1
|
Garcia-Marlès M, Lara R, Reche C, Pérez N, Tobías A, Savadkoohi M, Beddows D, Salma I, Vörösmarty M, Weidinger T, Hueglin C, Mihalopoulos N, Grivas G, Kalkavouras P, Ondracek J, Zikova N, Niemi JV, Manninen HE, Green DC, Tremper AH, Norman M, Vratolis S, Diapouli E, Eleftheriadis K, Gómez-Moreno FJ, Alonso-Blanco E, Wiedensohler A, Weinhold K, Merkel M, Bastian S, Hoffmann B, Altug H, Petit JE, Acharja P, Favez O, Santos SMD, Putaud JP, Dinoi A, Contini D, Casans A, Casquero-Vera JA, Crumeyrolle S, Bourrianne E, Poppel MV, Dreesen FE, Harni S, Timonen H, Lampilahti J, Petäjä T, Pandolfi M, Hopke PK, Harrison RM, Alastuey A, Querol X. Source apportionment of ultrafine particles in urban Europe. ENVIRONMENT INTERNATIONAL 2024; 194:109149. [PMID: 39566442 DOI: 10.1016/j.envint.2024.109149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/16/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
There is a body of evidence that ultrafine particles (UFP, those with diameters ≤ 100 nm) might have significant impacts on health. Accordingly, identifying sources of UFP is essential to develop abatement policies. This study focuses on urban Europe, and aims at identifying sources and quantifying their contributions to particle number size distribution (PNSD) using receptor modelling (Positive Matrix Factorization, PMF), and evaluating long-term trends of these source contributions using the non-parametric Theil-Sen's method. Datasets evaluated include 14 urban background (UB), 5 traffic (TR), 4 suburban background (SUB), and 1 regional background (RB) sites, covering 18 European and 1 USA cities, over the period, when available, from 2009 to 2019. Ten factors were identified (4 road traffic factors, photonucleation, urban background, domestic heating, 2 regional factors and long-distance transport), with road traffic being the primary contributor at all UB and TR sites (56-95 %), and photonucleation being also significant in many cities. The trends analyses showed a notable decrease in traffic-related UFP ambient concentrations, with statistically significant decreasing trends for the total traffic-related factors of -5.40 and -2.15 % yr-1 for the TR and UB sites, respectively. This abatement is most probably due to the implementation of European emissions standards, particularly after the introduction of diesel particle filters (DPFs) in 2011. However, DPFs do not retain nucleated particles generated during the dilution of diesel exhaust semi-volatile organic compounds (SVOCs). Trends in photonucleation were more diverse, influenced by a reduction in the condensation sink potential facilitating new particle formation (NPF) or by a decrease in the emissions of UFP precursors. The decrease of primary PM emissions and precursors of UFP also contributed to the reduction of urban and regional background sources.
Collapse
Affiliation(s)
- Meritxell Garcia-Marlès
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; Department of Applied Physics-Meteorology, University of Barcelona, Barcelona, 08028, Spain.
| | - Rosa Lara
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Cristina Reche
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Noemí Pérez
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Aurelio Tobías
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Marjan Savadkoohi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; Department of Mining, Industrial and ICT Engineering (EMIT), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Manresa, 08242, Spain
| | - David Beddows
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Imre Salma
- Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Máté Vörösmarty
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Weidinger
- Department of Meteorology, Institute of Geography and Earth Sciences, Eötvös Loránd University, Budapest, Hungary
| | - Christoph Hueglin
- Laboratory for Air Pollution and Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600 Duebendorf, Switzerland
| | - Nikos Mihalopoulos
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 71003 Heraklion, Greece; Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece
| | - Georgios Grivas
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece
| | - Panayiotis Kalkavouras
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece; Department of Environment, University of the Aegean, 81100 Mytilene, Greece
| | - Jakub Ondracek
- Research Group of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals, v.v.i., Academy of Sciences of the Czech Republic, Rozvojova 1, Prague, Czech Republic
| | - Nadezda Zikova
- Research Group of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals, v.v.i., Academy of Sciences of the Czech Republic, Rozvojova 1, Prague, Czech Republic
| | - Jarkko V Niemi
- Helsinki Region Environmental Services Authority (HSY), 00240 Helsinki, Finland
| | - Hanna E Manninen
- Helsinki Region Environmental Services Authority (HSY), 00240 Helsinki, Finland
| | - David C Green
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, United Kingdom; NIHR HPRU in Environmental Exposures and Health, Imperial College London, United Kingdom
| | - Anja H Tremper
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, United Kingdom
| | - Michael Norman
- Environment and Health Administration, SLB-analys, Box 8136, 104 20 Stockholm, Sweden
| | - Stergios Vratolis
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310 Ag. Paraskevi, Athens, Greece
| | - Evangelia Diapouli
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310 Ag. Paraskevi, Athens, Greece
| | - Konstantinos Eleftheriadis
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310 Ag. Paraskevi, Athens, Greece
| | | | | | | | - Kay Weinhold
- Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Maik Merkel
- Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Susanne Bastian
- Saxon State Office for Environment, Agriculture and Geology (LfULG), Dresden, German
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Hicran Altug
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Jean-Eudes Petit
- Laboratoire des Sciences du Climat et de l'Environnement, CEA/Orme des Merisiers, 91191 Gif-sur-Yvette, France
| | - Prodip Acharja
- Laboratoire des Sciences du Climat et de l'Environnement, CEA/Orme des Merisiers, 91191 Gif-sur-Yvette, France
| | - Olivier Favez
- Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata BP2, 60550 Verneuil-en-Halatte, France
| | | | | | - Adelaide Dinoi
- Institute of Atmospheric Sciences and Climate of National Research Council, ISAC-CNR, 73100 Lecce, Italy
| | - Daniele Contini
- Institute of Atmospheric Sciences and Climate of National Research Council, ISAC-CNR, 73100 Lecce, Italy
| | - Andrea Casans
- Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Granada, Spain
| | | | - Suzanne Crumeyrolle
- University Lille, CNRS, UMR 8518 Laboratoire d'Optique Atmosphérique (LOA), Lille, France
| | - Eric Bourrianne
- University Lille, CNRS, UMR 8518 Laboratoire d'Optique Atmosphérique (LOA), Lille, France
| | - Martine Van Poppel
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Freja E Dreesen
- Flanders Environment Agency, Dokter De Moorstraat 24-26, 9300, Aalst, Belgium
| | - Sami Harni
- Finnish Meteorological Institute, Atmospheric Composition Research, Helsinki, Finland
| | - Hilkka Timonen
- Finnish Meteorological Institute, Atmospheric Composition Research, Helsinki, Finland
| | - Janne Lampilahti
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Finland
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Finland
| | - Marco Pandolfi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Roy M Harrison
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom; Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Andrés Alastuey
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain.
| |
Collapse
|
2
|
In 't Veld M, Seco R, Reche C, Pérez N, Alastuey A, Portillo-Estrada M, Janssens IA, Peñuelas J, Fernandez-Martinez M, Marchand N, Temime-Roussel B, Querol X, Yáñez-Serrano AM. Identification of volatile organic compounds and their sources driving ozone and secondary organic aerosol formation in NE Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167159. [PMID: 37758152 DOI: 10.1016/j.scitotenv.2023.167159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Volatile organic compounds (VOCs) play a crucial role in the formation of ozone (O3) and secondary organic aerosol (SOA). We conducted measurements of VOC ambient mixing ratios during both summer and winter at two stations: a Barcelona urban background station (BCN) and the Montseny rural background station (MSY). Subsequently, we employed positive matrix factorization (PMF) to analyze the VOC mixing ratios and identify their sources. Our analysis revealed five common sources: anthropogenic I (traffic & industries); anthropogenic II (traffic & biomass burning); isoprene oxidation; monoterpenes; long-lifetime VOCs. To assess the impact of these VOCs on the formation of secondary pollutants, we calculated the ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAP) associated with each VOC. In conclusion, our study provides insights into the sources of VOCs and their contributions to the formation of ozone and SOA in NE Spain. The OFP was primarily influenced by anthropogenic aromatic compounds from the traffic & industries source at BCN (38-49 %) and during winter at MSY (34 %). In contrast, the summer OFP at MSY was primarily driven by biogenic contributions from monoterpenes and isoprene oxidation products (45 %). Acetaldehyde (10-35 %) and methanol (13-14 %) also made significant OFP contributions at both stations. Anthropogenic aromatic compounds originating from traffic, industries, and biomass burning played a dominant role (88-93 %) in SOA formation at both stations during both seasons. The only exception was during the summer at MSY, where monoterpenes became the primary driver of SOA formation (41 %). These findings emphasize the importance of considering both anthropogenic and biogenic VOCs in air quality management strategies.
Collapse
Affiliation(s)
- Marten In 't Veld
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, 08034 Barcelona, Spain; Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain.
| | - Roger Seco
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, 08034 Barcelona, Spain
| | - Cristina Reche
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, 08034 Barcelona, Spain
| | - Noemi Pérez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, 08034 Barcelona, Spain
| | - Andres Alastuey
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, 08034 Barcelona, Spain
| | - Miguel Portillo-Estrada
- PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Ivan A Janssens
- PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Josep Peñuelas
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain; CSIC, Global Ecology Unit, CREAF-CSIC-UAB, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Marcos Fernandez-Martinez
- PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Wilrijk, Belgium; CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain; CSIC, Global Ecology Unit, CREAF-CSIC-UAB, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | | | | | - Xavier Querol
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, 08034 Barcelona, Spain
| | - Ana Maria Yáñez-Serrano
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, 08034 Barcelona, Spain; CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain; CSIC, Global Ecology Unit, CREAF-CSIC-UAB, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| |
Collapse
|
3
|
Jung D, Soler R, de la Paz D, Notario A, Muñoz A, Ródenas M, Vera T, Borrás E, Borge R. Oxidation capacity changes in the atmosphere of large urban areas in Europe: Modelling and experimental campaigns in atmospheric simulation chambers. CHEMOSPHERE 2023; 341:139919. [PMID: 37611775 DOI: 10.1016/j.chemosphere.2023.139919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/30/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Air pollution is a major concern for human health and the environment. Consequently, environmental standards have become stricter to improve air quality. Thanks to this, the ambient levels of O3 precursors such as VOCs and NOX have decreased. However, O3 levels in Europe, especially during winter, have increased, potentially impacting on atmospheric oxidation capacity and the associated chemistry of tropospheric oxidants. In this work, we focus on recent changes in the oxidation capacity of urban atmospheres. The study is conducted with the results of the CMAQ modelling system with a regional resolution with 12 × 12 km2 across the entire European continent for the winter (January) and summer (July) of 2007 and 2015. The 2015 meteorological data is used for both years to emphasise emission changes during the studied period. We scrutinise the changes in ambient concentration levels of the main tropospheric oxidants (O3 and HOX radicals) in five representative cities, Valencia, Madrid, Milan, Berlin, and The Hague. The enhanced O3 formation in winter seems to be due to the low VOC/NOX ratio, while the opposite trend in summer may be related to a relatively high ratio. Additionally, photooxidation experiments are carried out in the EUPHORE chambers to study the effect of changes in NOX concentration and NO/NO2 ratio on the variation of the given oxidants at constant VOCs concentrations. For the baseline experiments, two scenarios are selected based on the model results of 2015: two representative winter and summer days of low and high pollution in Berlin and Madrid, respectively. The role of VOC/NOX and NO/NO2 ratios on atmospheric reactivity is discussed. As a result, it is first suggested that further decreases in ambient NOX levels are required to reduce ambient O3 levels. Moreover, additional factors should be considered when designing local-specific emission abatement strategies.
Collapse
Affiliation(s)
- Daeun Jung
- Environmental Modelling Laboratory, Department of Chemical & Environmental Engineering, Universidad Politécnica de Madrid (UPM), C/ José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| | - Rubén Soler
- EUPHORE Labs., Atmospheric Chemistry Area, Fundación Centro de Estudios Ambientales del Mediterráneo (CEAM), 46980, Paterna, Spain
| | - David de la Paz
- Environmental Modelling Laboratory, Department of Chemical & Environmental Engineering, Universidad Politécnica de Madrid (UPM), C/ José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Alberto Notario
- Universidad de Castilla-La Mancha, Physical Chemistry Department, Faculty of Chemical Science and Technologies, Ciudad Real, Spain
| | - Amalia Muñoz
- EUPHORE Labs., Atmospheric Chemistry Area, Fundación Centro de Estudios Ambientales del Mediterráneo (CEAM), 46980, Paterna, Spain
| | - Milagros Ródenas
- EUPHORE Labs., Atmospheric Chemistry Area, Fundación Centro de Estudios Ambientales del Mediterráneo (CEAM), 46980, Paterna, Spain
| | - Teresa Vera
- EUPHORE Labs., Atmospheric Chemistry Area, Fundación Centro de Estudios Ambientales del Mediterráneo (CEAM), 46980, Paterna, Spain
| | - Esther Borrás
- EUPHORE Labs., Atmospheric Chemistry Area, Fundación Centro de Estudios Ambientales del Mediterráneo (CEAM), 46980, Paterna, Spain
| | - Rafael Borge
- Environmental Modelling Laboratory, Department of Chemical & Environmental Engineering, Universidad Politécnica de Madrid (UPM), C/ José Gutiérrez Abascal 2, 28006, Madrid, Spain
| |
Collapse
|
4
|
de la Paz D, Borge R, de Andrés JM, Tovar L, Sarwar G, Napelenok SL. Summertime tropospheric ozone source apportionment study in the Madrid region (Spain). ATMOSPHERIC CHEMISTRY AND PHYSICS 2023; 24:4949-4972. [PMID: 38846712 PMCID: PMC11151812 DOI: 10.5194/acp-24-4949-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The design of emission abatement measures to effectively reduce high ground-level ozone (O3) concentrations in urban areas is very complex. In addition to the strongly non-linear chemistry of this secondary pollutant, precursors can be released by a variety of sources in different regions, and locally produced O3 is mixed with that transported from the regional or continental scales. All of these processes depend also on the specific meteorological conditions and topography of the study area. Consequently, high-resolution comprehensive modeling tools are needed to understand the drivers of photochemical pollution and to assess the potential of local strategies to reduce adverse impacts from high tropospheric O3 levels. In this study, we apply the Integrated Source Apportionment Method (ISAM) implemented in the Community Multiscale Air Quality (CMAQ v5.3.2) model to investigate the origin of summertime O3 in the Madrid region (Spain). Consistent with previous studies, our results confirm that O3 levels are dominated by non-local contributions, representing around 70 % of mean values across the region. Nonetheless, precursors emitted by local sources, mainly road traffic, play a more important role during O3 peaks, with contributions as high as 25 ppb. The potential impact of local measures is higher under unfavorable meteorological conditions associated with regional accumulation patterns. These findings suggest that this modeling system may be used in the future to simulate the potential outcomes of specific emission abatement measures to prevent high-O3 episodes in the Madrid metropolitan area.
Collapse
Affiliation(s)
- David de la Paz
- Laboratory of Environmental Modelling, Department of Chemical & Environmental Engineering, Universidad Politécnica de Madrid, (UPM), c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Rafael Borge
- Laboratory of Environmental Modelling, Department of Chemical & Environmental Engineering, Universidad Politécnica de Madrid, (UPM), c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Juan Manuel de Andrés
- Laboratory of Environmental Modelling, Department of Chemical & Environmental Engineering, Universidad Politécnica de Madrid, (UPM), c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Luis Tovar
- Laboratory of Environmental Modelling, Department of Chemical & Environmental Engineering, Universidad Politécnica de Madrid, (UPM), c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Golam Sarwar
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Sergey L. Napelenok
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
5
|
Alonso-Blanco E, Gómez-Moreno FJ, Díaz-Ramiro E, Fernández J, Coz E, Yagüe C, Román-Cascón C, Narros A, Borge R, Artíñano B. Real-Time Measurements of Indoor-Outdoor Exchange of Gaseous and Particulate Atmospheric Pollutants in an Urban Area. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6823. [PMID: 37835093 PMCID: PMC10572255 DOI: 10.3390/ijerph20196823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
Air pollution is one of the greatest environmental risks to health, causing millions of deaths and deleterious health effects worldwide, especially in urban areas where citizens are exposed to high ambient levels of pollutants, also influencing indoor air quality (IAQ). Many sources of indoor air are fairly obvious and well known, but the contribution of outside sources to indoor air still leads to significant uncertainties, in particular the influence that environmental variables have on outdoor/indoor pollutant exchange mechanisms. This is a critical aspect to consider in IAQ studies. In this respect, an experimental study was performed at a public site such as a university classroom during a non-academic period in Madrid city. This includes two field campaigns, in summer (2021) and winter (2020), where instruments for measuring gases and particle air pollutants simultaneously measured outdoor and indoor real-time concentrations. This study aimed to investigate the dynamic variations in the indoor/outdoor (I/O) ratios in terms of ambient outdoor conditions (meteorology, turbulence and air quality) and indoor features (human presence or natural ventilation). The results show that the I/O ratio is pollutant-dependent. In this sense, the infiltration capacity is higher for gaseous compounds, and in the case of particles, it depends on the particle size, with a higher infiltration capacity for smaller particles (
Collapse
Affiliation(s)
- Elisabeth Alonso-Blanco
- Department of Environment, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), 28040 Madrid, Spain; (F.J.G.-M.); (E.D.-R.); (J.F.); (E.C.); (B.A.)
| | - Francisco Javier Gómez-Moreno
- Department of Environment, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), 28040 Madrid, Spain; (F.J.G.-M.); (E.D.-R.); (J.F.); (E.C.); (B.A.)
| | - Elías Díaz-Ramiro
- Department of Environment, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), 28040 Madrid, Spain; (F.J.G.-M.); (E.D.-R.); (J.F.); (E.C.); (B.A.)
| | - Javier Fernández
- Department of Environment, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), 28040 Madrid, Spain; (F.J.G.-M.); (E.D.-R.); (J.F.); (E.C.); (B.A.)
| | - Esther Coz
- Department of Environment, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), 28040 Madrid, Spain; (F.J.G.-M.); (E.D.-R.); (J.F.); (E.C.); (B.A.)
| | - Carlos Yagüe
- Department of Earth Physics and Astrophysics, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Carlos Román-Cascón
- Department of Applied Physics, Marine and Environmental Sciences Faculty, INMAR, CEIMAR, University of Cadiz, 11519 Puerto Real, Cádiz, Spain;
| | - Adolfo Narros
- Department of Chemical and Environmental Engineering, Technical University of Madrid (UPM), 28006 Madrid, Spain; (A.N.); (R.B.)
| | - Rafael Borge
- Department of Chemical and Environmental Engineering, Technical University of Madrid (UPM), 28006 Madrid, Spain; (A.N.); (R.B.)
| | - Begoña Artíñano
- Department of Environment, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), 28040 Madrid, Spain; (F.J.G.-M.); (E.D.-R.); (J.F.); (E.C.); (B.A.)
| |
Collapse
|
6
|
Dada L, Okuljar M, Shen J, Olin M, Wu Y, Heimsch L, Herlin I, Kankaanrinta S, Lampimäki M, Kalliokoski J, Baalbaki R, Lohila A, Petäjä T, Maso MD, Duplissy J, Kerminen VM, Kulmala M. The synergistic role of sulfuric acid, ammonia and organics in particle formation over an agricultural land. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2023; 3:1195-1211. [PMID: 38014379 PMCID: PMC10413442 DOI: 10.1039/d3ea00065f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/06/2023] [Indexed: 11/29/2023]
Abstract
Agriculture provides people with food, but poses environmental challenges. Via comprehensive observations on an agricultural land at Qvidja in Southern Finland, we were able to show that soil-emitted compounds (mainly ammonia and amines), together with available sulfuric acid, form new aerosol particles which then grow to climate-relevant sizes by the condensation of extremely low volatile organic compounds originating from a side production of photosynthesis (compounds emitted by ground and surrounding vegetation). We found that intensive local clustering events, with particle formation rates at 3 nm about 5-10 times higher than typical rates in boreal forest environments, occur on around 30% of all days. The requirements for these clustering events to occur were found to be clear sky, a low wind speed to accumulate the emissions from local agricultural land, particularly ammonia, the presence of low volatile organic compounds, and sufficient gaseous sulfuric acid. The local clustering will then contribute to regional new particle formation. Since the agricultural land is much more effective per surface area than the boreal forest in producing aerosol particles, these findings provide insight into the participation of agricultural lands in climatic cooling, counteracting the climatic warming effects of farming.
Collapse
Affiliation(s)
- Lubna Dada
- Institute for Atmospheric and Earth System Research, University of Helsinki PO Box 64, 00014 Finland
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute 5232 Villigen Switzerland
| | - Magdalena Okuljar
- Institute for Atmospheric and Earth System Research, University of Helsinki PO Box 64, 00014 Finland
| | - Jiali Shen
- Institute for Atmospheric and Earth System Research, University of Helsinki PO Box 64, 00014 Finland
| | - Miska Olin
- Aerosol Physics Laboratory, Tampere University PO Box 692, 33014 Tampere University Finland
| | - Yusheng Wu
- Institute for Atmospheric and Earth System Research, University of Helsinki PO Box 64, 00014 Finland
| | - Laura Heimsch
- Finnish Meteorological Institute PO Box 503 00101 Helsinki Finland
| | - Ilkka Herlin
- Qvidja Research Farm Qvidja 15 21630 Parainen Finland
| | | | - Markus Lampimäki
- Institute for Atmospheric and Earth System Research, University of Helsinki PO Box 64, 00014 Finland
| | - Joni Kalliokoski
- Aerosol Physics Laboratory, Tampere University PO Box 692, 33014 Tampere University Finland
| | - Rima Baalbaki
- Institute for Atmospheric and Earth System Research, University of Helsinki PO Box 64, 00014 Finland
| | - Annalea Lohila
- Finnish Meteorological Institute PO Box 503 00101 Helsinki Finland
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research, University of Helsinki PO Box 64, 00014 Finland
| | - Miikka Dal Maso
- Aerosol Physics Laboratory, Tampere University PO Box 692, 33014 Tampere University Finland
| | - Jonathan Duplissy
- Institute for Atmospheric and Earth System Research, University of Helsinki PO Box 64, 00014 Finland
- Helsinki Institute of Physics (HIP)/Physics, Faculty of Science, University of Helsinki 00014 Helsinki Finland
| | - Veli-Matti Kerminen
- Institute for Atmospheric and Earth System Research, University of Helsinki PO Box 64, 00014 Finland
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research, University of Helsinki PO Box 64, 00014 Finland
| |
Collapse
|
7
|
Duan X, Yan Y, Xie K, Niu Y, Xu Y, Peng L. Impact of primary emission variations on secondary inorganic aerosol formation: Prospective from COVID-19 lockdown in a typical northern China city. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121355. [PMID: 36842622 DOI: 10.1016/j.envpol.2023.121355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Hourly observations in northern China city of Taiyuan were performed to compare secondary inorganic aerosol (SIA) reaction mechanisms, and emission effects on SIA during the pre-lock and COVID-19 lock days. Emission control implemented and meteorological conditions during lock days both caused beneficial impact on air quality. NO2 showed the highest decrease ratio of -49.5%, while the relative fraction of NO3- in PM2.5 increased the most (2.7%). Source apportionment revealed the top three contributors to PM2.5 were secondary formation (SF), coal combustion (CC), and vehicle exhaust (VE) during both pre-lock and lock days. EC lock/pre were all lower than 1, suggesting the overall reduction of primary emissions during lock days, while the higher ratio of (SIA/EC) lock/pre (1.01-1.36) indicated the enhanced secondary formation in lock days. The ratio of SIA of pollution to clean days during lock periods considerably higher by 23.7% compared with that in pre-lock periods, which was indicated SIA secondary formation was more pronounced and contributed great to pollution days in lock periods though secondary formation existed in pre-lock and lock periods. Enhanced secondary formation of NO3- and SO42- during lock days might be mainly due to the increased in aqueous and gas-phase reactions, respectively. Except for SF, high contribution of VE and CC were also important for high SIA concentration in pre-lock and lock days, respectively. The decreased contribution of VE weakens its contribution to SIA formation, indicating the effectiveness of VE emission control, as confirmed during the COVID-19 pandemic. This study highlights the aqueous and gas-phase reactions for nitrate and sulfate, respectively, which contributed to heavy pollution, as well as indicated the important role of VE on SIA formation, suggesting the urgent need to further strengthen controls on vehicle emissions.
Collapse
Affiliation(s)
- Xiaolin Duan
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yulong Yan
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing, 100044, China; Institute of Transport Energy and Environment, Beijing Jiaotong University, Beijing, 100044, China.
| | - Kai Xie
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yueyuan Niu
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yang Xu
- School for Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China
| | - Lin Peng
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing, 100044, China; Institute of Transport Energy and Environment, Beijing Jiaotong University, Beijing, 100044, China
| |
Collapse
|
8
|
Jung D, de la Paz D, Notario A, Borge R. Analysis of emissions-driven changes in the oxidation capacity of the atmosphere in Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154126. [PMID: 35219666 DOI: 10.1016/j.scitotenv.2022.154126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Anthropogenic emissions in Europe have been gradually reduced thanks to a combination of factors, including restrictive regulation and policy implementation, fuel switching, technological developments, and improved energy efficiencies. Many measures have been specifically introduced to meet the annual and hourly limit value of NO2 for the protection of human health, mainly targeting traffic emissions. Due to NOX reduction policies in Europe, NO2 levels have generally declined, but O3 concentrations have been found to increase. This phenomenon would cause changes in the oxidant capacity of the atmosphere, altering the concentration of tropospheric oxidants in urban areas. The Community Multiscale Air Quality (CMAQ) modelling system has been used to study concentration changes of NO2, O3 and the main radicals in Europe between 2007 and 2015 for two months representatives of winter and summer conditions (January and July). In addition to describing the general situation in Europe, variations in pollutants along with NOX emission changes over 67 large European cities have been analysed by means of statistical methods. NOX emissions and NO2 concentrations decreased in both seasons during the period in all the selected cities. In most of them O3 concentrations increased in winter but decreased in summer. The concentration of the OH radical, the main oxidant during the daytime, shows an increase in winter. This is also the case for the main cities in summer although we found a general decrease in continent for this season. The NO3 radical, the main night-time oxidant, was found to increase in winter and decrease in summer. HNO3 shows a concentration decline in both seasons. The studied cities are classified in five groups by means of k-mean clustering procedure. We identified five groups with specific patterns, suggesting that the oxidant capacity of the European urban atmospheres has reacted differently to NOX emission abatement policies.
Collapse
Affiliation(s)
- Daeun Jung
- Environmental Modelling Laboratory, Department of Chemical & Environmental Engineering, Universidad Politécnica de Madrid (ETSII - UPM), Madrid, Spain
| | - David de la Paz
- Environmental Modelling Laboratory, Department of Chemical & Environmental Engineering, Universidad Politécnica de Madrid (ETSII - UPM), Madrid, Spain
| | - Alberto Notario
- Universidad de Castilla-La Mancha, Physical Chemistry Department, Faculty of Chemical Science and Technologies, Ciudad Real, Spain
| | - Rafael Borge
- Environmental Modelling Laboratory, Department of Chemical & Environmental Engineering, Universidad Politécnica de Madrid (ETSII - UPM), Madrid, Spain.
| |
Collapse
|
9
|
Assessment of Air Quality and Meteorological Changes Induced by Future Vegetation in Madrid. FORESTS 2022. [DOI: 10.3390/f13050690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nature-based solutions and green urban infrastructures are becoming common measures in local air quality and climate strategies. However, there is a lack of analytical frameworks to anticipate the effect of such interventions on urban meteorology and air quality at a city scale. We present a modelling methodology that relies on the weather research and forecasting model (WRF) with the building effect parameterization (BEP) and the community multiscale air quality (CMAQ) model and apply it to assess envisaged plans involving vegetation in the Madrid (Spain) region. The study, developed within the VEGGAP Life project, includes the development of two detailed vegetation scenarios making use of Madrid’s municipality tree inventory (current situation) and future vegetation-related interventions. An annual simulation was performed for both scenarios (considering constant anthropogenic emissions) to identify (i) variations in surface temperature and the reasons for such changes, and (ii) implications on air-quality standards according to EU legislation for the main pollutants (PM10, PM2.5, NO2 and O3). Our results suggest that vegetation may have significant effects on urban meteorology due to changes induced in relevant surface properties such as albedo, roughness length or emissivity. We found a net-heating effect of around +0.18 °C when trees are introduced in dry, scarcely vegetated surfaces in the city outskirts. In turn, this enhances the planetary boundary layer height (PBLH), which brings about reductions in ambient concentrations of relevant pollutants such as NO2 (in the range of 0.5–0.8 µg m−3 for the annual mean, and 2–4 µg m−3 for the 19th highest 1 h value). Conversely, planting new trees in consolidated urban areas causes a cooling effect (up to −0.15 °C as an annual mean) that may slightly increase concentration levels due to less-effective vertical mixing and wind-speed reduction caused by increased roughness. This highlights the need to combine nature-based solutions with emission-reduction measures in Madrid.
Collapse
|
10
|
Li Z, Walters WW, Hastings MG, Song L, Huang S, Zhu F, Liu D, Shi G, Li Y, Fang Y. Atmospheric nitrate formation pathways in urban and rural atmosphere of Northeast China: Implications for complicated anthropogenic effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118752. [PMID: 34968617 DOI: 10.1016/j.envpol.2021.118752] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Effects of human activities on atmospheric nitrate (NO3-) formation remain unclear, though the knowledge is critical for improving atmospheric chemistry models and nitrogen deposition reduction strategies. A potentially useful way to explore this is to compare NO3- oxidation processes in urban and rural atmospheres based upon the oxygen stable isotope composition of NO3- (Δ17O-NO3-). Here we compared the Δ17O-NO3- from three-years of daily-based bulk deposition in urban (Shenyang) and forested rural sites (Qingyuan) in northeast China and quantified the relative contributions of different formation pathways based on the SIAR model. Our results showed that the Δ17O in Qiangyuan (26.2 ± 3.3‰) is significantly higher (p < 0.001) than in Shenyang (24.0 ± 4.0‰), and significantly higher in winter (Shenyang: 26.1 ± 6.7‰, Qingyuan: 29.6 ± 2.5‰) than in summer (Shenyang: 22.7 ± 2.9‰, Qingyuan: 23.8 ± 2.4‰) in both sites. The lower values in the urban site are linked with conditions that favored a higher relative contribution of nitrogen dioxide reaction with OH pathway (0.76-0.91) than in rural site (0.47-0.62), which should be induced by different levels of human activities in the two sites. The seasonal variations of Δ17O-NO3- in both sites are explained by a higher relative contribution of ozone-mediated oxidation chemistry and unfavorable conditions for the OH pathway during winter relative to summer, which is affected by human activities and seasonal meteorological condition change. Based on Δ17O, wintertime conditions led to a contribution of O3 related pathways (NO3 + DMS/HC and N2O5 hydrolysis) of 0.63 in Qingyuan and 0.42 in Shenyang, while summertime conditions led to 0.15 in Qingyuan and 0.05 in Shenyang. Our comparative study on Δ17O-NO3- between urban and rural sites reveals different anthropogenic effects on nitrate formation processes on spatial and temporal scales, illustrating different responses of reactive nitrogen chemistry to changes in human activities.
Collapse
Affiliation(s)
- Zhengjie Li
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in Southern China, College of Biological Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Wendell W Walters
- Institute at Brown for Environment and Society, Brown University, Providence, RI, 02912, USA
| | - Meredith G Hastings
- Institute at Brown for Environment and Society, Brown University, Providence, RI, 02912, USA; Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, 02912, USA
| | - Linlin Song
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Liaoning Province, 110016, China
| | - Shaonan Huang
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environment Science, Henan University, Kaifeng, 475004, China
| | - Feifei Zhu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China; Qingyuan Forest CERN, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Liaoning Province, 110016, China
| | - Dongwei Liu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China; Qingyuan Forest CERN, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Liaoning Province, 110016, China
| | - Guitao Shi
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Yilan Li
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Yunting Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China; Qingyuan Forest CERN, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Liaoning Province, 110016, China.
| |
Collapse
|
11
|
Villanueva F, Lara S, Notario A, Amo-Salas M, Cabañas B. Formaldehyde, acrolein and other carbonyls in dwellings of university students. Levels and source characterization. CHEMOSPHERE 2022; 288:132429. [PMID: 34606894 DOI: 10.1016/j.chemosphere.2021.132429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Fifteen carbonyl compounds were investigated in the living rooms and bedrooms of 25 university student flats in the urban area of Ciudad Real (Central Southern Spain) in wintertime. Carbonyls were sampled using Radiello ® passive samplers refilled in the laboratory according to the method described in ISO 16000-3 Standard. The most abundant carbonyls in the living rooms and bedrooms were formaldehyde, acetone, acetaldehyde, hexaldehyde and butyraldehyde. The median concentration levels in the living rooms and bedrooms were: 28.6 and 34.2 μg m-3 for formaldehyde, 18.3 and 23.1 μg m-3 for acetone, 14.3 and 15.8 μg m-3 for acetaldehyde, 11.4 and 14.1 μg m-3 for hexaldehyde and 10.8 and 12.4 μg m-3 for butyraldehyde. The median concentration of formaldehyde, benzaldehyde, valeraldehyde and hexaldehyde was significantly higher in the bedrooms than in the living rooms. Indoor concentrations were significantly higher than outdoor concentrations for all carbonyl measured, indicating that sources in the indoor environment are prevailing in all flats. Principal component analysis, multiple linear regressions and Spearman correlation coefficients were used to investigate the origin, the indoor pollutants determinants and to establish common sources between carbonyls. Eight components were extracted from the application of PCA to the indoor and outdoor measurements accounting for 97.7% of the total variance. Formaldehyde, acetone, acetaldehyde and acrolein presented different indoor sources. In the multiple linear regression analysis, higher formaldehyde concentrations were found in those living rooms with wood floor and smoking was positively associated to acetone, propionaldehyde, benzaldehyde and isovaleraldehyde. Formaldehyde, acetaldehyde, acrolein, acetone, propionaldehyde and benzaldehyde concentrations were compared with relevant international guidelines, being their concentrations below recommended values except acrolein, where all measured flats exceeded the reference levels; it would be important to focus on the characterization of emission sources of acrolein in indoor air in order to minimise the exposure and health risk.
Collapse
Affiliation(s)
- Florentina Villanueva
- Universidad de Castilla La Mancha, Instituto de Investigación en Combustión y Contaminación Atmosférica, Camino de Moledores S/n, 13071, Ciudad Real, Spain; Parque Científico y Tecnológico de Castilla La Mancha, Paseo de La Innovación 1, 02006, Albacete, Spain.
| | - Sonia Lara
- Universidad de Castilla La Mancha, Instituto de Investigación en Combustión y Contaminación Atmosférica, Camino de Moledores S/n, 13071, Ciudad Real, Spain.
| | - Alberto Notario
- Universidad de Castilla La Mancha, Instituto de Investigación en Combustión y Contaminación Atmosférica, Camino de Moledores S/n, 13071, Ciudad Real, Spain; Universidad de Castilla La Mancha, Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela S/n, 13071, Ciudad Real, Spain.
| | - Mariano Amo-Salas
- Universidad de Castilla La Mancha, Departamento de Matemáticas, Facultad de Medicina, Camino de Moledores S/n, 13071, Ciudad Real, Spain.
| | - Beatriz Cabañas
- Universidad de Castilla La Mancha, Instituto de Investigación en Combustión y Contaminación Atmosférica, Camino de Moledores S/n, 13071, Ciudad Real, Spain; Universidad de Castilla La Mancha, Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela S/n, 13071, Ciudad Real, Spain.
| |
Collapse
|
12
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN, Baschir LA, Tenciu DV. Assessing the impact of air pollution and climate seasonality on COVID-19 multiwaves in Madrid, Spain. ENVIRONMENTAL RESEARCH 2022; 203:111849. [PMID: 34370990 PMCID: PMC8343379 DOI: 10.1016/j.envres.2021.111849] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 05/17/2023]
Abstract
While the COVID-19 pandemic is still in progress, being under the fifth COVID-19 wave in Madrid, over more than one year, Spain experienced a four wave pattern. The transmission of SARS-CoV-2 pathogens in Madrid metropolitan region was investigated from an urban context associated with seasonal variability of climate and air pollution drivers. Based on descriptive statistics and regression methods of in-situ and geospatial daily time series data, this study provides a comparative analysis between COVID-19 waves incidence and mortality cases in Madrid under different air quality and climate conditions. During analyzed period 1 January 2020-1 July 2021, for each of the four COVID-19 waves in Madrid were recorded anomalous anticyclonic synoptic meteorological patterns in the mid-troposphere and favorable stability conditions for COVID-19 disease fast spreading. As airborne microbial temporal pattern is most affected by seasonal changes, this paper found: 1) a significant negative correlation of air temperature, Planetary Boundary Layer height, and surface solar irradiance with daily new COVID-19 incidence and deaths; 2) a similar mutual seasonality with climate variables of the first and the fourth COVID-waves from spring seasons of 2020 and 2021 years. Such information may help the health decision makers and public plan for the future.
Collapse
Affiliation(s)
- Maria A Zoran
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania.
| | - Roxana S Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Dan M Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Marina N Tautan
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Laurentiu A Baschir
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Daniel V Tenciu
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| |
Collapse
|
13
|
Veld MI', Alastuey A, Pandolfi M, Amato F, Pérez N, Reche C, Via M, Minguillón MC, Escudero M, Querol X. Compositional changes of PM 2.5 in NE Spain during 2009-2018: A trend analysis of the chemical composition and source apportionment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148728. [PMID: 34328931 DOI: 10.1016/j.scitotenv.2021.148728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/11/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
In this work, time-series analyses of the chemical composition and source contributions of PM2.5 from an urban background station in Barcelona (BCN) and a rural background station in Montseny (MSY) in northeastern Spain from 2009 to 2018 were investigated and compared. A multisite positive matrix factorization analysis was used to compare the source contributions between the two stations, while the trends for both the chemical species and source contributions were studied using the Theil-Sen trend estimator. Between 2009 and 2018, both stations showed a statistically significant decrease in PM2.5 concentrations, which was driven by the downward trends of levels of chemical species and anthropogenic source contributions, mainly from heavy oil combustion, mixed combustion, industry, and secondary sulfate. These source contributions showed a continuous decrease over the study period, signifying the continuing success of mitigation strategies, although the trends of heavy oil combustion and secondary sulfate have flattened since 2016. Secondary nitrate also followed a significant decreasing trend in BCN, while secondary organic aerosols (SOA) very slightly decreased in MSY. The observed decreasing trends, in combination with the absence of a trend for the organic aerosols (OA) at both stations, resulted in an increase in the relative proportion of OA in PM2.5 by 12% in BCN and 9% in MSY, mostly from SOA, which increased by 7% in BCN and 4% in MSY. Thus, at the end of the study period, OA accounted for 40% and 50% of the annual mean PM2.5 at BCN and MSY, respectively. This might have relevant implications for air quality policies aiming at abating PM2.5 in the study region and for possible changes in toxicity of PM2.5 due to marked changes in composition and source apportionment.
Collapse
Affiliation(s)
- Marten In 't Veld
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain; Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Barcelona 08034, Spain.
| | - Andres Alastuey
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Marco Pandolfi
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Fulvio Amato
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Noemi Pérez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Cristina Reche
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Marta Via
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain; Department of Applied Physics, University of Barcelona, Barcelona 08028, Spain
| | - María Cruz Minguillón
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Miguel Escudero
- Centro Universitario de la Defensa, Academia General Militar, Zaragoza 50090, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| |
Collapse
|
14
|
Ren C, Huang X, Wang Z, Sun P, Chi X, Ma Y, Zhou D, Huang J, Xie Y, Gao J, Ding A. Nonlinear response of nitrate to NO x reduction in China during the COVID-19 pandemic. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2021; 264:118715. [PMID: 34539213 PMCID: PMC8439661 DOI: 10.1016/j.atmosenv.2021.118715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 05/30/2023]
Abstract
In recent years, nitrate plays an increasingly important role in haze pollution and strict emission control seems ineffective in reducing nitrate pollution in China. In this study, observations of gaseous and particulate pollutants during the COVID-19 lockdown, as well as numerical modelling were integrated to explore the underlying causes of the nonlinear response of nitrate mitigation to nitric oxides (NOx) reduction. We found that, due to less NOx titration effect and the transition of ozone (O3) formation regime caused by NOx emissions reduction, a significant increase of O3 (by ∼ 69%) was observed during the lockdown period, leading to higher atmospheric oxidizing capacity and facilitating the conversion from NOx to oxidation products like nitric acid (HNO3). It is proven by the fact that 26-61% reduction of NOx emissions only lowered surface HNO3 by 2-3% in Hebi and Nanjing, eastern China. In addition, ammonia concentration in Hebi and Nanjing increased by 10% and 40% during the lockdown, respectively. Model results suggested that the increasing ammonia can promote the gas-particle partition and thus enhance the nitrate formation by up to 20%. The enhanced atmospheric oxidizing capacity together with increasing ammonia availability jointly promotes the nitrate formation, thereby partly offsetting the drop of NOx. This work sheds more lights on the side effects of a sharp NOx reduction and highlights the importance of a coordinated control strategy.
Collapse
Affiliation(s)
- Chuanhua Ren
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
- Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing, 210023, China
| | - Xin Huang
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
- Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing, 210023, China
- Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Zilin Wang
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
- Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing, 210023, China
| | - Peng Sun
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
- Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing, 210023, China
| | - Xuguang Chi
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
- Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing, 210023, China
| | - Yue Ma
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
- Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing, 210023, China
| | - Derong Zhou
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
- Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing, 210023, China
| | - Jiantao Huang
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
- Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing, 210023, China
| | - Yuning Xie
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
- Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing, 210023, China
| | - Jian Gao
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Aijun Ding
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
- Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing, 210023, China
| |
Collapse
|
15
|
Morawska L, Zhu T, Liu N, Amouei Torkmahalleh M, de Fatima Andrade M, Barratt B, Broomandi P, Buonanno G, Carlos Belalcazar Ceron L, Chen J, Cheng Y, Evans G, Gavidia M, Guo H, Hanigan I, Hu M, Jeong CH, Kelly F, Gallardo L, Kumar P, Lyu X, Mullins BJ, Nordstrøm C, Pereira G, Querol X, Yezid Rojas Roa N, Russell A, Thompson H, Wang H, Wang L, Wang T, Wierzbicka A, Xue T, Ye C. The state of science on severe air pollution episodes: Quantitative and qualitative analysis. ENVIRONMENT INTERNATIONAL 2021; 156:106732. [PMID: 34197974 DOI: 10.1016/j.envint.2021.106732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/27/2021] [Accepted: 06/21/2021] [Indexed: 05/16/2023]
Abstract
Severe episodic air pollution blankets entire cities and regions and have a profound impact on humans and their activities. We compiled daily fine particle (PM2.5) data from 100 cities in five continents, investigated the trends of number, frequency, and duration of pollution episodes, and compared these with the baseline trend in air pollution. We showed that the factors contributing to these events are complex; however, long-term measures to abate emissions from all anthropogenic sources at all times is also the most efficient way to reduce the occurrence of severe air pollution events. In the short term, accurate forecasting systems of such events based on the meteorological conditions favouring their occurrence, together with effective emergency mitigation of anthropogenic sources, may lessen their magnitude and/or duration. However, there is no clear way of preventing events caused by natural sources affected by climate change, such as wildfires and desert dust outbreaks.
Collapse
Affiliation(s)
- Lidia Morawska
- International Laboratory for Air Quality and Health, School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University Technology, 2 George Street, Brisbane, Queensland 4001, Australia; Global Centre for Clean Air Research, Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, United Kingdom.
| | - Tong Zhu
- College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Nairui Liu
- International Laboratory for Air Quality and Health, School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University Technology, 2 George Street, Brisbane, Queensland 4001, Australia
| | - Mehdi Amouei Torkmahalleh
- Chemical and Aerosol Research Team, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; The Environment and Resource Efficiency Cluster, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Maria de Fatima Andrade
- Department of Atmospheric Sciences, Institute of Astronomy, Geophysics and Atmospheric Sciences (IAG), University of Sao Paulo (USP), Brazil
| | - Benjamin Barratt
- Department of Environmental Health, King's College London, United Kingdom
| | - Parya Broomandi
- Chemical and Aerosol Research Team, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; School of Engineering, Islamic Azad University, Masjed Soleiman Branch, Iran
| | - Giorgio Buonanno
- International Laboratory for Air Quality and Health, School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University Technology, 2 George Street, Brisbane, Queensland 4001, Australia; University of Cassino and Southern Lazio, Cassino, Italy
| | | | - Jianmin Chen
- Environmental Science & Engineering, Fudan University, Shanghai, China
| | - Yan Cheng
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, China
| | - Greg Evans
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Mario Gavidia
- Department of Atmospheric Sciences, Institute of Astronomy, Geophysics and Atmospheric Sciences (IAG), University of Sao Paulo (USP), Brazil
| | - Hai Guo
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Ivan Hanigan
- The University of Sydney, University Centre for Rural Health, School of Public Health, New South Wales, Australia
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Peking University, Beijing, China
| | - Cheol H Jeong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Frank Kelly
- Department of Environmental Health, King's College London, United Kingdom
| | - Laura Gallardo
- Center for Climate and Resilience Research (CR2) and Departamento de Geofísica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Chile
| | - Prashant Kumar
- Global Centre for Clean Air Research, Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Xiaopu Lyu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Benjamin J Mullins
- School of Public Health, Curtin University, Perth, Western Australia, Australia
| | - Claus Nordstrøm
- Department of Environmental Science, Aarhus University, Denmark
| | - Gavin Pereira
- School of Public Health, Curtin University, Perth, Western Australia, Australia
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Barcelona, Spain
| | - Nestor Yezid Rojas Roa
- Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia, Colombia
| | - Armistead Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Helen Thompson
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Hao Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Lina Wang
- Environmental Science & Engineering, Fudan University, Shanghai, China
| | - Tao Wang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Aneta Wierzbicka
- Division of Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Tao Xue
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Celine Ye
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Peking University, Beijing, China
| |
Collapse
|
16
|
Santos FM, Gómez-Losada Á, Pires JCM. Empirical ozone isopleths at urban and suburban sites through evolutionary procedure-based models. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126386. [PMID: 34171669 DOI: 10.1016/j.jhazmat.2021.126386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/17/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Ozone (O3) is a reactive oxidant that causes chronic effects on human health, vegetation, ecosystems and materials. This study aims to create O3 isopleths in urban and suburban environments, based on machine learning with air quality data collected from 2001 to 2017 at urban (EA) and suburban (CC) monitoring stations from Madrid (Spain). Artificial neural network (ANN) models have powerful fitting performance, describing correctly several complex and nonlinear relationships such as O3 and his precursors (VOC and NOx). Also, ANN learns from the experience provided by data, contrary to mechanistic models based on the fundamental laws of natural sciences. The determined isopleths showed a different behaviour of the VOC-NOx-O3 system compared to the one achieved with a mechanistic model (EKMA curve): e.g. for constant NOx concentrations, O3 concentrations decreased with VOC concentrations in the ANN model. Considering the difficulty to model all the phenomena (and acquired all the required data) that influences O3 concentrations, the statistical models may be a solution to describe this system correctly. The applied methodology is a valuable tool for defining mitigation strategies (control of precursors' emissions) to reduce O3 concentrations. However, as these models are obtained by air quality data, they are not geographical transferable.
Collapse
Affiliation(s)
- Francisca M Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Álvaro Gómez-Losada
- Departamento de Estadística e Investigación Operativa, Facultad de Matemáticas, Universidad de Sevilla, Sevilla, Spain
| | - José C M Pires
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
17
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN, Baschir LA, Tenciu DV. Exploring the linkage between seasonality of environmental factors and COVID-19 waves in Madrid, Spain. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION : TRANSACTIONS OF THE INSTITUTION OF CHEMICAL ENGINEERS, PART B 2021; 152:583-600. [PMID: 36285289 PMCID: PMC9584827 DOI: 10.1016/j.psep.2021.06.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/14/2021] [Accepted: 06/27/2021] [Indexed: 05/07/2023]
Abstract
Like several countries, Spain experienced a multi wave pattern of COVID-19 pandemic over more than one year period, between spring 2020 and spring 2021. The transmission of SARS-CoV-2 pandemics is a multi-factorial process involving among other factors outdoor environmental variables and viral inactivation.This study aims to quantify the impact of climate and air pollution factors seasonality on incidence and severity of COVID-19 disease waves in Madrid metropolitan region in Spain. We employed descriptive statistics and Spearman rank correlation tests for analysis of daily in-situ and geospatial time-series of air quality and climate data to investigate the associations with COVID-19 incidence and lethality in Madrid under different synoptic meteorological patterns. During the analyzed period (1 January 2020-28 February 2021), with one month before each of three COVID-19 waves were recorded anomalous anticyclonic circulations in the mid-troposphere, with positive anomalies of geopotential heights at 500 mb and favorable stability conditions for SARS-CoV-2 fast diffusion. In addition, the results reveal that air temperature, Planetary Boundary Layer height, ground level ozone have a significant negative relationship with daily new COVID-19 confirmed cases and deaths. The findings of this study provide useful information to the public health authorities and policymakers for optimizing interventions during pandemics.
Collapse
Affiliation(s)
- Maria A Zoran
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Roxana S Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Dan M Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Marina N Tautan
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Laurentiu A Baschir
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Daniel V Tenciu
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| |
Collapse
|
18
|
Querol X, Massagué J, Alastuey A, Moreno T, Gangoiti G, Mantilla E, Duéguez JJ, Escudero M, Monfort E, Pérez García-Pando C, Petetin H, Jorba O, Vázquez V, de la Rosa J, Campos A, Muñóz M, Monge S, Hervás M, Javato R, Cornide MJ. Lessons from the COVID-19 air pollution decrease in Spain: Now what? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146380. [PMID: 34030280 PMCID: PMC8612101 DOI: 10.1016/j.scitotenv.2021.146380] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/05/2021] [Indexed: 05/19/2023]
Abstract
We offer an overview of the COVID-19 -driven air quality changes across 11 metropolises in Spain with the focus on lessons learned on how continuing abating pollution. Traffic flow decreased by up to 80% during the lockdown and remained relatively low during the full relaxation (June and July). After the lockdown a significant shift from public transport to private vehicles (+21% in Barcelona) persisted due to the pervasive fear that using public transport might increase the risk of SARS-CoV-2 infection, which need to be reverted as soon as possible. NO2 levels fell below 50% of the WHO annual air quality guidelines (WHOAQGs), but those of PM2.5 were reduced less than expected due to the lower contributions from traffic, increased contributions from agricultural and domestic biomass burning, or meteorological conditions favoring high secondary aerosol formation yields. Even during the lockdown, the annual PM2.5 WHOAQG was exceeded in cities within the NE and E regions with high NH3 emissions from farming and agriculture. Decreases in PM10 levels were greater than in PM2.5 due to reduced emissions from road dust, vehicle wear, and construction/demolition. Averaged O3 daily maximum 8-h (8hDM) experienced a generalized decrease in the rural receptor sites in the relaxation (June-July) with -20% reduced mobility. For urban areas O3 8hDM responses were heterogeneous, with increases or decreases depending on the period and location. Thus, after canceling out the effect of meteorology, 5 out of 11 cities experienced O3 decreases during the lockdown, while the remaining 6 either did not experience relevant reductions or increased. During the relaxation period and coinciding with the growing O3 season (June-July), most cities experienced decreases. However, the O3 WHOAQG was still exceeded during the lockdown and full relaxation periods in several cities. For secondary pollutants, such as O3 and PM2.5, further chemical and dispersion modeling along with source apportionment techniques to identify major precursor reduction targets are required to evaluate their abatement potential.
Collapse
Affiliation(s)
- Xavier Querol
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain.
| | - Jordi Massagué
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain; Department of Mining, Industrial and ICT Engineering, Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Manresa 08242, Spain
| | - Andrés Alastuey
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Teresa Moreno
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Gotzon Gangoiti
- Department of Chemical and Environmental Engineering, University of Basque Country, Leioa 48940, Spain
| | - Enrique Mantilla
- Centro de Estudios Ambientales del Mediterráneo, CEAM, València 46980, Spain
| | - José Jaime Duéguez
- Centro de Estudios Ambientales del Mediterráneo, CEAM, València 46980, Spain
| | - Miguel Escudero
- Centro Universitario de la Defensa, Academia General Militar, Zaragoza 50090, Spain
| | - Eliseo Monfort
- Instituto de Tecnología Cerámica ITC-UJI, Castelló 12006, Spain
| | - Carlos Pérez García-Pando
- Barcelona Supercomputing Center, BSC-CNS, Barcelona 08034, Spain; ICREA, Catalan Institution for Research and Advanced Studies, Barcelona 08010, Spain
| | - Hervé Petetin
- Barcelona Supercomputing Center, BSC-CNS, Barcelona 08034, Spain
| | - Oriol Jorba
- Barcelona Supercomputing Center, BSC-CNS, Barcelona 08034, Spain
| | - Víctor Vázquez
- Department of Ecology, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Department of Research and Development, Coccosphere Environmental Analysis, 29120 Málaga, Spain
| | - Jesús de la Rosa
- Department of Geology, University of Huelva, Unidad de Investigación Associada a IDAEA-CSIC, Huelva 21819, Spain
| | - Alberto Campos
- D.G. Calidad y Evaluación Ambiental del Ministerio de Transición Ecológica y Reto Demográfico, Madrid 28071, Spain
| | - Marta Muñóz
- D.G. Calidad y Evaluación Ambiental del Ministerio de Transición Ecológica y Reto Demográfico, Madrid 28071, Spain
| | - Silvia Monge
- D.G. Calidad y Evaluación Ambiental del Ministerio de Transición Ecológica y Reto Demográfico, Madrid 28071, Spain
| | - María Hervás
- D.G. Calidad y Evaluación Ambiental del Ministerio de Transición Ecológica y Reto Demográfico, Madrid 28071, Spain
| | - Rebeca Javato
- D.G. Calidad y Evaluación Ambiental del Ministerio de Transición Ecológica y Reto Demográfico, Madrid 28071, Spain
| | - María J Cornide
- D.G. Calidad y Evaluación Ambiental del Ministerio de Transición Ecológica y Reto Demográfico, Madrid 28071, Spain
| |
Collapse
|
19
|
Ordóñez C, Garrido-Perez JM, García-Herrera R. Early spring near-surface ozone in Europe during the COVID-19 shutdown: Meteorological effects outweigh emission changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141322. [PMID: 32781318 PMCID: PMC7385987 DOI: 10.1016/j.scitotenv.2020.141322] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 05/09/2023]
Abstract
This paper analyses the impact of the control measures during the COVID-19 lockdown in Europe (15 March-30 April 2020) on 1-h daily maximum nitrogen dioxide (NO2) and maximum daily 8-h running average ozone (MDA8 O3) observations obtained from the European Environment Agency's air quality database (AirBase). Daily maximum NO2 decreased consistently over the whole continent, with relative reductions ranging from 5% to 55% with respect to the same period in 2015-2019 for 80% of the sites considered (10th - 90th percentiles). However, MDA8 O3 concentrations showed a different pattern, decreasing over Iberia and increasing elsewhere. In particular, a large region from northwestern to central Europe experienced increases of 10-22% at urban background stations, reaching typical values of the summer season. The analysis of the expected NO2 and O3 concentrations in the absence of the lockdown, using generalised additive models fed by reanalysis meteorological data, shows that the low NO2 concentrations were mostly attributed to the emission reductions while O3 anomalies were dominated by the meteorology. The relevance of each meteorological variable depends on the location. The positive O3 anomalies in northwestern and central Europe were mostly associated with elevated temperatures, low specific humidity and enhanced solar radiation. This pattern could be an analogue to study the limits of pollution control policies under climate change scenarios. On the other hand, the O3 reduction in Iberia is mostly attributable to the low solar radiation and high specific humidity, although the reduced zonal wind also played a role in the proximity of the Iberian Mediterranean coast.
Collapse
Affiliation(s)
- Carlos Ordóñez
- Dpto. Física de la Tierra y Astrofísica, Universidad Complutense de Madrid, Madrid, Spain.
| | - Jose M Garrido-Perez
- Dpto. Física de la Tierra y Astrofísica, Universidad Complutense de Madrid, Madrid, Spain; Instituto de Geociencias (IGEO), CSIC-UCM, Madrid, Spain
| | - Ricardo García-Herrera
- Dpto. Física de la Tierra y Astrofísica, Universidad Complutense de Madrid, Madrid, Spain; Instituto de Geociencias (IGEO), CSIC-UCM, Madrid, Spain
| |
Collapse
|
20
|
Salvador P, Pandolfi M, Tobías A, Gómez-Moreno FJ, Molero F, Barreiro M, Pérez N, Revuelta MA, Marco IM, Querol X, Artíñano B. Impact of mixing layer height variations on air pollutant concentrations and health in a European urban area: Madrid (Spain), a case study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41702-41716. [PMID: 32696403 DOI: 10.1007/s11356-020-10146-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of local high-pollution episodes in densely populated urban areas, which have huge fleets of vehicles, is currently one of the most worrying problems associated with air pollution worldwide. Such episodes are produced under specific meteorological conditions, which favour the sudden increase of levels of air pollutants. This study has investigated the influence of the mixing layer height (MLH) on the concentration levels of atmospheric pollutants and daily mortality in Madrid, Spain, during the period 2011-2014. It may help to understand the causes and impact of local high-pollution episodes. MLH at midday over Madrid was daily estimated from meteorological radio soundings. Then, days with different MLH over this urban area were characterized by meteorological parameters registered at different levels of an instrumented tower and by composite sea level pressure maps, representing the associated synoptic meteorological scenarios. Next, statistically significant associations between MLH and levels of PM10, PM2.5, NO, NO2, CO and ultra-fine particles number concentrations registered at representative monitoring stations were evaluated. Finally, associations between all-natural cause daily mortality in Madrid, MLH, and air pollutants were estimated using conditional Poisson regression models. The reduction of MLH to values below 482 m above-ground level under strong atmospheric stagnation conditions was accompanied by a statistically significant increase in levels of NO, NO2, CO, PM2.5 and ultra-fine particle number concentrations at urban-traffic and suburban monitoring sites. The decrease of the MLH was also associated to a linear increase of the daily number of exceedances of the UE NO2 hourly limit value (200 μg/m3) and levels of air pollutants at hotspot urban-traffic monitoring stations. Also, a statistically significant association of the MLH with all-natural cause daily mortality was obtained. When the MLH increased by 830 m, the risk of mortality decreased by 2.5% the same day and by 3.3% the next day, when African dust episodic days were excluded. They were also higher in absolute terms than the increases in risk of mortality that were determined for the exposition to any other air pollutant. Our results suggest that when the prediction models foresee values of MLH below 482 m above-ground level in Madrid, the evolution of high-contamination episodes will be very favourable. Therefore, short-term policy measures will have to be implemented to reduce NO, NO2, CO, PM2.5 and ultra-fine particle emissions from anthropogenic sources in this southern European urban location.
Collapse
Affiliation(s)
- Pedro Salvador
- Department of Environment - Joint Research Unit Atmospheric Pollution CIEMAT-CSIC, CIEMAT, Av. Complutense 40, 28040, Madrid, Spain.
| | - Marco Pandolfi
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, c. Jordi Girona 18, 08034, Barcelona, Spain
| | - Aurelio Tobías
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, c. Jordi Girona 18, 08034, Barcelona, Spain
| | - Francisco Javier Gómez-Moreno
- Department of Environment - Joint Research Unit Atmospheric Pollution CIEMAT-CSIC, CIEMAT, Av. Complutense 40, 28040, Madrid, Spain
| | - Francisco Molero
- Department of Environment - Joint Research Unit Atmospheric Pollution CIEMAT-CSIC, CIEMAT, Av. Complutense 40, 28040, Madrid, Spain
| | - Marcos Barreiro
- Department of Environment - Joint Research Unit Atmospheric Pollution CIEMAT-CSIC, CIEMAT, Av. Complutense 40, 28040, Madrid, Spain
| | - Noemí Pérez
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, c. Jordi Girona 18, 08034, Barcelona, Spain
| | | | - Isabel Martínez Marco
- Spanish Meteorological Agency (AEMET), c. Leonardo Prieto Castro 8, 28071, Madrid, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, c. Jordi Girona 18, 08034, Barcelona, Spain
| | - Begoña Artíñano
- Department of Environment - Joint Research Unit Atmospheric Pollution CIEMAT-CSIC, CIEMAT, Av. Complutense 40, 28040, Madrid, Spain
| |
Collapse
|
21
|
Izquierdo R, García Dos Santos S, Borge R, Paz DDL, Sarigiannis D, Gotti A, Boldo E. Health impact assessment by the implementation of Madrid City air-quality plan in 2020. ENVIRONMENTAL RESEARCH 2020; 183:109021. [PMID: 32044574 DOI: 10.1016/j.envres.2019.109021] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 05/19/2023]
Abstract
OBJECTIVES Air pollutant concentrations in many urban areas are still above the legal and recommended limits that are set to protect the citizens' health. Madrid is one of the cities where traffic causes high NO2 levels. In this context, Madrid City Council launched the Air Quality and Climate Change Plan for the city of Madrid (Plan A), a local strategy approved by the previous government in 2017. The aim of this study was to conduct a quantitative health impact assessment to evaluate the number of premature deaths that could potentially be prevented by the implementation of Plan A in Madrid in 2020, at both citywide and within-city level. The main purpose was to support decision-making processes in order to maximize the positive health impacts from the implementation of Plan A measures. METHODS The Regional Statistical Office provided information on population and daily mortality in Madrid. For exposure assessment, we estimated PM2.5, NO2 and O3 concentration levels for Madrid city in 2012 (baseline air-quality scenario) and 2020 (projected air-quality scenario based on the implementation of Plan A), by means of an Eulerian chemical-transport model with a spatial resolution of 1 km × 1 km and 30 vertical levels. We used the concentration-response functions proposed by two relevant WHO projects to calculate the number of attributable annual deaths corresponding to all non-accidental causes (ICD-10: A00-R99) among all-ages and the adult population (>30 years old) for each district and for Madrid city overall. This health impact assessment was conducted dependant on health-data availability. RESULTS In 2020, the implementation of Plan A would imply a reduction in the Madrid citywide annual mean PM2.5 concentration of 0.6 μg/m3 and 4.0 μg/m3 for NO2. In contrast, an increase of 1 μg/m3 for O3 would be expected. The annual number of all-cause deaths from long-term exposure (95% CI) that could be postponed in the adult population by the expected air-pollutant concentration reduction was 88 (57-117) for PM2.5 and 519 (295-750) for NO2; short-term exposure accounted for 20 (7-32) for PM2.5 and 79 (47-111) for NO2 in the total population. According to the spatial distribution of air pollutants, the highest mortality change estimations were for the city centre - including Madrid Central and mainly within the M-30 ring road -, as compared to peripheral districts. The positive health impacts from the reductions in PM2.5 and NO2 far exceeded the adverse mortality effects expected from the increase in O3. CONCLUSIONS Effective implementation of Plan A measures in Madrid city would bring about an appreciable decline in traffic-related air-pollutant concentrations and, in turn, would lead to significant health-related benefits.
Collapse
Affiliation(s)
- Rebeca Izquierdo
- Cancer and Environmental Epidemiology Unit, National Epidemiology Centre, Carlos III Health Institute (ISCIII), Avenida Monforte de Lemos 5, 28029 Madrid, Spain; Department of Atmospheric Pollution, National Environmental Health Centre), Carlos III Health Institute (ISCIII), Road Majadahonda-Pozuelo km. 2.2, Majadahonda, 28220 Madrid, Spain
| | - Saul García Dos Santos
- Department of Atmospheric Pollution, National Environmental Health Centre), Carlos III Health Institute (ISCIII), Road Majadahonda-Pozuelo km. 2.2, Majadahonda, 28220 Madrid, Spain
| | - Rafael Borge
- Environmental Modelling Laboratory, Department of Chemical & Environmental Engineering, Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - David de la Paz
- Environmental Modelling Laboratory, Department of Chemical & Environmental Engineering, Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Denis Sarigiannis
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001, Greece; University School of Advanced Study IUSS, Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Alberto Gotti
- European Centre for Training and Research in Earthquake Engineering (EUCENTRE), Via Ferrata, 1, 27100, Pavia, Italy
| | - Elena Boldo
- Cancer and Environmental Epidemiology Unit, National Epidemiology Centre, Carlos III Health Institute (ISCIII), Avenida Monforte de Lemos 5, 28029 Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Carlos III Institute of Health, Avenida Monforte de Lemos 5, 28029 Madrid, Spain.
| |
Collapse
|
22
|
Adame JA, Notario A, Cuevas CA, Lozano A, Yela M, Saiz-Lopez A. Recent increase in NO 2 levels in the southeast of the Iberian Peninsula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133587. [PMID: 31369892 DOI: 10.1016/j.scitotenv.2019.133587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/09/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
We report the evolution of tropospheric NO2 over the south-east of the Iberian Peninsula from 2005 to 2017. We have used hourly NO2 levels measured at air-quality stations in urban and suburban environments. Annual averages ranged between 14 and 45 μg m-3, with peaks above 200 μg m-3. A monthly variation was observed, with higher concentrations in cold months (40-60 μg m-3) and lower levels in the warm season (13-17 μg m-3). A diurnal pattern was found in urban and suburban areas. The upward trend in NO2 observed during the whole period contrasts with the upward trend reported in 2013-2017. The NO2 tropospheric column levels measured by the Ozone Monitoring Instrument over the Iberian Peninsula indicated a similar behaviour; nevertheless, the largest Spanish metropolitan areas did not show this increase. The mean sea level pressure and wind field data of ERA5 (European Centre for Medium-Range Weather Forecasts) were used to investigate the weather conditions, the NO2 outputs of the Copernicus Monitoring Services being used for the assessment of the NO2 spatial distribution. NO2 regional events, with concentrations in the range 140-150 μg m-3, and which occurred both in the winter and summer season under anticyclonic conditions, are also described. A local origin is identified in winter, whereas in summer, they are associated with a high-pressure system that blocks Mediterranean outflows towards the Atlantic Ocean. The high NO2 levels are attributed mainly to two factors: i) local emissions, rather than contributions from the western Mediterranean (or even North Africa), and ii) an increase in the pressure gradient between the Atlantic and the Mediterranean pressure systems, associated with a decrease in wind speed, was found during the last five years compared with the previous eight. Meteorological and chemical changes in mid-latitudes associated with global warming should also be investigated in the future.
Collapse
Affiliation(s)
- J A Adame
- Atmospheric Sounding Station, El Arenosillo Observatory, Atmospheric Research and Instrumentation Branch, National Institute for Aerospace Technology (INTA), Mazagón, Huelva, Spain.
| | - A Notario
- Universidad de Castilla-La Mancha, Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Ciudad Real, Spain; Universidad de Castilla-La Mancha, Instituto de Investigación en Combustión y Contaminación Atmosférica, Camino de Moledores s/n, Ciudad Real, Spain
| | - C A Cuevas
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain
| | - A Lozano
- Agencia de Medio Ambiente y Agua de Andalucía, Seville, Spain
| | - M Yela
- Atmospheric Sounding Station, El Arenosillo Observatory, Atmospheric Research and Instrumentation Branch, National Institute for Aerospace Technology (INTA), Mazagón, Huelva, Spain
| | - A Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain
| |
Collapse
|
23
|
Wang S, Song T, Shiraiwa M, Song J, Ren H, Ren L, Wei L, Sun Y, Zhang Y, Fu P, Lai S. Occurrence of Aerosol Proteinaceous Matter in Urban Beijing: An Investigation on Composition, Sources, and Atmospheric Processes During the "APEC Blue" Period. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7380-7390. [PMID: 31117537 DOI: 10.1021/acs.est.9b00726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aerosol proteinaceous matter is comprised of a substantial fraction of bioaerosols. Its origins and interactions in the atmosphere remain poorly understood. We present observations of total proteins, combined, and free amino acids (CAAs and FAAs) in fine particulate matter (PM2.5) samples in urban Beijing before and during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. The decreases in proteins, CAAs and FAAs levels were observed after the implementation of restrictive emission controls. Significant changes were observed for the composition profiles in FAAs with the predominance of valine before the APEC and glycine during the APEC, respectively. These variations could be attributed to the influence of sources, atmospheric processes, and meteorological conditions. FAAs (especially valine and glycine) were suggested to be released by the degradation of high molecular weight proteins/polypeptides by atmospheric oxidants (i.e., ozone and free radicals) and nitrogen dioxide. Besides daytime reactions, nighttime chemistry was found to play an important role in the atmospheric formation of valine during the nights, suggesting the possible influence of NO3 radicals. Our findings provide new insights into the significant impacts of atmospheric oxidation capacity on the occurrence and transformation of aerosol proteinaceous matter which may affect its environmental, climate and health effects.
Collapse
Affiliation(s)
- Shan Wang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, and Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy , South China University of Technology , Guangzhou 510006 , China
| | - Tianli Song
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, and Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy , South China University of Technology , Guangzhou 510006 , China
| | - Manabu Shiraiwa
- Department of Chemistry , University of California , Irvine , California 92697-2025 , United States
| | - Junwei Song
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, and Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy , South China University of Technology , Guangzhou 510006 , China
- Now at Institute of Meteorology and Climate Research , Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen 76344 , Germany
| | - Hong Ren
- Institute of Surface-Earth System Science , Tianjin University , Tianjin 300072 , China
| | - Lujie Ren
- Institute of Surface-Earth System Science , Tianjin University , Tianjin 300072 , China
| | - Lianfang Wei
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics , Chinese Academy of Sciences , Beijing 100029 , China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics , Chinese Academy of Sciences , Beijing 100029 , China
| | - Yingyi Zhang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, and Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy , South China University of Technology , Guangzhou 510006 , China
| | - Pingqing Fu
- Institute of Surface-Earth System Science , Tianjin University , Tianjin 300072 , China
| | - Senchao Lai
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, and Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy , South China University of Technology , Guangzhou 510006 , China
| |
Collapse
|
24
|
Chokkalingam A, Chaikittisilp W, Iyoki K, Keoh SH, Yanaba Y, Yoshikawa T, Kusamoto T, Okubo T, Wakihara T. Ultrafast synthesis of AFX-Type zeolite with enhanced activity in the selective catalytic reduction of NOx and hydrothermal stability. RSC Adv 2019; 9:16790-16796. [PMID: 35516373 PMCID: PMC9064439 DOI: 10.1039/c9ra02787d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 05/22/2019] [Indexed: 11/21/2022] Open
Abstract
Shortening the synthesis time of SSZ-16 (AFX type) zeolite from several days to 2 h has been achieved using an ultrafast synthesis route involving N,N,N',N'-tetraethylbicyclo[2.2.2]oct-7-ene-2,3:5,6-dipyrrolidinium (TEBOP) as an organic structure-directing agent (OSDA) in a tubular reactor assisted by seed crystals. Recently, copper exchanged SSZ-16 has been looked upon as one of the few equivalents to SSZ-13 for the selective catalytic reduction of NOx with ammonia (NH3-SCR) from automobile exhausts. Hydrothermal stability is one of the crucial properties for any zeolites that compete for automobile applications. All the samples prepared were analyzed using sophisticated physio-chemical techniques and those prepared from TEBOP were subjected to SCR of NOx reactions. The rapid crystal growth induced by high synthesis temperature bestowed the ultrafast prepared SSZ-16 with high crystallinity and hydrothermal stability as well as enhanced SCR of NOx activity even when aged at 800 °C. Compared to 1,1'-(1,4-butanediyl)bis-4-aza-1-azoniabicyclo[2.2.2]octane dibromide (DABCO), TEBOP was found to be desirable as an OSDA for high crystallinity and hydrothermal stability.
Collapse
Affiliation(s)
- Anand Chokkalingam
- Department of Chemical System Engineering, The University of Tokyo Tokyo 113-8656 Japan
| | | | - Kenta Iyoki
- Department of Chemical System Engineering, The University of Tokyo Tokyo 113-8656 Japan
| | - Sye Hoe Keoh
- Department of Chemical System Engineering, The University of Tokyo Tokyo 113-8656 Japan
| | - Yutaka Yanaba
- Institute of Industrial Science, The University of Tokyo Tokyo 153-8505 Japan
| | - Takeshi Yoshikawa
- Institute of Industrial Science, The University of Tokyo Tokyo 153-8505 Japan
| | - Tetsuro Kusamoto
- Department of Chemistry, Graduate School of Science, The University of Tokyo Bunkyo-ku Tokyo 113-0033 Japan
| | - Tatsuya Okubo
- Department of Chemical System Engineering, The University of Tokyo Tokyo 113-8656 Japan
| | - Toru Wakihara
- Department of Chemical System Engineering, The University of Tokyo Tokyo 113-8656 Japan
| |
Collapse
|
25
|
Pay MT, Gangoiti G, Guevara M, Napelenok S, Querol X, Jorba O, García-Pando CP. Ozone source apportionment during peak summer events over southwestern Europe. ATMOSPHERIC CHEMISTRY AND PHYSICS 2019; 19:5467-5494. [PMID: 33424952 PMCID: PMC7788066 DOI: 10.5194/acp-19-5467-2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
It is well established that in Europe, high O3 concentrations are most pronounced in southern/Mediterranean countries due to the more favourable climatological conditions for its formation. However, the contribution of the different sources of precursors to O3 formation within each country relative to the imported (regional and hemispheric) O3 is poorly quantified. This lack of quantitative knowledge prevents local authorities from effectively designing plans that reduce the exceedances of the O3 target value set by the European air quality directive. O3 source attribution is a challenge because the concentration at each location and time results not only from local biogenic and anthropogenic precursors, but also from the transport of O3 and precursors from neighbouring regions, O3 regional and hemispheric transport and stratospheric O3 injections. The main goal of this study is to provide a first quantitative estimation of the contribution of the main anthropogenic activity sectors to peak O3 events in Spain relative to the contribution of imported (regional and hemispheric) O3. We also assess the potential of our source apportionment method to improve O3 modelling. Our study applies and thoroughly evaluates a countrywide O3 source apportionment method implemented in the CALIOPE air quality forecast system for Spain at high resolution (4 × 4 km2) over a 10-day period characterized by typical summer conditions in the Iberian Peninsula (IP). The method tags both O3 and its gas precursor emissions from source sectors within one simulation, and each tagged species is subject to the typical physico-chemical processes (advection, vertical mixing, deposition, emission and chemistry) as the actual conditions remain unperturbed. We quantify the individual contributions of the largest NO x local sources to high O3 concentrations compared with the contribution of imported O3. We show, for the first time, that imported O3 is the largest input to the ground-level O3 concentration in the IP, accounting for 46 %-68 % of the daily mean O3 concentration during exceedances of the European target value. The hourly imported O3 increases during typical northwestern advections (70 %-90 %, 60-80 μg m-3), and decreases during typical stagnant conditions (30 %-40 %, 30-60 μg m-3) due to the local NO titration. During stagnant conditions, the local anthropogenic precursors control the O3 peaks in areas downwind of the main urban and industrial regions (up to 40 % in hourly peaks). We also show that ground-level O3 concentrations are strongly affected by vertical mixing of O3-rich layers present in the free troposphere, which result from local/regional layering and accumulation, and continental/hemispheric transport. Indeed, vertical mixing largely explains the presence of imported O3 at ground level in the IP. Our results demonstrate the need for detailed quantification of the local and remote contributions to high O3 concentrations for local O3 management, and show O3 source apportionment to be an essential analysis prior to the design of O3 mitigation plans in any non-attainment area. Achieving the European O3 objectives in southern Europe requires not only ad hoc local actions but also decided national and European-wide strategies.
Collapse
Affiliation(s)
- María Teresa Pay
- Earth Sciences Department, Barcelona Supercomputing Center, BSC, c/Jordi Girona, 29, 08034 Barcelona, Spain
| | - Gotzon Gangoiti
- Department of Chemical and Environmental Engineering, University of the Basque Country UPV/EHU, ETSI-Bilbao School of Engineering, Alameda de Urquijo s/n, 48013 Bilbao, Spain
| | - Marc Guevara
- Earth Sciences Department, Barcelona Supercomputing Center, BSC, c/Jordi Girona, 29, 08034 Barcelona, Spain
| | - Sergey Napelenok
- United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, c/Jordi Girona, 18–26, 08034 Barcelona, Spain
| | - Oriol Jorba
- Earth Sciences Department, Barcelona Supercomputing Center, BSC, c/Jordi Girona, 29, 08034 Barcelona, Spain
| | - Carlos Pérez García-Pando
- Earth Sciences Department, Barcelona Supercomputing Center, BSC, c/Jordi Girona, 29, 08034 Barcelona, Spain
| |
Collapse
|
26
|
Borge R, Artíñano B, Yagüe C, Gomez-Moreno FJ, Saiz-Lopez A, Sastre M, Narros A, García-Nieto D, Benavent N, Maqueda G, Barreiro M, de Andrés JM, Cristóbal Á. Application of a short term air quality action plan in Madrid (Spain) under a high-pollution episode - Part I: Diagnostic and analysis from observations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1561-1573. [PMID: 29605235 DOI: 10.1016/j.scitotenv.2018.03.149] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/01/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
Exceedances of NO2 hourly limit value (200 μg·m-3) imply the need to implement short term action plans to avoid adverse effects on human health in urban areas. The Madrid City Council applied the stage 3 of the NO2 protocol during a high-pollution episode under stable meteorological conditions on December 2016 for the first time. This included road traffic access restrictions to the city centre (50% of conventional private vehicles based on plate numbers). In this contribution we analyse different meteorological and air quality observations, including non-standard parameters (such as number of ultrafine particles and remote sensing techniques MAXDOAS) for a better understanding of the effectivity of short-term emission abatement measures under real conditions and to identify options to improve the NO2 protocol in the future. According to our results, the inversion base height computed from vertical temperature soundings is a meaningful index to anticipate very unfavourable conditions and trigger the actions included in the protocol. The analysis of the concentration levels of the main pollutants from the Madrid air quality monitoring network indicate that only stage 3 of the protocol had a significant effect on NO2 maximum concentrations. The restrictions applied may have prevented NO2 concentrations to further increase in the city centre (up to 15%) although pollution levels in the city outskirts, outside the area directly affected by the traffic restrictions, remained unchanged or may have been slightly increased. Nonetheless, further studies are needed to estimate more precisely the effect of the measures taken and to assess potential trade-offs. Our results suggest that emissions play an important role also under very strong stability conditions although drastic measures are needed to achieve a significant impact. This highlights the importance of an appropriate timing for short-term actions and the need of permanent abatement measures related to air quality plans and policies.
Collapse
Affiliation(s)
- Rafael Borge
- Environmental Modelling Laboratory, Department of Chemical & Environmental Engineering, Technical University of Madrid, UPM, 28006 Madrid, Spain.
| | | | - Carlos Yagüe
- Department of Earth Physics and Astrophysics, University Complutense of Madrid, Faculty of Physical Sciences, E-28040 Madrid, Spain
| | | | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid 28006, Spain
| | - Mariano Sastre
- Department of Earth Physics and Astrophysics, University Complutense of Madrid, Faculty of Physical Sciences, E-28040 Madrid, Spain
| | - Adolfo Narros
- Environmental Modelling Laboratory, Department of Chemical & Environmental Engineering, Technical University of Madrid, UPM, 28006 Madrid, Spain
| | - David García-Nieto
- Environmental Modelling Laboratory, Department of Chemical & Environmental Engineering, Technical University of Madrid, UPM, 28006 Madrid, Spain; Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid 28006, Spain
| | - Nuria Benavent
- Environmental Modelling Laboratory, Department of Chemical & Environmental Engineering, Technical University of Madrid, UPM, 28006 Madrid, Spain; Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid 28006, Spain
| | - Gregorio Maqueda
- Department of Earth Physics and Astrophysics, University Complutense of Madrid, Faculty of Physical Sciences, E-28040 Madrid, Spain
| | | | - Juan Manuel de Andrés
- Environmental Modelling Laboratory, Department of Chemical & Environmental Engineering, Technical University of Madrid, UPM, 28006 Madrid, Spain
| | - Ángeles Cristóbal
- General Directorate of Sustainability and Environmental Control. Madrid City Council, 28045 Madrid, Spain
| |
Collapse
|
27
|
Borge R, Santiago JL, de la Paz D, Martín F, Domingo J, Valdés C, Sánchez B, Rivas E, Rozas MT, Lázaro S, Pérez J, Fernández Á. Application of a short term air quality action plan in Madrid (Spain) under a high-pollution episode - Part II: Assessment from multi-scale modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1574-1584. [PMID: 29739658 DOI: 10.1016/j.scitotenv.2018.04.323] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/12/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
Air pollution continues to be one of the main issues in urban areas. In addition to air quality plans and emission abatement policies, additional measures for high pollution episodes are needed to avoid exceedances of hourly limit values under unfavourable meteorological conditions such as the Madrid's short-term action NO2 protocol. In December 2016 there was a strong atmospheric stability episode that turned out in generalized high NO2 levels, causing the stage 3 of the NO2 protocol to be triggered for the first time in Madrid (29th December). In addition to other traffic-related measures, this involves access restrictions to the city centre (50% to private cars). We simulated the episode with and without measures under a multi-scale modelling approach. A 1 km2 resolution modelling system based on WRF-SMOKE-CMAQ was applied to assess city-wide effects while the Star-CCM+ (RANS CFD model) was used to investigate the effect at street level in a microscale domain in the city centre, focusing on Gran Vía Avenue. Changes in road traffic were simulated with the mesoscale VISUM model, incorporating real flux measurements during those days. The corresponding simulations suggest that the application of the protocol during this particular episode may have prevented concentrations to increase by 24 μg·m-3 (14% respect to the hypothetical no action scenario) downtown although it may have cause NO2 to slightly increase in the city outskirts due to traffic redistribution. Speed limitation and parking restrictions alone (stages 1 and 2 respectively) have a very limited effect. The microscale simulation provides consistent results but shows an important variability at street level, with reduction above 100 μg·m-3 in some spots inside Gran Vía. Although further research is needed, these results point out the need to implement short-term action plans and to apply a consistent multi-scale modelling assessment to optimize urban air quality abatement strategies.
Collapse
Affiliation(s)
- Rafael Borge
- Environmental Modelling Laboratory, Department of Chemical & Environmental Engineering, Technical University of Madrid, (UPM), 28006 Madrid, Spain.
| | | | - David de la Paz
- Environmental Modelling Laboratory, Department of Chemical & Environmental Engineering, Technical University of Madrid, (UPM), 28006 Madrid, Spain
| | | | - Jessica Domingo
- Environmental Modelling Laboratory, Department of Chemical & Environmental Engineering, Technical University of Madrid, (UPM), 28006 Madrid, Spain
| | | | | | - Esther Rivas
- Department of Environment, CIEMAT, Madrid E-28040, Spain
| | | | - Sonia Lázaro
- Environmental Modelling Laboratory, Department of Chemical & Environmental Engineering, Technical University of Madrid, (UPM), 28006 Madrid, Spain
| | - Javier Pérez
- Environmental Modelling Laboratory, Department of Chemical & Environmental Engineering, Technical University of Madrid, (UPM), 28006 Madrid, Spain
| | | |
Collapse
|