1
|
Yang G, Wijma HJ, Rozeboom HJ, Mascotti ML, Fraaije MW. Identification and characterization of archaeal and bacterial F 420 -dependent thioredoxin reductases. FEBS J 2023; 290:4777-4791. [PMID: 37403630 DOI: 10.1111/febs.16896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
The thioredoxin pathway is an antioxidant system present in most organisms. Electrons flow from a thioredoxin reductase to thioredoxin at the expense of a specific electron donor. Most known thioredoxin reductases rely on NADPH as a reducing cofactor. Yet, in 2016, a new type of thioredoxin reductase was discovered in Archaea which utilize instead a reduced deazaflavin cofactor (F420 H2 ). For this reason, the respective enzyme was named deazaflavin-dependent flavin-containing thioredoxin reductase (DFTR). To have a broader understanding of the biochemistry of DFTRs, we identified and characterized two other archaeal representatives. A detailed kinetic study, which included pre-steady state kinetic analyses, revealed that these two DFTRs are highly specific for F420 H2 while displaying marginal activity with NADPH. Nevertheless, they share mechanistic features with the canonical thioredoxin reductases that are dependent on NADPH (NTRs). A detailed structural analysis led to the identification of two key residues that tune cofactor specificity of DFTRs. This allowed us to propose a DFTR-specific sequence motif that enabled for the first time the identification and experimental characterization of a bacterial DFTR.
Collapse
Affiliation(s)
- Guang Yang
- Molecular Enzymology Group, University of Groningen, The Netherlands
| | - Hein J Wijma
- Molecular Enzymology Group, University of Groningen, The Netherlands
| | | | - Maria Laura Mascotti
- Molecular Enzymology Group, University of Groningen, The Netherlands
- IMIBIO-SL CONICET, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Argentina
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, The Netherlands
| |
Collapse
|
2
|
M S, N RP, Chakraborty A, Rajendrasozhan S. Proteomic profiling of Deinococcus radiodurans with response to thioredoxin reductase inhibitor and ionizing radiation treatment. J Proteomics 2022; 267:104697. [PMID: 35995383 DOI: 10.1016/j.jprot.2022.104697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
This study explains the importance of cellular redox system in preserving the proteome of the radioresistant Deinococcus radiodurans. The thioredoxin reductase (TrxR) redox system was inhibited by ebselen (10 μM), and then the bacterium was exposed to 4 kGy of ionizing radiation. The differentially expressed proteins were analyzed using label-free quantitative (LFQ) proteomics. The 4 kGy radiation treatment increases the expression of stress response proteins like osmotically inducible protein OsmC, catalase, and metallophosphoesterase compared to control. Ebselen plus radiation treatment augments oxidoreductases proteins in D. radiodurans. Further, the proteins involved in glycolysis, tricarboxylic acetic acid (TCA) and proteins like proteases, peptidase, and peptide transporters were significantly decreased in the ebselen plus radiation group compared to radiation treated group. Further, ebselen plus radiation treatment increases the ATP-binding cassette (ABC) transporters involved in the efflux of toxic chemicals and nutrient uptake and the stress response related membrane protein like S-layer homology domain-containing protein in D. radiodurans. Thus, the results show that the altered redox status via inhibition of TrxR redox system significantly affects the expression of essential cellular proteins for the survival. The cellular content of D. radiodurans may be used to handle redox imbalances in the normal cells during cancer radiotherapy. SIGNIFICANCE: Deinococcus radiodurans is a popular radioresistance organism with efficient antioxidant systems and DNA repair mechanisms. There are many antioxidant systems and small molecules that responsible for its resistance. The importance of thiol based antioxidant systems in its resistance property has not fully studied yet. Thioredoxin reductase is an important disulfide containing protein that involved in maintaining redox homeostasis. The TrxR inhibition affects the cell survival and synthesis of molecules against ionizing radiation. In this study we are reporting the effects of TrxR inhibitor on proteome of D. radiodurans upon ionizing radiation. This study reveals the significance of TrxR antioxidant system on the proteome of D. radiodurans. The inhibition of TrxR antioxidant system and the subsequent disturbances in the proteome content makes the organism vulnerable to oxidative stress.
Collapse
Affiliation(s)
- Sudharsan M
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, 608 002, Tamilnadu, India
| | - Rajendra Prasad N
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, 608 002, Tamilnadu, India
| | - Anindita Chakraborty
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, 700098, West Bengal, India
| | | |
Collapse
|
3
|
Hipper E, Blech M, Hinderberger D, Garidel P, Kaiser W. Photo-Oxidation of Therapeutic Protein Formulations: From Radical Formation to Analytical Techniques. Pharmaceutics 2021; 14:72. [PMID: 35056968 PMCID: PMC8779573 DOI: 10.3390/pharmaceutics14010072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
Abstract
UV and ambient light-induced modifications and related degradation of therapeutic proteins are observed during manufacturing and storage. Therefore, to ensure product quality, protein formulations need to be analyzed with respect to photo-degradation processes and eventually protected from light exposure. This task usually demands the application and combination of various analytical methods. This review addresses analytical aspects of investigating photo-oxidation products and related mediators such as reactive oxygen species generated via UV and ambient light with well-established and novel techniques.
Collapse
Affiliation(s)
- Elena Hipper
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.H.); (D.H.)
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| | - Dariush Hinderberger
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.H.); (D.H.)
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| | - Wolfgang Kaiser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| |
Collapse
|
4
|
Shoor M, Gudim I, Hersleth HP, Hammerstad M. Thioredoxin reductase from Bacillus cereus exhibits distinct reduction and NADPH-binding properties. FEBS Open Bio 2021; 11:3019-3031. [PMID: 34492167 PMCID: PMC8564101 DOI: 10.1002/2211-5463.13289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/23/2022] Open
Abstract
Low‐molecular‐weight (low Mr) thioredoxin reductases (TrxRs) are homodimeric NADPH‐dependent dithiol flavoenzymes that reduce thioredoxins (Trxs) or Trx‐like proteins involved in the activation networks of enzymes, such as the bacterial class Ib ribonucleotide reductase (RNR). During the last few decades, TrxR‐like ferredoxin/flavodoxin NADP+ oxidoreductases (FNRs) have been discovered and characterized in several types of bacteria, including those not encoding the canonical plant‐type FNR. In Bacillus cereus, a TrxR‐like FNR has been shown to reduce the flavodoxin‐like protein NrdI in the activation of class Ib RNR. However, some species only encode TrxR and lack the homologous TrxR‐like FNR. Due to the structural similarity between TrxRs and TrxR‐like FNRs, as well as variations in their occurrence in different microorganisms, we hypothesized that low Mr TrxR may be able to replace TrxR‐like FNR in, for example, the reduction of NrdI. In this study, characterization of TrxR from B. cereus has revealed a weak FNR activity toward NrdI reduction. Additionally, the crystal structure shows that only one out of two binding sites of the B. cereus TrxR homodimer is occupied with NADPH, indicating a possible asymmetric co‐substrate binding in TrxR.
Collapse
Affiliation(s)
- Marita Shoor
- Department of Biosciences, Section for Biochemistry and Molecular Biology, University of Oslo, Norway
| | - Ingvild Gudim
- Department of Biosciences, Section for Biochemistry and Molecular Biology, University of Oslo, Norway
| | - Hans-Petter Hersleth
- Department of Biosciences, Section for Biochemistry and Molecular Biology, University of Oslo, Norway.,Department of Chemistry, Section for Chemical Life Sciences, University of Oslo, Norway
| | - Marta Hammerstad
- Department of Biosciences, Section for Biochemistry and Molecular Biology, University of Oslo, Norway
| |
Collapse
|
5
|
Wu Y, Paul CE, Hollmann F. Stabilisation of the Fatty Acid Decarboxylase from Chlorella variabilis by Caprylic Acid. Chembiochem 2021; 22:2420-2423. [PMID: 34002919 PMCID: PMC8362199 DOI: 10.1002/cbic.202100182] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Indexed: 11/25/2022]
Abstract
The fatty acid photodecarboxylase from Chlorella variabilis NC64 A (CvFAP) catalyses the light-dependent decarboxylation of fatty acids. Photoinactivation of CvFAP still represents one of the major limitations of this interesting enzyme en route to practical application. In this study we demonstrate that the photostability of CvFAP can easily be improved by the administration of medium-chain length carboxylic acids such as caprylic acid indicating that the best way of maintaining CvFAP stability is 'to keep the enzyme busy'.
Collapse
Affiliation(s)
- Yinqi Wu
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| |
Collapse
|
6
|
Chun HL, Chang YJ, Park HH. Crystal structure of the cofactor-free form of thioredoxin reductase from Acinetobacter baumannii. FEBS Lett 2021; 595:1977-1986. [PMID: 34118067 DOI: 10.1002/1873-3468.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 11/09/2022]
Abstract
Thioredoxin reductase (TrxR) is a central component in the thioredoxin system by involving in catalyzing the reduction of thioredoxin, which is critical for organism survival. Because this system is essential, it is a promising target for novel antimicrobial agents. Herein, we solved the 1.9 Å high-resolution structure of TrxR from Acinetobacter baumannii Thioredoxin reductase (AbTrxR), which is a Gram-negative, pathogenic bacterium and a drug-resistant superbug. AbTrxR was cofactor-free and formed a dimer in solution. AbTrxR contained a longer dimerization loop2 and a shorter β7 -β8 connecting loop than other TrxRs. AbTrxR cofactor-free form exhibited a flavin-oxidizing (FO) conformation, whose NADPH domain was located close to the dimeric interface. This structural information might be helpful for development of new antibiotic agents targeting superbugs.
Collapse
Affiliation(s)
- Hye Lin Chun
- College of Pharmacy, Chung-Ang University, Seoul, Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea
| | - Ye Ji Chang
- College of Pharmacy, Chung-Ang University, Seoul, Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul, Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea
| |
Collapse
|
7
|
Ernst C, Kayastha K, Koch T, Venceslau SS, Pereira IAC, Demmer U, Ermler U, Dahl C. Structural and spectroscopic characterization of a HdrA-like subunit from Hyphomicrobium denitrificans. FEBS J 2020; 288:1664-1678. [PMID: 32750208 DOI: 10.1111/febs.15505] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 07/03/2020] [Accepted: 07/31/2020] [Indexed: 02/01/2023]
Abstract
Many bacteria and archaea employ a novel pathway of sulfur oxidation involving an enzyme complex that is related to the heterodisulfide reductase (Hdr or HdrABC) of methanogens. As a first step in the biochemical characterization of Hdr-like proteins from sulfur oxidizers (sHdr), we structurally analyzed the recombinant sHdrA protein from the Alphaproteobacterium Hyphomicrobium denitrificans at 1.4 Å resolution. The sHdrA core structure is similar to that of methanogenic HdrA (mHdrA) which binds the electron-bifurcating flavin adenine dinucleotide (FAD), the heart of the HdrABC-[NiFe]-hydrogenase catalyzed reaction. Each sHdrA homodimer carries two FADs and two [4Fe-4S] clusters being linked by electron conductivity. Redox titrations monitored by electron paramagnetic resonance and visible spectroscopy revealed a redox potential between -203 and -188 mV for the [4Fe-4S] center. The potentials for the FADH•/FADH- and FAD/FADH• pairs reside between -174 and -156 mV and between -81 and -19 mV, respectively. The resulting stable semiquinone FADH• species already detectable in the visible and electron paramagnetic resonance spectra of the as-isolated state of sHdrA is incompatible with basic principles of flavin-based electron bifurcation such that the sHdr complex does not apply this new mode of energy coupling. The inverted one-electron FAD redox potentials of sHdr and mHdr are clearly reflected in the different FAD-polypeptide interactions. According to this finding and the assumption that the sHdr complex forms an asymmetric HdrAA'B1C1B2C2 hexamer, we tentatively propose a mechanism that links protein-bound sulfane oxidation to sulfite on HdrB1 with NAD+ reduction via lipoamide disulfide reduction on HdrB2. The FAD of HdrA thereby serves as an electron storage unit. DATABASE: Structural data are available in PDB database under the accession number 6TJR.
Collapse
Affiliation(s)
- Corvin Ernst
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | - Tobias Koch
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Sofia S Venceslau
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ulrike Demmer
- Max-Planck-Institut für Biophysik, Frankfurt, Germany
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik, Frankfurt, Germany
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
8
|
Gao Y, Liu Y, Ma F, Sun M, Mu G, Tuo Y. Global transcriptomic and proteomics analysis of Lactobacillus plantarum Y44 response to 2,2-azobis(2-methylpropionamidine) dihydrochloride (AAPH) stress. J Proteomics 2020; 226:103903. [PMID: 32682107 DOI: 10.1016/j.jprot.2020.103903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/23/2020] [Accepted: 07/11/2020] [Indexed: 12/22/2022]
Abstract
Our previous study demonstrated that Lactobacillus plantarum Y44 exhibited antioxidant activity. However, the physiological characteristics of L. plantarum Y44 exposure to oxidative stress was not clear. In this research, the differentially expressed proteins and genes in L. plantarum Y44 under 2,2-azobis(2-methylpropionamidine) dihydrochloride (AAPH) stress at different concentrations were studied by using integrated transcriptomic and proteomic methods. Under 100 mM AAPH stress condition, 1139 differentially expressed genes (DEGs, 546 up-regulated and 593 down-regulated) and 329 differentially expressed proteins (DEPs, 127 up-regulated and 202 down-regulated) were observed. Under 200 mM AAPH stress condition, 1526 DEGs (751 up-regulated and 775 down-regulated) and 382 DEPs (139 up-regulated and 243 down-regulated) were observed. Overall, we found that L. plantarum Y44 fought against AAPH induced oxidative stress by up-regulating antioxidant enzymes and DNA repair proteins, such as ATP-dependent DNA helicase RuvA, adenine DNA glycosylase, single-strand DNA-binding protein SSB, DNA-binding ferritin-like protein DPS, thioredoxin reductase, protein-methionine-S-oxide reductase and glutathione peroxidase. Additionally, cell envelope composition of L. plantarum Y44 was highly remodeled by accelerating peptidoglycan and teichoic-acid (LTA) biosynthesis and modulating the fatty acids (FA) composition to achieve a higher ratio of unsaturated/saturated fatty acids (UFAs/SFAs) against AAPH stress. Moreover, metabolism processes including carbohydrate metabolism, amino acid biosynthesis, and nucleotide metabolism altered to respond to AAPH-induced damage. Altogether, our findings allow us to facilitate a better understanding of L. plantarum Y44 against oxidative stress. SIGNIFICANCE: This study represents an integrated proteomic and transcriptomic analysis of Lactobacillus plantarum Y44 response to 2,2-azobis(2-methylpropionamidine) dihydrochloride (AAPH) stress. Differentially expressed proteins and genes were identified between the proteome and transcriptome of L. plantarum Y44 under different AAPH stress. AAPH-induced response of L. plantarum Y44 appears to be primarily based on ROS scavenging, DNA repair, highly remodeled cell surface and specific metabolic processes. The knowledge about these proteomes and transcriptomes provides significant insights into the oxidative stress response of Lactobacillus plantarum.
Collapse
Affiliation(s)
- Yuan Gao
- School of food science and technology, Dalian Polytechnic University, Dalian 116034, China; Dalian probiotics function research key laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Yujun Liu
- School of food science and technology, Dalian Polytechnic University, Dalian 116034, China
| | - Fenglian Ma
- School of food science and technology, Dalian Polytechnic University, Dalian 116034, China; Dalian probiotics function research key laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Mengying Sun
- School of food science and technology, Dalian Polytechnic University, Dalian 116034, China; Dalian probiotics function research key laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Guangqing Mu
- School of food science and technology, Dalian Polytechnic University, Dalian 116034, China; Dalian probiotics function research key laboratory, Dalian Polytechnic University, Dalian 116034, China.
| | - Yanfeng Tuo
- School of food science and technology, Dalian Polytechnic University, Dalian 116034, China; Dalian probiotics function research key laboratory, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
9
|
Mariotti M, Leinisch F, Leeming DJ, Svensson B, Davies MJ, Hägglund P. Mass-Spectrometry-Based Identification of Cross-Links in Proteins Exposed to Photo-Oxidation and Peroxyl Radicals Using 18O Labeling and Optimized Tandem Mass Spectrometry Fragmentation. J Proteome Res 2018; 17:2017-2027. [DOI: 10.1021/acs.jproteome.7b00881] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Michele Mariotti
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, Kongens Lyngby, DK 2800 Denmark
| | - Fabian Leinisch
- Department of Biomedical Sciences, University of Copenhagen, Nørregade 10, Copenhagen, DK-1017 Denmark
| | | | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, Kongens Lyngby, DK 2800 Denmark
| | - Michael J. Davies
- Department of Biomedical Sciences, University of Copenhagen, Nørregade 10, Copenhagen, DK-1017 Denmark
| | - Per Hägglund
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, Kongens Lyngby, DK 2800 Denmark
- Department of Biomedical Sciences, University of Copenhagen, Nørregade 10, Copenhagen, DK-1017 Denmark
| |
Collapse
|