1
|
Zhang Z, Zhang P, He F, Hou Y, Geng X, Xu R, Li R, Tian Y, Li W, Sun G, Jiang R, Liu X, Han R, Li G, Kang X, Li D. Integrated analysis of tyrosine-induced MiRNA and mRNA expression profiles in melanocytes reveals the regulatory role of miR-1560-3p in melanin deposition in Xichuan black-bone chickens. BMC Genomics 2025; 26:348. [PMID: 40197172 PMCID: PMC11974055 DOI: 10.1186/s12864-025-11543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/28/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Tyrosine is a prerequisite for melanin biosynthesis and plays a crucial role in the growth and development of melanocytes, but the underlying mechanism is still unclear. In our previous research, we added 10- 9-10- 6 mol/L tyrosine to the melanocytes of black-bone chickens and found that 10- 6 mol/L tyrosine significantly increased the tyrosinase content in melanocytes. METHODS In this study, melanocytes from Xichuan black-bone chickens were used as research objects, 10- 6 mol/L tyrosine was added for transcriptome sequencing. By analyzing miRNA and mRNA expression profiles, the miRNA-mRNA network was constructed, the targeting relationship was demonstrated by double luciferase reporting experiments, and the influence of tyrosine-mediated miRNA-mRNA network on melanin deposition was verified by constructing overexpression and interference vectors. RESULTS We found that tyrosine promoted the proliferation and migration of melanocytes, and expression profile analysis identified 57 differentially expressed mRNAs (DEGs) and 19 differentially expressed miRNAs (DEMs). Fifty miRNA‒mRNA target gene pairs were identified via coexpression network analysis of the DEGs and the DEMs that were predicted to target various genes. Notably, VIP gene was reported to be involved in the development and deposition of melanoma cells. The binding of VIP to miR-1560-3p was further validated by a dual-luciferase reporter assay. In addition, test confirmed that miR-1560-3p inhibited the proliferation and migration of melanocytes and reduced the tyrosinase content. In conclusion, we found that tyrosine may affects melanin deposition in Xichuan black-bone chickens by affecting the miR-1560-3p-VIP axis. The results of this study provide experimental evidence for elucidating the mechanism of tyrosine in melanin deposition in black-bone chickens, and may serve as a reference for future investigations.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Pengwei Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Fumin He
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Yingdong Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Xiaowen Geng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Ruilong Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Ruiting Li
- Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China.
- The Shennong Laboratory, Zhengzhou, 450002, China.
| |
Collapse
|
2
|
Muthusamy M, Ramasamy KT, Peters SO, Palani S, Gowthaman V, Nagarajan M, Karuppusamy S, Thangavelu V, Aranganoor Kannan T. Transcriptomic Profiling Reveals Altered Expression of Genes Involved in Metabolic and Immune Processes in NDV-Infected Chicken Embryos. Metabolites 2024; 14:669. [PMID: 39728450 DOI: 10.3390/metabo14120669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVE The poultry industry is significantly impacted by viral infections, particularly Newcastle Disease Virus (NDV), which leads to substantial economic losses. It is essential to comprehend how the sequence of development affects biological pathways and how early exposure to infections might affect immune responses. METHODS This study employed transcriptome analysis to investigate host-pathogen interactions by analyzing gene expression changes in NDV-infected chicken embryos' lungs. RESULT RNA-Seq reads were aligned with the chicken reference genome (Galgal7), revealing 594 differentially expressed genes: 264 upregulated and 330 downregulated. The most overexpressed genes, with logFC between 8.15 and 8.75, included C8A, FGG, PIT54, FETUB, APOC3, and FGA. Notably, downregulated genes included BPIFB3 (-4.46 logFC) and TRIM39.1 (-4.26 logFC). The analysis also identified 29 novel transcripts and 20 lncRNAs that were upregulated. Gene Ontology and KEGG pathways' analyses revealed significant alterations in gene expression related to immune function, metabolism, cell cycle, nucleic acid processes, and mitochondrial activity due to NDV infection. Key metabolic genes, such as ALDOB (3.27 logFC), PRPS2 (2.66 logFC), and XDH (2.15 logFC), exhibited altered expression patterns, while DCK2 (-1.99 logFC) and TK1 (-2.11 logFC) were also affected. Several immune-related genes showed significant upregulation in infected lung samples, including ALB (6.15 logFC), TLR4 (1.86 logFC), TLR2 (2.79 logFC), and interleukin receptors, such as IL1R2 (3.15 logFC) and IL22RA2 (1.37 logFC). Conversely, genes such as CXCR4 (-1.49 logFC), CXCL14 (-2.57 logFC), GATA3 (-1.51 logFC), and IL17REL (-2.93 logFC) were downregulated. The higher expression of HSP genes underscores their vital role in immune responses. CONCLUSION Comprehension of these genes' interactions is essential for regulating viral replication and immune responses during infections, potentially aiding in the identification of candidate genes for poultry breed improvement amidst NDV challenges.
Collapse
Affiliation(s)
- Malarmathi Muthusamy
- Department of Animal Genetics and Breeding, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Namakkal 637002, India
| | - Kannaki T Ramasamy
- Indian Council of Agricultural Research-Directorate of Poultry Research, Hyderabad 500030, India
| | | | - Srinivasan Palani
- Department of Veterinary Pathology, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Namakkal 637002, India
| | - Vasudevan Gowthaman
- Poultry Disease Diagnosis and Surveillance Laboratory, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Namakkal 637002, India
| | - Murali Nagarajan
- Alambadi Cattle Breed Research Centre, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Dharmapuri 635111, India
| | - Sivakumar Karuppusamy
- Faculty of Food and Agriculture, The University of the West Indies, St. Augustine 999183, Trinidad and Tobago
| | | | - Thiruvenkadan Aranganoor Kannan
- Department of Animal Genetics and Breeding, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Namakkal 637002, India
| |
Collapse
|
3
|
Gao YN, Min L, Yang X, Wang JQ, Zheng N. The coexistence of aflatoxin M1 and ochratoxin A induced intestinal barrier disruption via the regulation of key differentially expressed microRNAs and long non-coding RNAs in BALB/c mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115428. [PMID: 37688864 DOI: 10.1016/j.ecoenv.2023.115428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/07/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Food safety can be seriously threatened by the existence of both aflatoxin M1 (AFM1) and ochratoxin A (OTA) in milk and corresponding products. The importance of intestine integrity in preserving human health is widely understood in vitro, but the fundamental processes by which AFM1 and OTA cause disruption of the intestinal barrier are as yet unknown, especially in vivo. Based on the analysis of the whole transcriptome of BALB/c mice, the competing endogenous RNA (ceRNA) regulation network was obtained in the current study. Each of 12 mice were separated into five treatments: saline solution treatment, 1.0% DMSO vehicle control treatment, 3.0 mg/kg b.w. individual AFM1 treatment (AFM1), 3.0 mg/kg b.w. individual OTA treatment (OTA), and combined mycotoxins treatment (AFM1 +OTA). The study period lasted 28 days. The jejunum tissue was collected for the histological assessment and whole transcriptome analysis, and the whole blood was collected, and determination of serum biochemical indicators. The phenotypic results demonstrated that AFM1 and OTA caused intestinal barrier disruption via an increased apoptosis level and decreased expression of tight junction (TJ) proteins. The ceRNA network demonstrated that AFM1 and OTA induced cell apoptosis through activating the expression of DUSP9 and suppressing the expression of PLA2G2D, which were regulated by differentially expressed microRNAs (DEmiRNAs) (miR-124-y, miR-194-z, miR-224-x, and miR-452-x) and differentially expressed long non-coding RNAs (DElncRNAs) (FUT8 and GPR31C). And AFM1 and OTA decreased TJ proteins via inhibiting the expression of PAK6, which was regulated by several important DEmiRNAs and DElncRNAs. These DE RNAs in intestinal integrity were involved in MAPK and Ras signaling pathway. Overall, our findings expand the current knowledge regarding the potential mechanisms of intestinal integrity disruption brought on by AFM1 and OTA in vivo.
Collapse
Affiliation(s)
- Ya-Nan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Li Min
- Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xue Yang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jia-Qi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
4
|
Sadr AS, Nassiri M, Ghaderi-Zefrehei M, Heidari M, Smith J, Muhaghegh Dolatabady M. RNA-Seq Profiling between Commercial and Indigenous Iranian Chickens Highlights Differences in Innate Immune Gene Expression. Genes (Basel) 2023; 14:genes14040793. [PMID: 37107551 PMCID: PMC10138050 DOI: 10.3390/genes14040793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The purpose of the current study was to examine transcriptomic-based profiling of differentially expressed innate immune genes between indigenous and commercial chickens. In order to compare the transcriptome profiles of the different chicken breeds, we extracted RNA from blood samples of the Isfahan indigenous chicken (as indigenous) and Ross broiler chicken (as commercial) breeds. RNA-Seq yielded totals of 36,763,939 and 31,545,002 reads for the indigenous and commercial breeds, respectively, with clean reads then aligned to the chicken reference genome (Galgal5). Overall, 1327 genes were significantly differentially expressed, of which 1013 genes were upregulated in the commercial versus the indigenous breed, while 314 were more highly expressed in the indigenous birds. Furthermore, our results demonstrated that the SPARC, ATP6V0D2, IL4I1, SMPDL3A, ADAM7, TMCC3, ULK2, MYO6, THG1L and IRG1 genes were the most significantly expressed genes in the commercial birds and the PAPPA, DUSP1, PSMD12, LHX8, IL8, TRPM2, GDAP1L1, FAM161A, ABCC2 and ASAH2 genes were the most significant in the indigenous chickens. Of notable finding in this study was that the high-level gene expressions of heat-shock proteins (HSPs) in the indigenous breeds could serve as a guideline for future genetic improvement. This study identified genes with breed-specific expression, and comparative transcriptome analysis helped understanding of the differences in underlying genetic mechanisms between commercial and local breeds. Therefore, the current results can be used to identify candidate genes for further breed improvement.
Collapse
Affiliation(s)
- Ayeh Sadat Sadr
- South of Iran Aquaculture Research Institute, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Ahvaz 71867-37533, Iran
| | - Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran
- Research Associate/Peptide Drug and Bioinformatics, School of Biotechnology and Biomolecular Sciences Level 2, E26, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Mostafa Ghaderi-Zefrehei
- Department of Animal Science, Agricultural Faculty, Yasouj University, Yasouj 75918-74934, Iran
- Correspondence: or (M.G.-Z.); (J.S.)
| | - Maryam Heidari
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 83111-84156, Iran
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
- Correspondence: or (M.G.-Z.); (J.S.)
| | | |
Collapse
|
5
|
Gao YN, Wang ZW, Yang X, Wang JQ, Zheng N. Aflatoxin M1 and ochratoxin A induce a competitive endogenous RNA regulatory network of intestinal immunosuppression by whole-transcriptome analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158777. [PMID: 36115400 DOI: 10.1016/j.scitotenv.2022.158777] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Aflatoxin M1 (AFM1) and ochratoxin A (OTA) are common mycotoxins in cereal foods and milk products, and may cause serious negative impacts on human health. The intestine is crucial for immune regulation as it protects host homeostatic health from external contaminants; however, the underlying mechanisms of AFM1 and OTA mediated intestinal immunotoxicity remain unclear. In this study, whole transcriptome analysis was used to characterize BALB/c mouse intestines exposed to individual and combined AFM1 and OTA [3.0 mg/kg body weight (BW)] for 28 days to screen for key intestinal immunotoxicity-related differentially expressed mRNAs (DEmRNAs), differentially expressed microRNAs (DEmiRNAs), differentially expressed long non-coding RNAs (DElncRNAs), and associated enriched signaling pathways. Functional validation was then conducted in intestinal differentiated Caco-2 cells using different inhibitor assays to verify the accuracy of transcriptome and the importance of the key screened regulatory factors. In vivo data revealed that AFM1 and OTA exposure disrupted the intestines and exerted intestinal immunosuppression effects. When compared with AFM1, OTA had stronger intestinal toxicity in combined treatments. Further analyses of competitive endogenous RNA (ceRNA) regulatory networks in mice showed that AFM1 and OTA mediated-intestinal immunosuppression was putatively explained as follows: (i) toxins affected DEmRNAs regarding transfer and transduction mechanisms between cells (Csf1, Csf1r, Cxcl10, Cx3cr1, and Irf1), which were regulated by key DEmiRNAs (miR-106-x, miR-107-y, and miR-124-y) and the DElncRNA Rian, and (ii) toxins inhibited transforming growth factor-β-activated kinase 1 (TAK1)/I-kappaB kinase (IKK)/inhibitor of kappa Bα (IκBα)/p65 nuclear factor-κB (NF-κB) signaling phosphorylation levels, which was validated in differentiated Caco-2 cells using the TAK1 inhibitor (5Z-7-oxozeaenol). In conclusion, we evaluated the risk of co-exposure to AFM1 and OTA and associated health hazards from a whole transcriptome perspective.
Collapse
Affiliation(s)
- Ya-Nan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zi-Wei Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Yang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jia-Qi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
6
|
Prado GHJD, Sardeli AV, Lord JM, Cavaglieri CR. The effects of ageing, BMI and physical activity on blood IL-15 levels: A systematic review and meta-analyses. Exp Gerontol 2022; 168:111933. [PMID: 36007720 DOI: 10.1016/j.exger.2022.111933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
AIM The purpose of the study was to test the effect of ageing, BMI, physical activity and chronic exercise on IL-15 blood concentration by meta-analyses of the literature. METHODS The search was performed on PubMed/MEDLINE, Web of Science, ProQuest, Embase and Cochrane databases. First meta-analysis compared blood IL-15 of healthy adults across three age groups (<35 years, 35-65 years, and >65 years), considering BMI as confounding factor; the second compared IL-15 levels between physically active and non-physically active individuals (cross-sectional studies); and the third tested the effect of chronic exercise interventions on blood IL-15 levels on participants of any age, sex, and health condition. RESULTS From 2582 studies retrieved, 67 were selected for the three meta-analyses (age effect: 59; physical activity cross-sectional effect: 5; chronic exercise effect: 14). Older adults had lower blood IL-15 than young and middle-aged adults (5.30 pg/ml [4.76; 5.83]; 7.11 pg/ml [6.33; 7.88]; 7.10 pg/ml [5.55; 8.65], respectively). However, the subgroup of overweight older adults had higher IL-15 than young and middle aged overweight adults; Habitual physical activity did not affect blood IL-15 (standardized mean difference [SMD] 0.61 [-0.65; 1.88], p = 0.34); Chronic exercise reduced blood IL-15 in short-term interventions (<16 weeks) (SMD -0.14 [-0.27; -0.01], p = 0.04), but not studies of >16 weeks of intervention (SMD 0.44 [-0.26; 1.15], p = 0.22). CONCLUSION The present meta-analyses highlight the complex interaction of age, BMI and physical activity on blood IL-15 and emphasize the need to take these factors into account when considering the role of this myokine in health throughout life.
Collapse
Affiliation(s)
| | - Amanda Veiga Sardeli
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, Brazil; Gerontology Program, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil; MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK.
| | - Janet Mary Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
| | - Cláudia Regina Cavaglieri
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, Brazil; Gerontology Program, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
7
|
Shi X, Zhang Q, Wang J, Zhang Y, Yan Y, Liu Y, Yang N, Wang Q, Xu X. Differential expression analysis of mRNAs, lncRNAs, and miRNAs expression profiles and construction of ceRNA networks in PEDV infection. BMC Genomics 2022; 23:586. [PMID: 35964002 PMCID: PMC9375197 DOI: 10.1186/s12864-022-08805-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 07/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine Epidemic Diarrhea Virus (PEDV) is a coronavirus that seriously affects the swine industry. MicroRNAs and long noncoding RNAs are two relevant non-coding RNAs (ncRNAs) class and play crucial roles in a variety of physiological processes. Increased evidence indicates a complex interaction between mRNA and ncRNA. However, our understanding of the function of ncRNA involved in host-PEDV interaction is limited. RESULTS A total of 1,197 mRNA transcripts, 539 lncRNA transcripts, and 208 miRNA transcripts were differentially regulated at 24 h and 48 h post-infection. Gene ontology (GO) and KEGG pathway enrichment analysis showed that DE mRNAs and DE lncRNAs were mainly involved in biosynthesis, innate immunity, and lipid metabolism. Moreover, we constructed a miRNA-mRNA-pathway network using bioinformatics, including 12 DE mRNAs, 120 DE miRNAs, and 11 pathways. Finally, the target genes of DE miRNAs were screened by bioinformatics, and we constructed immune-related lncRNA-miRNA-mRNA ceRNA networks. Then, the selected DE genes were validated by qRT-PCR, which were consistent with the results from RNA-Seq data. CONCLUSIONS This study provides the comprehensive analysis of the expression profiles of mRNAs, lncRNAs, and miRNAs during PEDV infection. We characterize the ceRNA networks which can provide new insights into the pathogenesis of PEDV.
Collapse
Affiliation(s)
- Xiaojie Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Jingjing Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Yuting Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Yuchao Yan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Yi Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Naling Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Quanqiong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
8
|
Yun T, Hua J, Ye W, Ni Z, Chen L, Zhu Y, Zhang C. Intergrated Transcriptomic and Proteomic Analysis Revealed the Differential Responses to Novel Duck Reovirus Infection in the Bursa of Fabricius of Cairna moschata. Viruses 2022; 14:v14081615. [PMID: 35893682 PMCID: PMC9332436 DOI: 10.3390/v14081615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 01/25/2023] Open
Abstract
The bursa of Fabricius is an immunologically organ against the invasion of duck reovirus (DRV), which is a fatal bird virus belonging to the Reoviridae family. However, responses of the bursa of Fabricius of Cairna moschata to novel DRV (NDRV) infection are largely unknown. Transcriptomes and proteomes of the samples from control and two NDRV strain (HN10 and JDm10) with different virulence were analyzed. Differentially expressed genes and differential accumulated proteins were enriched in the serine protease system and innate immune response clusters. Most of the immune-related genes were up-regulated under both JDm10/HN10 infections. However, the immune-related proteins were only accumulated under HN10 infection. For the serine protease system, coagulation factor IX, three chains of fibrinogen, and complements C8, C5, and C2s were significantly up-regulated by the HN10 infection, suggesting that the serine protease-mediated immune system might be involved in the resistance to NDRV infection. For the innate and adaptive immune system, RIG-I, MDA5, MAPK20, and IRF3 were significantly up-regulated, indicating their important roles against invaded virus. TLR-3 and IKBKB were only up-regulated in the liver cells, MAPK20 was only up-regulated in the bursa of Fabricius cells, and IRAK2 was only up-regulated in the spleen samples. Coagulation factor IX was increased in the bursa of Fabricius, not in the liver and spleen samples. The data provides a detailed resource for studying the proteins participating in the resistances of the bursa of Fabricius of duck to NDRV infections.
Collapse
Affiliation(s)
- Tao Yun
- Correspondence: (T.Y.); (C.Z.)
| | | | | | | | | | | | | |
Collapse
|
9
|
Han D, Tai Y, Hua G, Yang X, Chen J, Li J, Deng X. Melanocytes in black-boned chicken have immune contribution under infectious bursal disease virus infection. Poult Sci 2021; 100:101498. [PMID: 34695633 PMCID: PMC8554273 DOI: 10.1016/j.psj.2021.101498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/03/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
In black-boned chicken, melanocytes are widely distributed in their inner organs. However, the roles of these cells are not fully elucidated. In this study, we used 3-wk-old female Silky Fowl to investigate the functions of melanocytes under infection with infectious bursal disease virus (IBDV). We found the melanocytes in the bursa of Fabricius involved in IBDV infection shown as abundant melanin were transported into the nodule and lamina propria where obvious apoptotic cells and higher expression of BAX were detected. Genes related to the toll-like receptor (TLR) signaling pathway were highly detected by quantitative PCR, including TLR1, TLR3, TLR4, TLR15, myeloid differential protein-88, interferon-α, and interferon-β. We then isolated and infected primary melanocytes with IBDV in vitro and found that higher expressions of immune genes were detected at 24 and 48 h after infection; the upregulated innate and adaptive immune genes were involved in the pathogenesis of IBDV infection, including TLR3, TLR7, interleukin 15 (IL15), IL18, IL1rap, CD7, BG2, ERAP1, and SLA2. These changes in gene expression were highly associated with microtubule-based movement, antigen processing and presentation, defense against viruses, and innate immune responses. Our results indicated that the widely distributed melanocytes in Silky Fowl could migrate to play important innate immune roles during virus infection.
Collapse
Affiliation(s)
- Deping Han
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yurong Tai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Guoying Hua
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xue Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jianfei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Junying Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xuemei Deng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Wang H, Zhong J, Wang J, Chai Z, Zhang C, Xin J, Wang J, Cai X, Wu Z, Ji Q. Whole-Transcriptome Analysis of Yak and Cattle Heart Tissues Reveals Regulatory Pathways Associated With High-Altitude Adaptation. Front Genet 2021; 12:579800. [PMID: 34093634 PMCID: PMC8176224 DOI: 10.3389/fgene.2021.579800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 04/26/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The yak (Bos grunniens) is an important livestock species that can survive the extremely cold, harsh, and oxygen-poor conditions of the Qinghai-Tibetan Plateau and provide meat, milk, and transportation for the Tibetans living there. However, the regulatory network that drive this hypoxic adaptation remain elusive. RESULTS The heart tissues from LeiRoqi (LWQY) yak and their related cattle (Bos Taurus) breeds, which are two native cattle breeds located in high altitude (HAC) and low altitude (LAC) regions, respectively, were collected for RNA sequencing. A total of 178 co-differentially expressed protein-coding transcripts (co-DETs) were discovered in each of the LAC-vs-LWQY and LAC-vs-HAC comparison groups, including NFATC2, NFATC1, ENPP2, ACSL4, BAD, and many other genes whose functions were reported to be associated with the immune-system, endocrine-system, and lipid metabolism. Two and 230 lncRNA transcripts were differentially expressed in the LAC-vs-LWQY and LAC-vs-HAC comparisons' respectively, but no lncRNA transcripts that were co-differentially expressed. Among the 58 miRNAs that were co-differentially expressed, 18 were up-regulated and 40 were down-regulated. In addition, 640 (501 up-regulated and 139 down-regulated) and 152 (152 up-regulated and one down-regulated) circRNAs showed differential expression in LAC-vs-LWQY and LAC-vs-HAC comparison groups, respectively, and 53 up-regulated co-differentially expressed circRNAs were shared. Multiple co-DETs, which are the targets of miRNAs/lncRNAs, are significantly enriched in high-altitude adaptation related processes, such as, T cell receptor signaling, VEGF signaling, and cAMP signaling. A competing endogenous RNA (ceRNA) network was constructed by integrating the competing relationships among co-differentially expressed mRNAs, miRNAs, lncRNAs and circRNAs. Furthermore, the hypoxic adaptation related ceRNA network was constructed, and the six mRNAs (MAPKAPK3, PXN, NFATC2, ATP7A, DIAPH1, and F2R), the eight miRNAs (including miR-195), and 15 circRNAs (including novel-circ-017096 and novel-circ-018073) are proposed as novel and promising candidates for regulation of hypoxic adaptation in the heart. CONCLUSION In conclusion, the data recorded in the present study provides new insights into the molecular network of high-altitude adaptation along with more detailed information of protein-coding transcripts and non-coding transcripts involved in this physiological process, the detailed mechanisms behind how these transcripts "crosstalk" with each other during the plateau adaptation are worthy of future research efforts.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Chengfu Zhang
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Jinwei Xin
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Zhijuan Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Qiumei Ji
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| |
Collapse
|
11
|
Han R, Han L, Wang S, Li H. Whole Transcriptome Analysis of Mesenchyme Tissue in Sika Deer Antler Revealed the CeRNAs Regulatory Network Associated With Antler Development. Front Genet 2020; 10:1403. [PMID: 32133026 PMCID: PMC7040488 DOI: 10.3389/fgene.2019.01403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/23/2019] [Indexed: 01/04/2023] Open
Abstract
Deer antler is the only completely regenerable organ in mammals. During the rapid growth period, the antler proliferates even faster than cancerous tissue growth. However, the proliferation and development of antler have been in a stable and controllable growth cycle. In this study, we analyzed the time series expression data of nine samples from mesenchyme layer in three male sika deer in the early period of the antler with a saddle-like appearance (30 days), the rapid growth period of the antler with two branches (60 days), and the final period of the antler with three branches (90 days). Whole Transcriptome sequencing results show that in the 30 d versus 60 d group, 1,464 genes, 85 long noncoding RNAs (lncRNAs), and 61 miRNAs were identified as differentially expressed; 1,748 genes, 138 lncRNAs, and 78 miRNAs were identified as differentially expressed in 30d versus 90d group; and 816 differentially expressed genes (DEGs), 49 differentially expressed lncRNAs (DE lncRNAs), and 24 differentially expressed miRNA (DE miRNAs) were identified in 60d versus 90d group. A total of 182 miRNA-mRNA interaction pairs and 89 miRNA-lncRNA interaction pairs were screened from DEGs, DE miRNAs, and DE lncRNAs to construct the ceRNA regulatory network (ceRNET). In summary, we identified candidate mRNAs, miRNAs and lncRNAs that regulate the development of antler tip. It may lay the foundation for further investigating the molecular mechanism of antler rapid growth and development.
Collapse
Affiliation(s)
- Ruobing Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Lei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Shengnan Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Heping Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| |
Collapse
|
12
|
Jiang L, Zhao XH, Mao YL, Wang JF, Zheng HJ, You QS. Long non-coding RNA RP11-468E2.5 curtails colorectal cancer cell proliferation and stimulates apoptosis via the JAK/STAT signaling pathway by targeting STAT5 and STAT6. J Exp Clin Cancer Res 2019; 38:465. [PMID: 31718693 PMCID: PMC6852742 DOI: 10.1186/s13046-019-1428-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/23/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are tumor-associated biological molecules and have been found to be implicated in the progression of colorectal cancer (CRC). This study aims to examine the effects of lncRNA RP11-468E2.5 and its target genes (STAT5 and STAT6) on the biological activities of CRC cells via the Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway. METHODS We initially screened the GEO database for differentially expressed lncRNAs related to CRC and then made a prediction of the implicated target genes. Then we collected CRC tissues and adjacent normal tissues from 169 CRC patients. Human CRC HCT116 and SW480 cells were treated with small interference RNA (siRNA) against RP11-468E2.5, AG490 (an inhibitor of the JAK/STAT signaling pathway), or both in combination. Next, we measured the effects of RP11-468E2.5 treatment on cellular activities such as cell viability, cycle distribution and cell apoptosis, and studied interactions among RP11-468E2.5, STAT5/STAT6, and the JAK/STAT signaling pathway. Finally, an in vivo tumor formation assay was performed to observe the effect of RP11-468E2.5 on tumor growth. RESULTS The CRC-related gene microarray data showed low expression of RP11-468E2.5 in CRC surgical specimens. However, RP11-468E2.5 was confirmed to target STAT5 and STAT6, which participate in the JAK/STAT signaling pathway. CRC tissues showed lower expression of RP11-468E2.5, higher expression of STAT5, STAT6 and of the cell cycle marker Cyclin D1 (CCND1), compared to the findings in adjacent normal tissues. The treatment of siRNA against RP11-468E2.5 increased expression of JAK2, STAT3, STAT5, STAT6, CCND1 and Bcl-2 along with the extent of STAT3, STAT5 and STAT6 phosphorylation, while lowering expression of P21 and P27. Treatment with AG490 exhibited approximately opposite effects, whereas siRNA against RP11-468E2.5 treatment stimulated CRC cell proliferation and reduced cell apoptosis, while promoting cell cycle entry; AG490 treatment reversed these results. CONCLUSIONS Altogether, we conclude that up-regulation of RP11-468E2.5 inhibits the JAK/STAT signaling pathway by targeting STAT5 and STAT6, thereby suppressing cell proliferation and promoting cell apoptosis in CRC.
Collapse
Affiliation(s)
- Li Jiang
- Department of Hematology and Lymphatic Diseases, Harbin Medical University Tumour Hospital, Harbin, 150081, People's Republic of China
| | - Xu-Hai Zhao
- Department of Breast Surgery, Harbin Medical University Tumour Hospital, Harbin, 150081, People's Republic of China
| | - Yin-Ling Mao
- Department of Abdominal Radiotherapy, Harbin Medical University Tumour Hospital, No. 150, Haping Road, Nangang District, Harbin, 150081, People's Republic of China.
| | - Jun-Feng Wang
- Department of Thoracic Surgery, Harbin Medical University Tumour Hospital, Harbin, 150081, People's Republic of China
| | - Hui-Jun Zheng
- Department of General Surgery, Kangying Hospital of Mingshui County, Suihua, 151700, People's Republic of China
| | - Qing-Shan You
- Department of Abdominal Radiotherapy, Harbin Medical University Tumour Hospital, No. 150, Haping Road, Nangang District, Harbin, 150081, People's Republic of China
| |
Collapse
|
13
|
Hao SS, Zong MM, Zhang Z, Cai JX, Zheng Y, Feng XL, Wang C. The Inducing Roles of the New Isolated Bursal Hexapeptide and Pentapeptide on the Immune Response of AIV Vaccine in Mice. Protein Pept Lett 2019; 26:542-549. [PMID: 30950342 DOI: 10.2174/0929866526666190405123932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Bursa of Fabricius is the acknowledged central humoral immune organ. The bursal-derived peptides play the important roles on the immature B cell development and antibody production. OBJECTIVES Here we explored the functions of the new isolated bursal hexapeptide and pentapeptide on the humoral, cellular immune response and antigen presentation to Avian Influenza Virus (AIV) vaccine in mice immunization. METHODS The bursa extract samples were purified following RP HPLC method, and were analyzed with MS/MS to identify the amino acid sequences. Mice were twice subcutaneously injected with AIV inactivated vaccine plus with two new isolated bursal peptides at three dosages, respectively. On two weeks after the second immunization, sera samples were collected from the immunized mice to measure AIV-specific IgG antibody levels and HI antibody titers. Also, on 7th day after the second immunization, lymphocytes were isolated from the immunized mice to detect T cell subtype and lymphocyte viabilities, and the expressions of co-stimulatory molecule on dendritic cells in the immunized mice. RESULTS Two new bursal hexapeptide and pentapeptide with amino acid sequences KGNRVY and MPPTH were isolated, respectively. Our investigation proved the strong regulatory roles of bursal hexapeptide on AIV-specific IgG levels and HI antibody titers, and lymphocyte viabilities, and the significant increased T cells subpopulation and expressions of MHCII molecule on dendritic cells in the immunized mice. Moreover, our findings verified the significantly enhanced AIV-specific IgG antibody and HI titers, and the strong increased T cell subpopulation and expressions of CD40 molecule on dendritic cells in the mice immunized with AIV vaccine and bursal pentapeptide. CONCLUSION We isolated and identified two new hexapeptide and pentapeptide from bursa, and proved that these two bursal peptides effectively induced the AIV-specific antibody, T cell and antigen presentation immune responses, which provided an experimental basis for the further clinical application of the bursal derived active peptide on the vaccine improvement.
Collapse
Affiliation(s)
- Shan Shan Hao
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Man Man Zong
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ze Zhang
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia Xi Cai
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Zheng
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiu Li Feng
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Wang
- College of Animal Science & Technologe, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
14
|
Vaschetto LM, Beccacece HM. The emerging importance of noncoding RNAs in the insecticide tolerance, with special emphasis on Plutella xylostella (Lepidoptera: Plutellidae). WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1539. [PMID: 31045325 DOI: 10.1002/wrna.1539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/20/2019] [Accepted: 04/02/2019] [Indexed: 01/11/2023]
Abstract
Recently generated high-throughput sequencing data sets have shed light on the important regulatory roles of noncoding RNA (ncRNA) molecules in the development of higher organisms. Nowadays it is well-known that regulatory ncRNAs can bind complementary RNA or DNA sequences and recruit chromatin remodelers to selectively modulate gene expression. Consequently, genome sequencing and transcriptomics technologies are now being used to reveal hidden associations among ncRNAs and distinct biological mechanisms. This is the case for the diamondback moth Plutella xylostella, a worldwide pest known to infest cruciferous crops and to display resistance to most insecticides, including Bacillus thuringiensis (Bt) based biopesticides. In P. xylostella, it is thought that ncRNAs could play important roles in both development and insecticide resistance. This review will highlight recent insights into the roles of ncRNAs in P. xylostella and related lepidopterans, and will outline genetic engineering technologies which might be used to design efficient ncRNA-based pest control strategies. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Luis María Vaschetto
- Instituto de Diversidad y Ecología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas (IDEA, CONICET), Córdoba, Argentina.,Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (FCEFyN, UNC), Córdoba, Argentina
| | - Hernán Mario Beccacece
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (FCEFyN, UNC), Córdoba, Argentina.,Instituto de Investigaciones Biológicas y Tecnológicas Consejo Nacional de Investigaciones Científicas y Técnicas (IIByT, CONICET), Córdoba, Argentina
| |
Collapse
|
15
|
Transcriptomic Changes in Broiler Chicken Hypothalamus during Growth and Development. Int J Genomics 2018; 2018:6049469. [PMID: 30406127 PMCID: PMC6204183 DOI: 10.1155/2018/6049469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/29/2018] [Accepted: 09/03/2018] [Indexed: 01/18/2023] Open
Abstract
The hypothalamus plays an overarching role that is reflected in the physiological processes observed in the entire organism. The hypothalamus regulates selected metabolic processes and activities of the autonomic nervous system. The avian hypothalamus due to the structural complexity is not well described and has a slightly different function than the mammalian hypothalamus that is the subject of numerous studies. The present study evaluated activities of hypothalamic genes in fast-growing chickens during development (at the 1st day and 3rd and 6th weeks after hatching). The hypothalamic transcriptomes for 3- and 6-week-old cockerels were analysed using an RNA sequencing method in next-generation sequencing (NGS) technology. The differentially expressed gene analysis was conducted using DESeq2 software. In younger 22-day-old cockerels, 389 genes showed higher expression (fold change > 1.5) than that in 45-day-old birds. These genes played a role in several biological processes because they encoded proteins involved in integrin signalling, regulation of hormone levels, camera-type eye development, and blood vessel development. Moreover, surprisingly in the hypothalamus of 3-week-old cockerels, transcripts were identified for proteins involved in both anorexigenic (POMC, NMU) and orexigenic (PMCH, ALDH1A1, LPL, and GHRH) pathways. The RNA-seq results were confirmed by qPCR methods. In summary, the intensive growth of 3-week-old chickens was reflected in hypothalamic activities because the genes associated with the somatotropin axis and regulation of satiety centre showed increased expression.
Collapse
|
16
|
Combination of novel and public RNA-seq datasets to generate an mRNA expression atlas for the domestic chicken. BMC Genomics 2018; 19:594. [PMID: 30086717 PMCID: PMC6081845 DOI: 10.1186/s12864-018-4972-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 07/31/2018] [Indexed: 12/20/2022] Open
Abstract
Background The domestic chicken (Gallus gallus) is widely used as a model in developmental biology and is also an important livestock species. We describe a novel approach to data integration to generate an mRNA expression atlas for the chicken spanning major tissue types and developmental stages, using a diverse range of publicly-archived RNA-seq datasets and new data derived from immune cells and tissues. Results Randomly down-sampling RNA-seq datasets to a common depth and quantifying expression against a reference transcriptome using the mRNA quantitation tool Kallisto ensured that disparate datasets explored comparable transcriptomic space. The network analysis tool Graphia was used to extract clusters of co-expressed genes from the resulting expression atlas, many of which were tissue or cell-type restricted, contained transcription factors that have previously been implicated in their regulation, or were otherwise associated with biological processes, such as the cell cycle. The atlas provides a resource for the functional annotation of genes that currently have only a locus ID. We cross-referenced the RNA-seq atlas to a publicly available embryonic Cap Analysis of Gene Expression (CAGE) dataset to infer the developmental time course of organ systems, and to identify a signature of the expansion of tissue macrophage populations during development. Conclusion Expression profiles obtained from public RNA-seq datasets – despite being generated by different laboratories using different methodologies – can be made comparable to each other. This meta-analytic approach to RNA-seq can be extended with new datasets from novel tissues, and is applicable to any species. Electronic supplementary material The online version of this article (10.1186/s12864-018-4972-7) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Liu L, Xiao Q, Gilbert ER, Cui Z, Zhao X, Wang Y, Yin H, Li D, Zhang H, Zhu Q. Whole-transcriptome analysis of atrophic ovaries in broody chickens reveals regulatory pathways associated with proliferation and apoptosis. Sci Rep 2018; 8:7231. [PMID: 29739971 PMCID: PMC5940789 DOI: 10.1038/s41598-018-25103-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Broodiness in laying hens results in atrophy of the ovary and consequently decreases productivity. However, the regulatory mechanisms that drive ovary development remain elusive. Thus, we collected atrophic ovaries (AO) from 380-day-old broody chickens (BC) and normal ovaries (NO) from even-aged egg-laying hens (EH) for RNA sequencing. We identified 3,480 protein-coding transcripts that were differentially expressed (DE), including 1,719 that were down-regulated and 1,761 that were up-regulated in AO. There were 959 lncRNA transcripts that were DE, including 56 that were down-regulated and 903 that were up-regulated. Among the116 miRNAs that were DE, 79 were down-regulated and 37 were up-regulated in AO. Numerous DE protein-coding transcripts and target genes for miRNAs/lncRNAs were significantly enriched in reproductive processes, cell proliferation, and apoptosis pathways. A miRNA-intersection gene-pathway network was constructed by considering target relationships and correlation of the expression levels between ovary development-related genes and miRNAs. We also constructed a competing endogenous RNA (ceRNA) network by integrating competing relationships between protein-coding genes and lncRNA transcripts, and identified several lncRNA transcripts predicted to regulate the CASP6, CYP1B1, GADD45, MMP2, and SMAS2 genes. In conclusion, we discovered protein-coding genes, miRNAs, and lncRNA transcripts that are candidate regulators of ovary development in broody chickens.
Collapse
Affiliation(s)
- Lingbin Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, 611130, Sichuan Province, China
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, 24061, Virginia, USA
| | - Qihai Xiao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, 611130, Sichuan Province, China
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, 24061, Virginia, USA
| | - Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, 611130, Sichuan Province, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, 611130, Sichuan Province, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, 611130, Sichuan Province, China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, 611130, Sichuan Province, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, 611130, Sichuan Province, China
| | - Haihan Zhang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, 24061, Virginia, USA
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, 611130, Sichuan Province, China.
| |
Collapse
|