston, MA, United States
| | - Lauren B Guthrie
- Massachusetts General Hospital, Department of Pediatrics, Pulmonary Division, Boston, MA, United States
| | - Guillermo J Tearney
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, MA, United States; Harvard Medical School, Department of Pathology, Boston, MA, United States; Harvard Medical School, Department of Dermatology, Boston, MA, United States
| | - Daniel Irimia
- Massachusetts General Hospital, Center for Engineering in Medicine, Boston, MA, United States; Harvard Medical School, Department of Surgery, Boston, MA, United States; Shriners Hospital for Children, Boston, MA, United States
| | - Bryan P Hurley
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, United States; Harvard Medical School, Department of Pediatrics, Boston, MA, United States
| |
Collapse
|
4
|
Tsai CY, Shih CH, Chu HS, Hsieh YT, Huang SL, Chen WL. Submicron spatial resolution optical coherence tomography for visualising the 3D structures of cells cultivated in complex culture systems. Sci Rep 2021; 11:3492. [PMID: 33568705 PMCID: PMC7875968 DOI: 10.1038/s41598-021-82178-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/04/2021] [Indexed: 12/02/2022] Open
Abstract
Three-dimensional (3D) configuration of in vitro cultivated cells has been recognised as a valuable tool in developing stem cell and cancer cell therapy. However, currently available imaging approaches for live cells have drawbacks, including unsatisfactory resolution, lack of cross-sectional and 3D images, and poor penetration of multi-layered cell products, especially when cells are cultivated on semitransparent carriers. Herein, we report a prototype of a full-field optical coherence tomography (FF-OCT) system with isotropic submicron spatial resolution in en face and cross-sectional views that provides a label-free, non-invasive platform with high-resolution 3D imaging. We validated the imaging power of this prototype by examining (1) cultivated neuron cells (N2A cell line); (2) multilayered, cultivated limbal epithelial sheets (mCLESs); (3) neuron cells (N2A cell line) and mCLESs cultivated on a semitransparent amniotic membrane (stAM); and (4) directly adherent colonies of neuron-like cells (DACNs) covered by limbal epithelial cell sheets. Our FF-OCT exhibited a penetrance of up to 150 μm in a multilayered cell sheet and displayed the morphological differences of neurons and epithelial cells in complex coculture systems. This FF-OCT is expected to facilitate the visualisation of cultivated cell products in vitro and has a high potential for cell therapy and translational medicine research.
Collapse
Affiliation(s)
- Chia-Ying Tsai
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Ophthalmology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan.,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Cheng-Hung Shih
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Sang Chu
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ting Hsieh
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sheng-Lung Huang
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan. .,Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| | - Wei-Li Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan. .,Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan. .,Advanced Ocular Surface and Corneal Nerve Regeneration Center, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
5
|
Adams W, Espicha T, Estipona J. Getting Your Neutrophil: Neutrophil Transepithelial Migration in the Lung. Infect Immun 2021; 89:IAI.00659-20. [PMID: 33526562 DOI: 10.1128/iai.00659-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neutrophil transepithelial migration is a fundamental process that facilitates the rapid trafficking of neutrophils to inflammatory foci and occurs across a diverse range of tissues. For decades there has been widespread interest in understanding the mechanisms that drive this migratory process in response to different pathogens and organ systems. This has led to the successful integration of key findings on neutrophil transepithelial migration from the intestines, lungs, liver, genitourinary tract, and other tissues into a single, cohesive model. However, recent studies have identified organ specific differences in neutrophil transepithelial migration. These findings support a model where the tissue in concert with the pro-inflammatory stimuli dictate a unique collection of signals that drive neutrophil trafficking. This review focuses on the mechanisms that drive neutrophil transepithelial migration in response to microbial infection of a single organ, the lung. Herein we provide a detailed analysis of the adhesion molecules and chemoattractants that contribute to the recruitment of neutrophil into the airways. We also highlight important advances in experimental models for studying neutrophil transepithelial migration in the lung over the last decade.
Collapse
Affiliation(s)
- Walter Adams
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192 USA
| | - Taylor Espicha
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192 USA
| | - Janine Estipona
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192 USA
| |
Collapse
|
6
|
Heydarian M, Schweinlin M, Schwarz T, Rawal R, Walles H, Metzger M, Rudel T, Kozjak-Pavlovic V. Triple co-culture and perfusion bioreactor for studying the interaction between Neisseria gonorrhoeae and neutrophils: A novel 3D tissue model for bacterial infection and immunity. J Tissue Eng 2021; 12:2041731420988802. [PMID: 33796248 PMCID: PMC7970704 DOI: 10.1177/2041731420988802] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/31/2020] [Indexed: 01/13/2023] Open
Abstract
Gonorrhea, a sexually transmitted disease caused by the bacteria Neisseria gonorrhoeae, is characterized by a large number of neutrophils recruited to the site of infection. Therefore, proper modeling of the N. gonorrhoeae interaction with neutrophils is very important for investigating and understanding the mechanisms that gonococci use to evade the immune response. We have used a combination of a unique human 3D tissue model together with a dynamic culture system to study neutrophil transmigration to the site of N. gonorrhoeae infection. The triple co-culture model consisted of epithelial cells (T84 human colorectal carcinoma cells), human primary dermal fibroblasts, and human umbilical vein endothelial cells on a biological scaffold (SIS). After the infection of the tissue model with N. gonorrhoeae, we introduced primary human neutrophils to the endothelial side of the model using a perfusion-based bioreactor system. By this approach, we were able to demonstrate the activation and transmigration of neutrophils across the 3D tissue model and their recruitment to the site of infection. In summary, the triple co-culture model supplemented by neutrophils represents a promising tool for investigating N. gonorrhoeae and other bacterial infections and interactions with the innate immunity cells under conditions closely resembling the native tissue environment.
Collapse
Affiliation(s)
| | - Matthias Schweinlin
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Thomas Schwarz
- Translational Centre Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research (ISC), Würzburg, Bayern, Germany
| | - Ravisha Rawal
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Heike Walles
- Research Center "Dynamic Systems: Systems Engineering" (CDS), Otto von-Guericke-University, Magdeburg, Sachsen-Anhalt, Germany
| | - Marco Metzger
- Translational Centre Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research (ISC), Würzburg, Bayern, Germany
| | - Thomas Rudel
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
7
|
McIntosh JC, Yang L, Wang T, Zhou H, Lockett MR, Oldenburg AL. Tracking the invasion of breast cancer cells in paper-based 3D cultures by OCT motility analysis. BIOMEDICAL OPTICS EXPRESS 2020; 11:3181-3194. [PMID: 32637249 PMCID: PMC7316000 DOI: 10.1364/boe.382911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 05/13/2023]
Abstract
3D paper-based cultures (PBCs) are easy-to-use and provide a biologically representative microenvironment. By stacking a sheet of cell-laden paper below sheets containing cell-free hydrogel, we form an assay capable of segmenting cells by the distance they invaded from the original cell-seeded layer. These invasion assays are limited to end-point analyses with fluorescence-based readouts due to the highly scattering nature of the paper scaffolds. Here we demonstrate that optical coherence tomography (OCT) can distinguish living cells from the surrounding extracellular matrix (ECM) or paper fibers based upon their intracellular motility amplitude (M). M is computed from fluctuation statistics of the sample, rejects shot noise, and is invariant to OCT signal attenuation. Using OCT motility analysis, we tracked the invasion of breast cancer cells over a 3-day period in 4-layer PBCs (160-300 µm thick) in situ. The cell population distributions determined with OCT are highly correlated with those obtained by fluorescence imaging, with an intraclass correlation coefficient (ICC) of 0.903. The ability of OCT motility analysis to visualize live cells and quantify cell distributions in PBC assays in situ and longitudinally provides a novel means for understanding how chemical gradients within the tumor microenvironment affect cellular invasion.
Collapse
Affiliation(s)
- Julie C. McIntosh
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
- Co-first authors contributed equally and are listed alphabetically
| | - Lin Yang
- Department of Physics and Astronomy, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
- Co-first authors contributed equally and are listed alphabetically
| | - Ting Wang
- Department of Biostatistics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haibo Zhou
- Department of Biostatistics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew R. Lockett
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Amy L. Oldenburg
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Aspergillus fumigatus Cell Wall Promotes Apical Airway Epithelial Recruitment of Human Neutrophils. Infect Immun 2020; 88:IAI.00813-19. [PMID: 31767773 DOI: 10.1128/iai.00813-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
Aspergillus fumigatus is a ubiquitous fungal pathogen capable of causing multiple pulmonary diseases, including invasive aspergillosis, chronic necrotizing aspergillosis, fungal colonization, and allergic bronchopulmonary aspergillosis. Intact mucociliary barrier function and early airway neutrophil responses are critical for clearing fungal conidia from the host airways prior to establishing disease. Following inhalation, Aspergillus conidia deposit in the small airways, where they are likely to make their initial host encounter with epithelial cells. Challenges in airway infection models have limited the ability to explore early steps in the interactions between A. fumigatus and the human airway epithelium. Here, we use inverted air-liquid interface cultures to demonstrate that the human airway epithelium responds to apical stimulation by A. fumigatus to promote the transepithelial migration of neutrophils from the basolateral membrane surface to the apical airway surface. Promoting epithelial transmigration with Aspergillus required prolonged exposure with live resting conidia. Swollen conidia did not expedite epithelial transmigration. Using A. fumigatus strains containing deletions of genes for cell wall components, we identified that deletion of the hydrophobic rodlet layer or dihydroxynaphthalene-melanin in the conidial cell wall amplified the epithelial transmigration of neutrophils, using primary human airway epithelium. Ultimately, we show that an as-yet-unidentified nonsecreted cell wall protein is required to promote the early epithelial transmigration of human neutrophils into the airspace in response to A. fumigatus Together, these data provide critical insight into the initial epithelial host response to Aspergillus.
Collapse
|
9
|
Leung HM, Birket SE, Hyun C, Ford TN, Cui D, Solomon GM, Shei RJ, Adewale AT, Lenzie AR, Fernandez-Petty CM, Zheng H, Palermo JH, Cho DY, Woodworth BA, Yonker LM, Hurley BP, Rowe SM, Tearney GJ. Intranasal micro-optical coherence tomography imaging for cystic fibrosis studies. Sci Transl Med 2019; 11:eaav3505. [PMID: 31391319 PMCID: PMC6886258 DOI: 10.1126/scitranslmed.aav3505] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 07/09/2019] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Although impairment of mucociliary clearance contributes to severe morbidity and mortality in people with CF, a clear understanding of the pathophysiology is lacking. This is, in part, due to the absence of clinical imaging techniques capable of capturing CFTR-dependent functional metrics at the cellular level. Here, we report the clinical translation of a 1-μm resolution micro-optical coherence tomography (μOCT) technology to quantitatively characterize the functional microanatomy of human upper airways. Using a minimally invasive intranasal imaging approach, we performed a clinical study on age- and sex-matched CF and control groups. We observed delayed mucociliary transport rate at the cellular level, depletion of periciliary liquid layer, and prevalent loss of ciliation in subjects with CF. Distinctive morphological differences in mucus and various forms of epithelial injury were also revealed by μOCT imaging and had prominent effects on the mucociliary transport apparatus. Elevated mucus reflectance intensity in CF, a proxy for viscosity in situ, had a dominant effect. These results demonstrate the utility of μOCT to determine epithelial function and monitor disease status of CF airways on a per-patient basis, with applicability for other diseases of mucus clearance.
Collapse
Affiliation(s)
- Hui Min Leung
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02114, USA
| | - Susan E Birket
- Gregory Fleming James Cystic Fibrosis Research Center, Birmingham, AL 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chulho Hyun
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Timothy N Ford
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dongyao Cui
- Nanyang Technological University, Singapore 639798, Singapore
| | - George M Solomon
- Gregory Fleming James Cystic Fibrosis Research Center, Birmingham, AL 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ren-Jay Shei
- Gregory Fleming James Cystic Fibrosis Research Center, Birmingham, AL 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Andrew R Lenzie
- Gregory Fleming James Cystic Fibrosis Research Center, Birmingham, AL 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Courtney M Fernandez-Petty
- Gregory Fleming James Cystic Fibrosis Research Center, Birmingham, AL 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hui Zheng
- Harvard Medical School, Boston, MA 02114, USA
- Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Justin H Palermo
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Do-Yeon Cho
- Gregory Fleming James Cystic Fibrosis Research Center, Birmingham, AL 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bradford A Woodworth
- Gregory Fleming James Cystic Fibrosis Research Center, Birmingham, AL 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lael M Yonker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bryan P Hurley
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, Birmingham, AL 35294, USA.
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA.
- Harvard Medical School, Boston, MA 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
10
|
Yonker LM, Pazos MA, Lanter BB, Mou H, Chu KK, Eaton AD, Bonventre JV, Tearney GJ, Rajagopal J, Hurley BP. Neutrophil-Derived Cytosolic PLA2α Contributes to Bacterial-Induced Neutrophil Transepithelial Migration. THE JOURNAL OF IMMUNOLOGY 2017; 199:2873-2884. [PMID: 28887431 DOI: 10.4049/jimmunol.1700539] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 08/17/2017] [Indexed: 11/19/2022]
Abstract
Eicosanoids are a group of bioactive lipids that are shown to be important mediators of neutrophilic inflammation; selective targeting of their function confers therapeutic benefit in a number of diseases. Neutrophilic airway diseases, including cystic fibrosis, are characterized by excessive neutrophil infiltration into the airspace. Understanding the role of eicosanoids in this process may reveal novel therapeutic targets. The eicosanoid hepoxilin A3 is a pathogen-elicited epithelial-produced neutrophil chemoattractant that directs transepithelial migration in response to infection. Following hepoxilin A3-driven transepithelial migration, neutrophil chemotaxis is amplified through neutrophil production of a second eicosanoid, leukotriene B4 (LTB4). The rate-limiting step of eicosanoid generation is the liberation of arachidonic acid by phospholipase A2, and the cytosolic phospholipase A2 (cPLA2)α isoform has been specifically shown to direct LTB4 synthesis in certain contexts. Whether cPLA2α is directly responsible for neutrophil synthesis of LTB4 in the context of Pseudomonas aeruginosa-induced neutrophil transepithelial migration has not been explored. Human and mouse neutrophil-epithelial cocultures were used to evaluate the role of neutrophil-derived cPLA2α in infection-induced transepithelial signaling by pharmacological and genetic approaches. Primary human airway basal stem cell-derived epithelial cultures and micro-optical coherence tomography, a new imaging modality that captures two- and three-dimensional real-time dynamics of neutrophil transepithelial migration, were applied. Evidence from these studies suggests that cPLA2α expressed by neutrophils, but not epithelial cells, plays a significant role in infection-induced neutrophil transepithelial migration by mediating LTB4 synthesis during migration, which serves to amplify the magnitude of neutrophil recruitment in response to epithelial infection.
Collapse
Affiliation(s)
- Lael M Yonker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Michael A Pazos
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Bernard B Lanter
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Hongmei Mou
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Kengyeh K Chu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114.,Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Alexander D Eaton
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114
| | - Joseph V Bonventre
- Department of Medicine, Harvard Medical School, Boston, MA 02115.,Renal Division, Brigham and Women's Hospital, Boston, MA 02115; and.,Biomedical Engineering Division, Brigham and Women's Hospital, Boston, MA 02115
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114.,Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114.,Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Bryan P Hurley
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114; .,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
11
|
Development of a Primary Human Co-Culture Model of Inflamed Airway Mucosa. Sci Rep 2017; 7:8182. [PMID: 28811631 PMCID: PMC5557980 DOI: 10.1038/s41598-017-08567-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/11/2017] [Indexed: 01/05/2023] Open
Abstract
Neutrophil breach of the mucosal surface is a common pathological consequence of infection. We present an advanced co-culture model to explore neutrophil transepithelial migration utilizing airway mucosal barriers differentiated from primary human airway basal cells and examined by advanced imaging. Human airway basal cells were differentiated and cultured at air-liquid interface (ALI) on the underside of 3 µm pore-sized transwells, compatible with the study of transmigrating neutrophils. Inverted ALIs exhibit beating cilia and mucus production, consistent with conventional ALIs, as visualized by micro-optical coherence tomography (µOCT). µOCT is a recently developed imaging modality with the capacity for real time two- and three-dimensional analysis of cellular events in marked detail, including neutrophil transmigratory dynamics. Further, the newly devised and imaged primary co-culture model recapitulates key molecular mechanisms that underlie bacteria-induced neutrophil transepithelial migration previously characterized using cell line-based models. Neutrophils respond to imposed chemotactic gradients, and migrate in response to Pseudomonas aeruginosa infection of primary ALI barriers through a hepoxilin A3-directed mechanism. This primary cell-based co-culture system combined with µOCT imaging offers significant opportunity to probe, in great detail, micro-anatomical and mechanistic features of bacteria-induced neutrophil transepithelial migration and other important immunological and physiological processes at the mucosal surface.
Collapse
|