1
|
Asiedu K, Krishnan AV, Kwai N, Poynten A, Markoulli M. Conjunctival microcirculation in ocular and systemic microvascular disease. Clin Exp Optom 2023; 106:694-702. [PMID: 36641840 DOI: 10.1080/08164622.2022.2151872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 01/16/2023] Open
Abstract
The conjunctival microcirculation is an accessible complex network of micro vessels whose quantitative assessment can reveal microvascular haemodynamic properties. Currently, algorithms for the measurement of conjunctival haemodynamics use either manual or semi-automated systems, which may provide insight into overall conjunctival health, as well as in ocular and systemic disease. These algorithms include functional slit-lamp biomicroscopy, laser doppler flowmetry, optical coherence tomography angiography, orthogonal polarized spectral imaging, computer-assisted intravitral microscopy, diffuse reflectance spectroscopy and corneal confocal microscopy. Furthermore, several studies have demonstrated a relationship between conjunctival microcirculatory haemodynamics and many diseases such as dry eye disease, Alzheimer's disease, diabetes, hypertension, sepsis, coronary microvascular disease, and sickle cell anaemia. This review aims to describe conjunctival microcirculation, its characteristics, and techniques for its measurement, as well as the association between conjunctival microcirculation and microvascular abnormalities in disease states.
Collapse
Affiliation(s)
- Kofi Asiedu
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Arun V Krishnan
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
- Department of Neurology, Prince of Wales Hospital, Sydney, Australia
| | - Natalie Kwai
- School of Medical Sciences, University of sydney, Sydney, Australia
| | - Ann Poynten
- Department of Endocrinology, Prince of Wales Hospital, Sydney, Australia
| | - Maria Markoulli
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
2
|
Markoulli M, Ahmad S, Arcot J, Arita R, Benitez-Del-Castillo J, Caffery B, Downie LE, Edwards K, Flanagan J, Labetoulle M, Misra SL, Mrugacz M, Singh S, Sheppard J, Vehof J, Versura P, Willcox MDP, Ziemanski J, Wolffsohn JS. TFOS Lifestyle: Impact of nutrition on the ocular surface. Ocul Surf 2023; 29:226-271. [PMID: 37100346 DOI: 10.1016/j.jtos.2023.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023]
Abstract
Nutrients, required by human bodies to perform life-sustaining functions, are obtained from the diet. They are broadly classified into macronutrients (carbohydrates, lipids, and proteins), micronutrients (vitamins and minerals) and water. All nutrients serve as a source of energy, provide structural support to the body and/or regulate the chemical processes of the body. Food and drinks also consist of non-nutrients that may be beneficial (e.g., antioxidants) or harmful (e.g., dyes or preservatives added to processed foods) to the body and the ocular surface. There is also a complex interplay between systemic disorders and an individual's nutritional status. Changes in the gut microbiome may lead to alterations at the ocular surface. Poor nutrition may exacerbate select systemic conditions. Similarly, certain systemic conditions may affect the uptake, processing and distribution of nutrients by the body. These disorders may lead to deficiencies in micro- and macro-nutrients that are important in maintaining ocular surface health. Medications used to treat these conditions may also cause ocular surface changes. The prevalence of nutrition-related chronic diseases is climbing worldwide. This report sought to review the evidence supporting the impact of nutrition on the ocular surface, either directly or as a consequence of the chronic diseases that result. To address a key question, a systematic review investigated the effects of intentional food restriction on ocular surface health; of the 25 included studies, most investigated Ramadan fasting (56%), followed by bariatric surgery (16%), anorexia nervosa (16%), but none were judged to be of high quality, with no randomized-controlled trials.
Collapse
Affiliation(s)
- Maria Markoulli
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia.
| | - Sumayya Ahmad
- Icahn School of Medicine of Mt. Sinai, New York, NY, USA
| | - Jayashree Arcot
- Food and Health, School of Chemical Engineering, UNSW Sydney, Australia
| | - Reiko Arita
- Department of Ophthalmology, Itoh Clinic, Saitama, Japan
| | | | | | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Katie Edwards
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
| | - Judith Flanagan
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia; Vision CRC, USA
| | - Marc Labetoulle
- Ophthalmology Department, Hospital Bicêtre, APHP, Paris-Saclay University, Le Kremlin-Bicêtre, France; IDMIT (CEA-Paris Saclay-Inserm U1184), Fontenay-aux-Roses, France
| | - Stuti L Misra
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand
| | | | - Sumeer Singh
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - John Sheppard
- Virginia Eye Consultants, Norfolk, VA, USA; Eastern Virginia Medical School, Norfolk, VA, USA
| | - Jelle Vehof
- Departments of Ophthalmology and Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Section of Ophthalmology, School of Life Course Sciences, King's College London, London, UK; Department of Ophthalmology, Vestfold Hospital Trust, Tønsberg, Norway
| | - Piera Versura
- Cornea and Ocular Surface Analysis - Translation Research Laboratory, Ophthalmology Unit, DIMEC Alma Mater Studiorum Università di Bologna, Italy; IRCCS AOU di Bologna Policlinico di Sant'Orsola, Bologna, Italy
| | - Mark D P Willcox
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia
| | - Jillian Ziemanski
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James S Wolffsohn
- College of Health & Life Sciences, School of Optometry, Aston University, Birmingham, UK
| |
Collapse
|
3
|
Koutsiaris AG, Riri K, Boutlas S, Daniil Z, Tsironi EE. A normative blood velocity model in the exchange microvessels for discriminating health from disease: Healthy controls versus COVID-19 cases. Clin Hemorheol Microcirc 2023:CH231780. [PMID: 37182862 DOI: 10.3233/ch-231780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A usual practice in medicine is to search for "biomarkers" which are measurable quantities of a normal or abnormal biological process. Biomarkers can be biochemical or physical quantities of the body and although commonly used statistically in clinical settings, it is not usual for them to be connected to basic physiological models or equations. In this work, a normative blood velocity model framework for the exchange microvessels was introduced, combining the velocity-diffusion (V-J) equation and statistics, in order to define the normative range (NR) and normative area (NA) diagrams for discriminating normal (normemic) from abnormal (hyperemic or underemic) states, taking into account the microvessel diameter D. This is different from the usual statistical processing since there is a basis on the well-known physiological principle of the flow diffusion equation. The discriminative power of the average axial velocity model was successfully tested using a group of healthy individuals (Control Group) and a group of post COVID-19 patients (COVID-19 Group).
Collapse
Affiliation(s)
- Aristotle G Koutsiaris
- Medical Informatics and Biomedical Imaging (MIBI) Laboratory, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis Campus, Larissa, Greece
| | - Konstantina Riri
- Department of Ophthalmology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Stylianos Boutlas
- Department of Respiratory Medicine, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Zoe Daniil
- Department of Respiratory Medicine, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Evangelia E Tsironi
- Department of Ophthalmology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
4
|
Mailey JA, Moore JS, Brennan PF, Jing M, Awuah A, McLaughlin JAD, Nesbit MA, Moore TCB, Spence MS. Assessment of hemodynamic indices of conjunctival microvascular function in patients with coronary microvascular dysfunction. Microvasc Res 2023; 147:104480. [PMID: 36690270 DOI: 10.1016/j.mvr.2023.104480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Coronary microvascular dysfunction (CMD) is a cause of ischaemia with non-obstructive coronary arteries (INOCA). It is notoriously underdiagnosed due to the need for invasive microvascular function testing. We hypothesized that systemic microvascular dysfunction could be demonstrated non-invasively in the microcirculation of the bulbar conjunctiva in patients with CMD. METHODS Patients undergoing coronary angiography for the investigation of chest pain or dyspnoea, with physiologically insignificant epicardial disease (fractional flow reserve ≥0.80) were recruited. All patients underwent invasive coronary microvascular function testing. We compared a cohort of patients with evidence of CMD (IMR ≥25 or CFR <2.0); to a group of controls (IMR <25 and CFR ≥2.0). Conjunctival imaging was performed using a previously validated combination of a smartphone and slit-lamp biomicroscope. This technique allows measurement of vessel diameter and other indices of microvascular function by tracking erythrocyte motion. RESULTS A total of 111 patients were included (43 CMD and 68 controls). There were no differences in baseline demographics, co-morbidities or epicardial coronary disease severity. The mean number of vessel segments analysed per patient was 21.0 ± 12.8 (3.2 ± 3.5 arterioles and 14.8 ± 10.8 venules). In the CMD cohort, significant reductions were observed in axial/cross-sectional velocity, blood flow, wall shear rate and stress. CONCLUSION The changes in microvascular function linked to CMD can be observed non-invasively in the bulbar conjunctiva. Conjunctival vascular imaging may have utility as a non-invasive tool to both diagnose CMD and augment conventional cardiovascular risk assessment.
Collapse
Affiliation(s)
- Jonathan A Mailey
- Department of Cardiology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, United Kingdom; Biomedical Sciences Research Institute, Ulster University, Coleraine, United Kingdom.
| | - Julie S Moore
- Biomedical Sciences Research Institute, Ulster University, Coleraine, United Kingdom; Integrated Diagnostic Laboratory, Northland House, Ulster University, Belfast, United Kingdom
| | - Paul F Brennan
- Department of Cardiology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Min Jing
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Jordanstown, United Kingdom
| | - Agnes Awuah
- Biomedical Sciences Research Institute, Ulster University, Coleraine, United Kingdom; Integrated Diagnostic Laboratory, Northland House, Ulster University, Belfast, United Kingdom
| | - James A D McLaughlin
- Integrated Diagnostic Laboratory, Northland House, Ulster University, Belfast, United Kingdom; Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Jordanstown, United Kingdom
| | - M Andrew Nesbit
- Biomedical Sciences Research Institute, Ulster University, Coleraine, United Kingdom; Integrated Diagnostic Laboratory, Northland House, Ulster University, Belfast, United Kingdom
| | - Tara C B Moore
- Biomedical Sciences Research Institute, Ulster University, Coleraine, United Kingdom; Integrated Diagnostic Laboratory, Northland House, Ulster University, Belfast, United Kingdom
| | - Mark S Spence
- Department of Cardiology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, United Kingdom; Integrated Diagnostic Laboratory, Northland House, Ulster University, Belfast, United Kingdom
| |
Collapse
|
5
|
Assessment of indices of conjunctival microvascular function in patients with and without obstructive coronary artery disease. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2023; 50:26-33. [PMID: 36707373 DOI: 10.1016/j.carrev.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Atherosclerotic heart disease often remains asymptomatic until presentation with a major adverse cardiovascular event. Primary preventive therapies improve outcomes, but conventional screening often misattributes risk. Vascular imaging can be utilised to detect atherosclerosis, but often involves ionising radiation. The conjunctiva is a readily accessible vascular network allowing non-invasive hemodynamic evaluation. AIM To compare conjunctival microcirculatory function in patients with and without obstructive coronary artery disease. METHODS We compared the conjunctival microcirculation of myocardial infarction patients (MI-cohort) to controls with no obstructive coronary artery disease (NO-CAD cohort). Conjunctival imaging was performed using a smartphone and slit-lamp biomicroscope combination. Microvascular indices of axial (Va) and cross-sectional (Vcs) velocity; blood flow rate (Q); and wall shear rate (WSR) were compared in all conjunctival vessels between 5 and 45 μm in diameter. RESULTS A total of 127 patients were recruited (66 MI vs 61 NO-CAD) and 3602 conjunctival vessels analysed (2414 MI vs 1188 NO-CAD). Mean Va, Vcs and Q were significantly lower in the MI vs NO-CAD cohort (Va 0.50 ± 0.17 mm/s vs 0.55 ± 0.15 mm/s, p < 0.001; Vcs 0.35 ± 0.12 mm/s vs 0.38 ± 0.10 mm/s, p < 0.001; Q 154 ± 116 pl/s vs 198 ± 130 pl/s, p < 0.001). To correct for differences in mean vessel diameter, WSR was compared in 10-36 μm vessels (3268/3602 vessels) and was lower in the MI-cohort (134 ± 64 s-1 vs 140 ± 63 s-1, p = 0.002). CONCLUSIONS Conjunctival microcirculatory alterations can be observed in patients with obstructive coronary artery disease. The conjunctival microvasculature merits further evaluation in cardiovascular risk screening.
Collapse
|
6
|
Koutsiaris AG, Riri K, Boutlas S, Panagiotou TN, Kotoula M, Daniil Z, Tsironi EE. COVID-19 hemodynamic and thrombotic effect on the eye microcirculation after hospitalization: A quantitative case-control study. Clin Hemorheol Microcirc 2022; 82:379-390. [PMID: 35912735 DOI: 10.3233/ch-221554] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND & OBJECTIVE To quantify the hemodynamic and thrombotic effect of COVID-19 on the eye microcirculation of patients with thromboprophylaxis, shortly after hospital discharge. METHODS This case-control study included 17 COVID-19 survivors (named "COVID-19 Group") and 17 healthy volunteers (named "Control Group"). Axial blood velocity (Vax) and percentage of occluded vessels (POV) were quantified by Conjunctival Video Capillaroscopy (CVC). Microvessels were identified and classified as "capillaries" (CAP), "postcapillary venules of size 1" (PC1), and "postcapillary venules of size 2" (PC2). RESULTS The COVID-19 Group did not differ significantly in basic demographics from the Control Group. In the COVID-19 Group, there was a statistically significant (p < 0.001) reduction of Vax (39%, 49% and 47%, for CAP, PC1, and PC2, respectively) in comparison to the Control Group and a sizeable (p < 0.001) increase of POV (600%) in comparison to the Control Group. CONCLUSIONS COVID-19 not only reduces significantly axial blood velocity in the capillaries and postcapillary venules of the eye but has also a devastating effect on microthrombosis (POV) despite thromboprophylaxis treatment. This gives a possible explanation for long COVID and a hint about the existence of a possibly unknown coagulation factor.
Collapse
Affiliation(s)
- Aristotle G Koutsiaris
- Medical Informatics Laboratory, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece
| | - Konstantina Riri
- Department of Ophthalmology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Stylianos Boutlas
- Department of Respiratory Medicine, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Thomas N Panagiotou
- Department of Ophthalmology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Maria Kotoula
- Department of Ophthalmology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Zoe Daniil
- Department of Respiratory Medicine, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Evangelia E Tsironi
- Department of Ophthalmology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
7
|
Koutsiaris AG, Batis V, Liakopoulou G, Tachmitzi SV, Detorakis ET, Tsironi EE. Optical Coherence Tomography Angiography (OCTA) of the eye: A review on basic principles, advantages, disadvantages and device specifications. Clin Hemorheol Microcirc 2022; 83:247-271. [PMID: 36502308 DOI: 10.3233/ch-221634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Optical Coherence Tomography Angiography (OCTA) is a relatively new imaging technique in ophthalmology for the visualization of the retinal microcirculation and other tissues of the human eye. This review paper aims to describe the basic definitions and principles of OCT and OCTA in the most straightforward possible language without complex mathematical and engineering analysis. This is done to help health professionals of various disciplines improve their understanding of OCTA and design further clinical research more efficiently. First, the basic technical principles of OCT and OCTA and related terminology are described. Then, a list of OCTA advantages and disadvantages, with a special reference to blood flow quantification limitations. Finally, an updated list of the basic hardware and software specifications of some of the commercially available OCTA devices is presented.
Collapse
Affiliation(s)
- Aristotle G. Koutsiaris
- Medical Informatics Laboratory, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece
| | - Vasilios Batis
- Jules Gonin Eye Hospital Lausanne, Switzerland
- Department of Ophthalmology, University Hospital of Heraklion, Crete, Greece
| | - Georgia Liakopoulou
- Medical Informatics Laboratory, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece
| | | | | | - Evangelia E. Tsironi
- Department of Ophthalmology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
8
|
Eye Sign is an Alternative for Evaluation of the Microcirculation in Patients with Systemic Sclerosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1034535. [PMID: 36387360 PMCID: PMC9652081 DOI: 10.1155/2022/1034535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/06/2022]
Abstract
Objectives To investigate consistency between eye sign and nailfold video capillaroscopy (NVC) in systemic sclerosis (SSc) patients and to evaluate eye sign with various parameters of disease and potential pulmonary involvement. Methods A total of 60 SSc patients and 20 healthy individuals were enrolled. 20 SSc patients were complicated with pulmonary arterial hypertension (PAH); 20 SSc patients with interstitial lung diseases (ILD); 20 SSc patients without pulmonary involvement. All subjects were assessed using the methods of NVC and eye sign. Skin involvement was evaluated by modified Rodnan skin score (mRSS) and disease activity according to Medsger's severity score (MSS). Clinical manifestations and the presence of autoantibodies were carefully recorded. Any correlations between were evaluated with the Spearman correlation coefficient test. Results According to the morphological changes revealed by NVC, 3 types of NVC patterns have been characterized (early pattern, active pattern, and late pattern). Eye sign showed distinguishing morphologic changes in three patterns of NVC and pulmonary involvements (PAH vs ILD) in SSc. A positive linear correlation was found between scores of eye sign and NVC in all patients with SSc (r = 0.629, P=0.001). A positive correlation of eye sign was found in all SSc patients with mRSS (r = 0.748, P=0.045) and MSS (r = 0.636, P=0.001). Conclusions The study demonstrates that eye sign had a high consistency with NVC for the evaluation of the microcirculation in SSc patients and exhibited specific patterns in the early, active, and late phases of SSc. Eye sign can be used as a reliable method to classify and monitor SSc patients and replace the measurement of NVC.
Collapse
|
9
|
Progress of Bulbar Conjunctival Microcirculation Alterations in the Diagnosis of Ocular Diseases. DISEASE MARKERS 2022; 2022:4046809. [PMID: 36072898 PMCID: PMC9441399 DOI: 10.1155/2022/4046809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022]
Abstract
Bulbar conjunctival microcirculation is a microvascular system distributed in the translucent bulbar conjunctiva near the corneal limbus. Multiple ocular diseases lead to bulbar conjunctival microcirculation alterations, which means that bulbar conjunctival microcirculation alterations would be potential screening and diagnostic indicators for these ocular diseases. In recent years, with the emergence and application of a variety of noninvasive observation devices for bulbar conjunctiva microcirculation and new image processing technologies, studies that explored the potential of bulbar conjunctival microcirculation alterations in the diagnosis of ocular diseases have been emerging. However, the potential of bulbar conjunctival microcirculation alterations as indicators for ocular diseases has not been exploited to full advantage. The observation devices, image processing methods, and algorithms are not unified. And large-scale research is needed to concrete bulbar conjunctival microcirculation alterations as indicators for ocular diseases. In this paper, we provide an update on the progress of bulbar conjunctival microcirculation alterations in the diagnosis of ocular diseases in recent five years (from January 2017 to March 2022). Relevant ocular diseases include contact lens wearing, dry eye, conjunctival malignant melanoma, conjunctival nevus, and diabetic retinopathy.
Collapse
|
10
|
Yun Z, Xu Q, Wang G, Jin S, Lin G, Feng Q, Yuan J. EVA: Fully automatic hemodynamics assessment system for the bulbar conjunctival microvascular network. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 216:106631. [PMID: 35123347 DOI: 10.1016/j.cmpb.2022.106631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Conjunctival microcirculation has been used to quantitatively assess microvascular changes due to systemic disorders. The space between red blood cell clusters in conjunctival microvessels is essential for assessing hemodynamics. However, it causes discontinuities in vessel image segmentation and increases the difficulty of automatically measuring blood velocity. In this study, we developed an EVA system based on deep learning to maintain vessel segmentation continuity and automatically measure blood velocity. METHODS The EVA system sequentially performs image registration, vessel segmentation, diameter measurement, and blood velocity measurement on conjunctival images. A U-Net model optimized with a connectivity-preserving loss function was used to solve the problem of discontinuities in vessel segmentation. Then, an automatic measurement algorithm based on line segment detection was proposed to obtain accurate blood velocity. Finally, the EVA system assessed hemodynamic parameters based on the measured blood velocity in each vessel segment. RESULTS The EVA system was validated for 23 videos of conjunctival microcirculation captured using functional slit-lamp microscopy. The U-Net model produced the longest average vessel segment length, 158.03 ± 181.87 µm, followed by the adaptive threshold method and Frangi filtering, which produced lengths of 120.05 ± 151.47 µm and 99.94 ± 138.12 µm, respectively. The proposed method and one based on cross-correlation were validated to measure blood velocity for a dataset consisting of 30 vessel segments. Bland-Altman analysis showed that compared with the cross-correlation method (bias: 0.36, SD: 0.32), the results of the proposed method were more consistent with a manual measurement-based gold standard (bias: -0.04, SD: 0.14). CONCLUSIONS The proposed EVA system provides an automatic and reliable solution for quantitative assessment of hemodynamics in conjunctival microvascular images, and potentially can be applied to hypoglossal microcirculation images.
Collapse
Affiliation(s)
- Zhaoqiang Yun
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Qing Xu
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Gengyuan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shuang Jin
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Guoye Lin
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Qianjin Feng
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China.
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
11
|
Koutsiaris AG. Comments on the published article: “A meta-analysis of variability in conjunctival microvascular hemorheology metrics”, Patel et al. (2022). Microvasc Res 2022; 142:104369. [DOI: 10.1016/j.mvr.2022.104369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
12
|
A meta-analysis of variability in conjunctival microvascular hemorheology metrics. Microvasc Res 2022; 142:104340. [DOI: 10.1016/j.mvr.2022.104340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/28/2022]
|
13
|
Li X, Xia C, Li X, Wei S, Zhou S, Yu X, Gao J, Cao Y, Zhang H. Identifying diabetes from conjunctival images using a novel hierarchical multi-task network. Sci Rep 2022; 12:264. [PMID: 34997031 PMCID: PMC8742044 DOI: 10.1038/s41598-021-04006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 12/06/2021] [Indexed: 11/15/2022] Open
Abstract
Diabetes can cause microvessel impairment. However, these conjunctival pathological changes are not easily recognized, limiting their potential as independent diagnostic indicators. Therefore, we designed a deep learning model to explore the relationship between conjunctival features and diabetes, and to advance automated identification of diabetes through conjunctival images. Images were collected from patients with type 2 diabetes and healthy volunteers. A hierarchical multi-tasking network model (HMT-Net) was developed using conjunctival images, and the model was systematically evaluated and compared with other algorithms. The sensitivity, specificity, and accuracy of the HMT-Net model to identify diabetes were 78.70%, 69.08%, and 75.15%, respectively. The performance of the HMT-Net model was significantly better than that of ophthalmologists. The model allowed sensitive and rapid discrimination by assessment of conjunctival images and can be potentially useful for identifying diabetes.
Collapse
Affiliation(s)
- Xinyue Li
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, No.143, Yiman Street, Nangang District, Harbin City, 150001, Heilongjiang Province, China
- Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, 150001, China
- Eye Department, Shanghai Children 's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Chenjie Xia
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Room 230, Building 1, Yuquan Campus, 38 Zhe Da Road, Hangzhou, 310027, Zhejiang Province, China
| | - Xin Li
- School of Electrical Engineering and Computer Science, 2002 Digital Media Center, Louisiana State University, 340 E. Parker Blvd, Baton Rouge, LA, 70803, USA
| | - Shuangqing Wei
- School of Electrical Engineering and Computer Science, 2002 Digital Media Center, Louisiana State University, 340 E. Parker Blvd, Baton Rouge, LA, 70803, USA
| | - Sujun Zhou
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, No.143, Yiman Street, Nangang District, Harbin City, 150001, Heilongjiang Province, China
- Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, 150001, China
| | - Xuhui Yu
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, No.143, Yiman Street, Nangang District, Harbin City, 150001, Heilongjiang Province, China
- Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, 150001, China
| | - Jiayue Gao
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, No.143, Yiman Street, Nangang District, Harbin City, 150001, Heilongjiang Province, China
- Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, 150001, China
| | - Yanpeng Cao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Room 230, Building 1, Yuquan Campus, 38 Zhe Da Road, Hangzhou, 310027, Zhejiang Province, China.
| | - Hong Zhang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, No.143, Yiman Street, Nangang District, Harbin City, 150001, Heilongjiang Province, China.
- Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, 150001, China.
| |
Collapse
|
14
|
Jo HC, Jeong H, Lee J, Na KS, Kim DY. Quantification of Blood Flow Velocity in the Human Conjunctival Microvessels Using Deep Learning-Based Stabilization Algorithm. SENSORS 2021; 21:s21093224. [PMID: 34066590 PMCID: PMC8124391 DOI: 10.3390/s21093224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 11/27/2022]
Abstract
The quantification of blood flow velocity in the human conjunctiva is clinically essential for assessing microvascular hemodynamics. Since the conjunctival microvessel is imaged in several seconds, eye motion during image acquisition causes motion artifacts limiting the accuracy of image segmentation performance and measurement of the blood flow velocity. In this paper, we introduce a novel customized optical imaging system for human conjunctiva with deep learning-based segmentation and motion correction. The image segmentation process is performed by the Attention-UNet structure to achieve high-performance segmentation results in conjunctiva images with motion blur. Motion correction processes with two steps—registration and template matching—are used to correct for large displacements and fine movements. The image displacement values decrease to 4–7 μm during registration (first step) and less than 1 μm during template matching (second step). With the corrected images, the blood flow velocity is calculated for selected vessels considering temporal signal variances and vessel lengths. These methods for resolving motion artifacts contribute insights into studies quantifying the hemodynamics of the conjunctiva, as well as other tissues.
Collapse
Affiliation(s)
- Hang-Chan Jo
- Department of Electrical and Computer Engineering, Inha University, Incheon 22212, Korea; (H.-C.J.); (H.J.); (J.L.)
- Center for Sensor Systems, Inha University, Incheon 22212, Korea
| | - Hyeonwoo Jeong
- Department of Electrical and Computer Engineering, Inha University, Incheon 22212, Korea; (H.-C.J.); (H.J.); (J.L.)
| | - Junhyuk Lee
- Department of Electrical and Computer Engineering, Inha University, Incheon 22212, Korea; (H.-C.J.); (H.J.); (J.L.)
| | - Kyung-Sun Na
- Department of Ophthalmology & Visual Science, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 07345, Korea
- Correspondence: (K.-S.N.); (D.-Y.K.); Tel.: +82-02-3779-1520 (K.-S.N.); +82-32-860-7394 (D.-Y.K.)
| | - Dae-Yu Kim
- Department of Electrical and Computer Engineering, Inha University, Incheon 22212, Korea; (H.-C.J.); (H.J.); (J.L.)
- Center for Sensor Systems, Inha University, Incheon 22212, Korea
- Inha Research Institute for Aerospace Medicine, Inha University, Incheon 22212, Korea
- Correspondence: (K.-S.N.); (D.-Y.K.); Tel.: +82-02-3779-1520 (K.-S.N.); +82-32-860-7394 (D.-Y.K.)
| |
Collapse
|
15
|
Brennan PF, McNeil AJ, Jing M, Awuah A, Moore JS, Mailey J, Finlay DD, Blighe K, McLaughlin JAD, Nesbit MA, Trucco E, Moore TCB, Spence MS. Assessment of the conjunctival microcirculation for patients presenting with acute myocardial infarction compared to healthy controls. Sci Rep 2021; 11:7660. [PMID: 33828174 PMCID: PMC8027463 DOI: 10.1038/s41598-021-87315-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/23/2021] [Indexed: 11/25/2022] Open
Abstract
Microcirculatory dysfunction occurs early in cardiovascular disease (CVD) development. Acute myocardial infarction (MI) is a late consequence of CVD. The conjunctival microcirculation is readily-accessible for quantitative assessment and has not previously been studied in MI patients. We compared the conjunctival microcirculation of acute MI patients and age/sex-matched healthy controls to determine if there were differences in microcirculatory parameters. We acquired images using an iPhone 6s and slit-lamp biomicroscope. Parameters measured included diameter, axial velocity, wall shear rate and blood volume flow. Results are for all vessels as they were not sub-classified into arterioles or venules. The conjunctival microcirculation was assessed in 56 controls and 59 inpatients with a presenting diagnosis of MI. Mean vessel diameter for the controls was 21.41 ± 7.57 μm compared to 22.32 ± 7.66 μm for the MI patients (p < 0.001). Axial velocity for the controls was 0.53 ± 0.15 mm/s compared to 0.49 ± 0.17 mm/s for the MI patients (p < 0.001). Wall shear rate was higher for controls than MI patients (162 ± 93 s-1 vs 145 ± 88 s-1, p < 0.001). Blood volume flow did not differ significantly for the controls and MI patients (153 ± 124 pl/s vs 154 ± 125 pl/s, p = 0.84). This pilot iPhone and slit-lamp assessment of the conjunctival microcirculation found lower axial velocity and wall shear rate in patients with acute MI. Further study is required to correlate these findings further and assess long-term outcomes in this patient group with a severe CVD phenotype.
Collapse
Affiliation(s)
- Paul F Brennan
- Department of Cardiology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, UK.
- Biomedical Sciences Research Institute, Ulster University, Coleraine, UK.
| | - Andrew J McNeil
- Biomedical Sciences Research Institute, Ulster University, Coleraine, UK
| | - Min Jing
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Jordanstown, UK
| | - Agnes Awuah
- Biomedical Sciences Research Institute, Ulster University, Coleraine, UK
| | - Julie S Moore
- Biomedical Sciences Research Institute, Ulster University, Coleraine, UK
| | - Jonathan Mailey
- Department of Cardiology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, UK
| | - Dewar D Finlay
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Jordanstown, UK
| | - Kevin Blighe
- Biomedical Sciences Research Institute, Ulster University, Coleraine, UK
| | - James A D McLaughlin
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Jordanstown, UK
| | - M Andrew Nesbit
- Biomedical Sciences Research Institute, Ulster University, Coleraine, UK
| | - Emanuele Trucco
- VAMPIRE project, Computing (SSEN), University of Dundee, Dundee, UK
| | - Tara C B Moore
- Biomedical Sciences Research Institute, Ulster University, Coleraine, UK
| | - Mark S Spence
- Department of Cardiology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, UK
| |
Collapse
|
16
|
Assessment of the conjunctival microcirculation in adult patients with cyanotic congenital heart disease compared to healthy controls. Microvasc Res 2021; 136:104167. [PMID: 33838207 DOI: 10.1016/j.mvr.2021.104167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 11/23/2022]
Abstract
PURPOSE Congenital heart disease (CHD) is the most common live birth defect and a proportion of these patients have chronic hypoxia. Chronic hypoxia leads to secondary erythrocytosis resulting in microvascular dysfunction and increased thrombosis risk. The conjunctival microcirculation is easily accessible for imaging and quantitative assessment. It has not previously been studied in adult CHD patients with cyanosis (CCHD). METHODS We assessed the conjunctival microcirculation and compared CCHD patients and matched healthy controls to determine if there were differences in measured microcirculatory parameters. We acquired images using an iPhone 6s and slit-lamp biomicroscope. Parameters measured included diameter, axial velocity, wall shear rate and blood volume flow. The axial velocity was estimated by applying the 1D + T continuous wavelet transform (CWT). Results are for all vessels as they were not sub-classified into arterioles or venules. RESULTS 11 CCHD patients and 14 healthy controls were recruited to the study. CCHD patients were markedly more hypoxic compared to the healthy controls (84% vs 98%, p = 0.001). A total of 736 vessels (292 vs 444) were suitable for analysis. Mean microvessel diameter (D) did not significantly differ between the CCHD patients and controls (20.4 ± 2.7 μm vs 20.2 ± 2.6 μm, p = 0.86). Axial velocity (Va) was lower in the CCHD patients (0.47 ± 0.06 mm/s vs 0.53 ± 0.05 mm/s, p = 0.03). Blood volume flow (Q) was lower for CCHD patients (121 ± 30pl/s vs 145 ± 50pl/s, p = 0.65) with the greatest differences observed in vessels >22 μm diameter (216 ± 121pl/s vs 258 ± 154pl/s, p = 0.001). Wall shear rate (WSR) was significantly lower for the CCHD group (153 ± 27 s-1 vs 174 ± 22 s-1, p = 0.04). CONCLUSIONS This iPhone and slit-lamp combination assessment of conjunctival vessels found lower axial velocity, wall shear rate and in the largest vessel group, lower blood volume flow in chronically hypoxic patients with congenital heart disease. With further study this assessment method may have utility in the evaluation of patients with chronic hypoxia.
Collapse
|
17
|
Boroumand F, Shakeri MT, Banaee T, Pourreza H, Doosti H. An Analysis of the Areas Occupied by Vessels in the Ocular Surface of Diabetic Patients: An Application of a Nonparametric Tilted Additive Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3735. [PMID: 33918420 PMCID: PMC8038237 DOI: 10.3390/ijerph18073735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/19/2021] [Accepted: 03/28/2021] [Indexed: 11/17/2022]
Abstract
(1) Background: As diabetes melllitus (DM) can affect the microvasculature, this study evaluates different clinical parameters and the vascular density of ocular surface microvasculature in diabetic patients. (2) Methods: In this cross-sectional study, red-free conjunctival photographs of diabetic individuals aged 30-60 were taken under defined conditions and analyzed using a Radon transform-based algorithm for vascular segmentation. The Areas Occupied by Vessels (AOV) images of different diameters were calculated. To establish the sum of AOV of different sized vessels. We adopt a novel approach to investigate the association between clinical characteristics as the predictors and AOV as the outcome, that is Tilted Additive Model (TAM). We use a tilted nonparametric regression estimator to estimate the nonlinear effect of predictors on the outcome in the additive setting for the first time. (3) Results: The results show Age (p-value = 0.019) and Mean Arterial Pressure (MAP) have a significant linear effect on AOV (p-value = 0.034). We also find a nonlinear association between Body Mass Index (BMI), daily Urinary Protein Excretion (UPE), Hemoglobin A1C, and Blood Urea Nitrogen (BUN) with AOV. (4) Conclusions: As many predictors do not have a linear relationship with the outcome, we conclude that the TAM will help better elucidate the effect of the different predictors. The highest level of AOV can be seen at Hemoglobin A1C of 9% and AOV increases when the daily UPE exceeds 600 mg. These effects need to be considered in future studies of ocular surface vessels of diabetic patients.
Collapse
Affiliation(s)
- Farzaneh Boroumand
- Department of Mathematics and Statistics, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia;
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad 9137673119, Iran
| | - Mohammad Taghi Shakeri
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad 9137673119, Iran
| | - Touka Banaee
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Hamidreza Pourreza
- Department Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran;
| | - Hassan Doosti
- Department of Mathematics and Statistics, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia;
| |
Collapse
|
18
|
Conjunctival Vessels in Diabetes Using Functional Slit Lamp Biomicroscopy. Cornea 2020; 40:950-957. [PMID: 33332897 DOI: 10.1097/ico.0000000000002623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/12/2020] [Indexed: 01/22/2023]
Abstract
PURPOSE This study used functional slit lamp biomicroscopy (FSLB) to quantify conjunctival microvessel parameters in individuals with and without diabetes and examined whether these metrics could be used as surrogate markers of diabetes-related complications. METHODS A cross-sectional study of 98 controls (C), 13 individuals with diabetes without complications (D-C), and 21 with diabetes and related complications (D+C), which included retinopathy, nephropathy, neuropathy, and cardiovascular-, peripheral vascular-, and cerebrovascular diseases, was performed. Bulbar conjunctival metrics (venule diameter, length, axial velocity [Va], cross-sectional velocity [Vs], flow [Q], and branching complexity) were measured using FSLB (digital camera mounted on traditional slit lamp). RESULTS The mean age was 60 ± 11 years, and demographics were similar across the groups. Va and Vs significantly differed between groups. Va was 0.51 ± 0.17 mm/s, 0.62 ± 0.17 mm/s, and 0.45 ± 0.17 mm/s in the C, D-C, and D+C groups, respectively (P = 0.025). Similarly, Vs was 0.35 ± 01.12, 0.43 ± 0.13, and 0.32 ± 0.13 mm/s in the C, D-C, and D+C groups, respectively (P = 0.031). Black individuals had increased Va, Vs, and Q compared with White individuals (P < 0.05), but differences in velocities persisted after accounting for race. Among patients with diabetes, Va and Vs correlated with number of organ systems affected (Va: ρ = -0.42, P = 0.016; Vs: ρ = -0.41, P = 0.021). Va, Vs, and Q significantly (P ≤ 0.005) discriminated between diabetic patients with and without complications (area under the receiver operating curve for Va = 0.81, Vs = 0.79, Q = 0.81). CONCLUSIONS Bulbar conjunctival blood flow metrics measured by FSLB differed between controls, diabetic patients without complications, and diabetic patients with complications. FSLB is a quick, easily accessible, and noninvasive alternative that might estimate the burden of vascular complications in diabetes.
Collapse
|
19
|
Colombatti R, Andemariam B. Microvasculopathy and biomarkers in sickle cell disease: the promise of non-invasive real-time in vivo tools. Br J Haematol 2020; 190:309-310. [PMID: 32352154 DOI: 10.1111/bjh.16705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Raffaella Colombatti
- Clinic of Pediatric Hematology Oncology, Department of Woman's and Child's Health, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Biree Andemariam
- New England Sickle Cell Institute, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
20
|
Richdale K, Chao C, Hamilton M. Eye care providers' emerging roles in early detection of diabetes and management of diabetic changes to the ocular surface: a review. BMJ Open Diabetes Res Care 2020; 8:8/1/e001094. [PMID: 32299899 PMCID: PMC7199150 DOI: 10.1136/bmjdrc-2019-001094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022] Open
Abstract
US adults visit eye care providers more often than primary healthcare providers, placing these doctors in a prime position to help identify and manage patients with prediabetes and diabetes. Currently, diabetes is identified in eye clinics in an advanced stage, only after visible signs of diabetic retinopathy. Recent ophthalmic research has identified multiple subclinical and clinical changes that occur in the anterior segment of the eye with metabolic disease. The corneal epithelium exhibits increased defects and poor healing, including an increased risk of neurotrophic keratitis. Increased thickness and stiffness of the cornea artificially alters intraocular pressure. There is damage to the endothelial cells and changes to the bacterial species on the ocular surface, both of which can increase risk of complications with surgery. Decreased corneal sensitivity due to a loss of nerve density predispose patients with metabolic disease to further neurotrophic complications. Patients with diabetes have increased Meibomian gland dysfunction, blepharitis and reduced tear production, resulting in increased rates of dry eye disease and discomfort. Early detection of metabolic disease may allow eye care providers to be more proactive in recommending referral and intervention in order to reduce the risk of blindness and other diabetes-related morbidity. Continued research is needed to better understand the time course of changes to the anterior segment and what can be done to better detect and diagnose patients with prediabetes or undiagnosed diabetes and provide improved care for these patients.
Collapse
Affiliation(s)
- Kathryn Richdale
- College of Optometry, University of Houston, Houston, Texas, USA
| | - Cecilia Chao
- College of Optometry, University of Houston, Houston, Texas, USA
- School of Optometry and Vision Science, University of New South Wales-Kensington Campus, Sydney, New South Wales, Australia
| | - Marc Hamilton
- Health and Human Performance, University of Houston, Houston, Texas, USA
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
21
|
Blood flow velocity comparison in the eye capillaries and postcapillary venules between normal pregnant and non-pregnant women. Microvasc Res 2020; 127:103926. [DOI: 10.1016/j.mvr.2019.103926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/27/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
|
22
|
Quantitative assessment of the conjunctival microcirculation using a smartphone and slit-lamp biomicroscope. Microvasc Res 2019; 126:103907. [PMID: 31330150 DOI: 10.1016/j.mvr.2019.103907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/19/2019] [Accepted: 07/18/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE The conjunctival microcirculation is a readily-accessible vascular bed for quantitative haemodynamic assessment and has been studied previously using a digital charge-coupled device (CCD). Smartphone video imaging of the conjunctiva, and haemodynamic parameter quantification, represents a novel approach. We report the feasibility of smartphone video acquisition and subsequent haemodynamic measure quantification via semi-automated means. METHODS Using an Apple iPhone 6 s and a Topcon SL-D4 slit-lamp biomicroscope, we obtained videos of the conjunctival microcirculation in 4 fields of view per patient, for 17 low cardiovascular risk patients. After image registration and processing, we quantified the diameter, mean axial velocity, mean blood volume flow, and wall shear rate for each vessel studied. Vessels were grouped into quartiles based on their diameter i.e. group 1 (<11 μm), 2 (11-16 μm), 3 (16-22 μm) and 4 (>22 μm). RESULTS From the 17 healthy controls (mean QRISK3 6.6%), we obtained quantifiable haemodynamics from 626 vessel segments. The mean diameter of microvessels, across all sites, was 21.1μm (range 5.8-58 μm). Mean axial velocity was 0.50mm/s (range 0.11-1mm/s) and there was a modestly positive correlation (r 0.322) seen with increasing diameter, best appreciated when comparing group 4 to the remaining groups (p < .0001). Blood volume flow (mean 145.61pl/s, range 7.05-1178.81pl/s) was strongly correlated with increasing diameter (r 0.943, p < .0001) and wall shear rate (mean 157.31 s-1, range 37.37-841.66 s-1) negatively correlated with increasing diameter (r - 0.703, p < .0001). CONCLUSIONS We, for the first time, report the successful assessment and quantification of the conjunctival microcirculatory haemodynamics using a smartphone-based system.
Collapse
|
23
|
Detection of Subclinical Diabetic Retinopathy by Fine Structure Analysis of Retinal Images. J Ophthalmol 2019; 2019:5171965. [PMID: 31341653 PMCID: PMC6637685 DOI: 10.1155/2019/5171965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/01/2019] [Accepted: 01/28/2019] [Indexed: 11/25/2022] Open
Abstract
Background and Objective Diabetic retinopathy (DR) is a major complication of diabetes and the leading cause of blindness among US working-age adults. Detection of subclinical DR is important for disease monitoring and prevention of damage to the retina before occurrence of vision loss. The purpose of this retrospective study is to describe an automated method for discrimination of subclinical DR using fine structure analysis of retinal images. Methods Discrimination between nondiabetic control (NC; N = 16) and diabetic without clinical retinopathy (NDR; N = 17) subjects was performed using ordinary least squares regression and Fisher's linear discriminant analysis. A human observer also performed the discrimination by visual inspection of the images. Results The discrimination rate for subclinical DR was 88% using the automated method and higher than the rate obtained by a human observer which was 45%. Conclusions The method provides sensitive and rapid analysis of retinal images and could be useful in detecting subclinical DR.
Collapse
|
24
|
Numerical simulation of haemodynamics of the descending aorta in the non-diabetic and diabetic rabbits. J Biomech 2019; 91:140-150. [DOI: 10.1016/j.jbiomech.2019.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022]
|
25
|
Wang J, Hu L, Shi C, Jiang H. Inter-visit measurement variability of conjunctival vasculature and circulation in habitual contact lens wearers and non-lens wearers. EYE AND VISION 2019; 6:10. [PMID: 30984795 PMCID: PMC6442401 DOI: 10.1186/s40662-019-0135-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/11/2019] [Indexed: 01/06/2023]
Abstract
Background The inter-visit variation of measuring bulbar conjunctival microvasculature and microcirculation needs to be considered when the results from multiple visits are interpreted. This study examined the inter-visit variability of measuring conjunctival microvasculature and microcirculation in habitual contact lens (HCL) wearers and non-contact lens (NCL) wearers. Methods Twenty-eight subjects were recruited including 13 HCL wearers (10 females and 3 males; mean age ± standard deviation, 25.8 ± 4.6 years) who had worn contact lenses on a daily basis for at least 3 years and 15 NCL wearers (10 females and 5 males, age 25.5 ± 4.0 years) were recruited. The temporal bulbar conjunctiva was imaged using a functional slit-lamp bio-microscope (FSLB) imaging system. FSLB imaging was performed in the morning when the HCL wearers did not wear their lenses. The measurements included conjunctival vessel diameter, vessel density, blood flow velocity and flow volume. In addition, conjunctival microvasculature was analyzed using monofractal (Dbox, representing vessel density) and multifractal (D0 representing vessel complexity) analyses. The repeated measurement was conducted at least one week after the first visit and both eyes of each participant were imaged. The coefficient of variation (CV) was calculated as the standard deviation of the differences between test and re-test then divided by the mean of the measurements. The intra-class correlation coefficient (ICC) was also calculated. Results No significant differences of all vascular measurements in both the right and left eyes were found between two groups (P > 0.05). Between two measurements on two different visits, the CV was from 2.4% (vessel density D0) to 63.5% (blood flow volume Q) in HCL wearers and from 3.4% (D0) to 40.6% (blood flow volume) in NCL wearers. The ICC was from 0.60 (vessel diameter) to 0.81 (axial blood flow velocity VA) in HCL wearers and from 0.44 (Q) to 0.68 (cross-sectional blood flow velocity VS) in NCL wearers. Conclusions The measurement variability of the vessel density of the bulbar conjunctiva appeared to have the smallest inter-visit variation. The measurement variability of the vasculature and circulation in HCL wearers were similar to that in NCL wearers.
Collapse
Affiliation(s)
- Jianhua Wang
- 1Miller School of Medicine, Bascom Palmer Eye Institute, University of Miami, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
| | - Liang Hu
- 1Miller School of Medicine, Bascom Palmer Eye Institute, University of Miami, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA.,2School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ce Shi
- 1Miller School of Medicine, Bascom Palmer Eye Institute, University of Miami, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA.,2School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hong Jiang
- 1Miller School of Medicine, Bascom Palmer Eye Institute, University of Miami, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
| |
Collapse
|
26
|
Jain A, Jain Y, Gupta R, Agarwal M. Trifluoromethyl group containing C3 symmetric coumarin-triazole based fluorometric tripodal receptors for selective fluoride ion recognition: A theoretical and experimental approach. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2018.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
27
|
Hu L, Shi C, Jiang H, Shi Y, Sethi Z, Wang J. Factors Affecting Microvascular Responses in the Bulbar Conjunctiva in Habitual Contact Lens Wearers. Invest Ophthalmol Vis Sci 2018; 59:4108-4114. [PMID: 30098199 PMCID: PMC6088803 DOI: 10.1167/iovs.18-24216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/20/2018] [Indexed: 12/20/2022] Open
Abstract
Purpose To investigate the factors affecting microvascular responses in the bulbar conjunctiva of habitual contact lens (HCL) wearers. Methods A functional slit-lamp biomicroscope (FSLB) was used to image the temporal bulbar conjunctiva of habitual contact lens (HCL) wearers and non-contact lens (NCL) wearers. The vessel diameters and blood flow velocities (BFVs) were measured. Fractal analysis using Dbox as vessel density and D0 as vessel complexity were used to quantitatively analyze the microvascular network. One eye each of 91 NCL wearers and 75 HCL wearers was imaged. Results The BFV of NCL wearers was 0.50 ± 0.14 mm/s, which was negatively correlated with age (r = -0.22, P < 0.05). The BFV, vessel diameter, Dbox, and D0 of HCL wearers was significantly higher than NCL wearers (P < 0.05). In these HCL wearers, BFVs were positively correlated with contact lens (CL) hours of wear per day and CL days of wear per week. BFV, Dbox, and D0 were not related to CL years of wear, CL power, CL base curve, and CL diameter (P > 0.05). Conclusions Vascular responses on the bulbar conjunctiva occurred in HCL wearers and appeared to be unrelated to sex or age, CL years of wear, and lens parameters, indicating that wearing a CL itself may be the predominant factor inducing these responses.
Collapse
Affiliation(s)
- Liang Hu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Ce Shi
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Hong Jiang
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Yingying Shi
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Zubin Sethi
- School of Business Administration, University of Miami, Miami, Florida, United States
| | - Jianhua Wang
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| |
Collapse
|
28
|
Khansari MM, Tan M, Karamian P, Shahidi M. Inter-visit variability of conjunctival microvascular hemodynamic measurements in healthy and diabetic retinopathy subjects. Microvasc Res 2018; 118:7-11. [PMID: 29438814 PMCID: PMC5992619 DOI: 10.1016/j.mvr.2018.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/18/2022]
Abstract
Conjunctival microcirculation imaging provides a non-invasive means for detecting hemodynamic alterations due to systemic and ocular diseases. However, reliable longitudinal monitoring of hemodynamic changes due to disease progression requires establishment of measurement variability over time. The purpose of the current study was to determine inter-visit variability of conjunctival microvascular hemodynamic measurements in non-diabetic control (NC, N = 7) and diabetic retinopathy (DR, N = 10) subjects. Conjunctival microvascular imaging was performed during 2 visits, which were 17 ± 12 weeks apart. Images were analyzed to determine vessel diameter (D), axial blood velocity (V), blood flow (Q), wall shear rate (WSR) and wall shear stress (WSS). The inter-visit variability was determined based on mean inter-visit differences. In NC, inter-visit variability of D, V, Q, WSR and WSS were 0.2 ± 0.5 µm, −0.01 ± 0.16 mm/s, −8 ± 46 pl/s, −3 ± 46 s−1 and −0.01 ± 0.10 dyne/cm2, respectively. Inter-visit variability of D, V, Q, WSR and WSS were beyond the normal 95% confidence limits in 60%, 20%, 40%, 20% and 20% of DR subjects, respectively. The variability of hemodynamic measurements over time was established in non-diabetic subjects, suggestive of the potential of the method for detecting longitudinal changes due to progression of DR.
Collapse
Affiliation(s)
- Maziyar M Khansari
- Department of Ophthalmology, University of Southern California, CA, USA; Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, CA, USA
| | - Michael Tan
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, IL, USA
| | - Preny Karamian
- Department of Ophthalmology, University of Southern California, CA, USA
| | - Mahnaz Shahidi
- Department of Ophthalmology, University of Southern California, CA, USA.
| |
Collapse
|
29
|
Highly selective and sensitive macrocycle-based dinuclear foldamer for fluorometric and colorimetric sensing of citrate in water. Sci Rep 2018; 8:286. [PMID: 29321505 PMCID: PMC5762659 DOI: 10.1038/s41598-017-18322-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/08/2017] [Indexed: 11/17/2022] Open
Abstract
The selective detection of citrate anions is essential for various biological functions in living systems. A quantitative assessment of citrate is required for the diagnosis of various diseases in the human body; however, it is extremely challenging to develop efficient fluorescence and color-detecting molecular probes for sensing citrate in water. Herein, we report a macrocycle-based dinuclear foldamer (1) assembled with eosin Y (EY) that has been studied for anion binding by fluorescence and colorimetric techniques in water at neutral pH. Results from the fluorescence titrations reveal that the 1·EY ensemble strongly binds citrate anions, showing remarkable selectivity over a wide range of inorganic and carboxylate anions. The addition of citrate anions to the 1·EY adduct led to a large fluorescence enhancement, displaying a detectable color change under both visible and UV light in water up to 2 μmol. The biocompatibility of 1·EY as an intracellular carrier in a biological system was evaluated on primary human foreskin fibroblast (HF) cells, showing an excellent cell viability. The strong binding properties of the ensemble allow it to be used as a highly sensitive, detective probe for biologically relevant citrate anions in various applications.
Collapse
|